1
|
Luo X, Guo R, Xu X, Li X, Yao L, Wang X, Lu H. Mass spectrometry and associated technologies delineate the advantageously biomedical capacity of siderophores in different pathogenic contexts. MASS SPECTROMETRY REVIEWS 2019; 38:239-252. [PMID: 30035815 DOI: 10.1002/mas.21577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Siderophores are chemically diverse small molecules produced by microorganisms for chelation of irons to maintain their survival and govern some important biological functions, especially those cause that infections in hosts. Still, siderophores can offer new insight into a better understanding of the diagnosis and treatments of infectious diseases from the siderophore biosynthesis and regulation perspective. Thus, this review aims to summarize the biomedical value and applicability of siderophores in pathogenic contexts by briefly reviewing mass spectrometry (MS)-based chemical biology and translational applications that involve diagnosis, pathogenesis, and therapeutic discovery for a variety of infectious conditions caused by different pathogens. We highlight the advantages and disadvantages of siderophore discovery and applications in pathogenic contexts. Finally, we propose a panel of new and promising strategy as precision-modification metabolomics method, to rapidly advance the discovery of and translational innovations pertaining to these value compounds in broad biomedical niches. © 2018 Wiley Periodicals, Inc. Mass Spec Rev XX:XX-XX, 2018.
Collapse
Affiliation(s)
- Xialin Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Pharmacognosy, Center of Excellence for Chinmedomics, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xian Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xijun Wang
- Department of Pharmacognosy, Center of Excellence for Chinmedomics, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Pluháček T, Lemr K, Ghosh D, Milde D, Novák J, Havlíček V. Characterization of microbial siderophores by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:35-47. [PMID: 25980644 DOI: 10.1002/mas.21461] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/19/2014] [Indexed: 05/28/2023]
Abstract
Siderophores play important roles in microbial iron piracy, and are applied as infectious disease biomarkers and novel pharmaceutical drugs. Inductively coupled plasma and molecular mass spectrometry (ICP-MS) combined with high resolution separations allow characterization of siderophores in complex samples taking advantages of mass defect data filtering, tandem mass spectrometry, and iron-containing compound quantitation. The enrichment approaches used in siderophore analysis and current ICP-MS technologies are reviewed. The recent tools for fast dereplication of secondary metabolites and their databases are reported. This review on siderophores is concluded with their recent medical, biochemical, geochemical, and agricultural applications in mass spectrometry context.
Collapse
Affiliation(s)
- Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Karel Lemr
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Dipankar Ghosh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Novák
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Vladimír Havlíček
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| |
Collapse
|
3
|
Huang H, Ji X, Xiao F, Deng GJ. Copper(i)/Lewis acid triggered ring-opening coupling reaction of cyclopropenes with nitriles. RSC Adv 2015. [DOI: 10.1039/c5ra01541c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ring-opening coupling reaction of D–A cyclopropenes and nitriles is described for the facile synthesis of γ-amino ketones.
Collapse
Affiliation(s)
- Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Xiaochen Ji
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
4
|
Abstract
Siderophores are chelators synthesized by bacteria and fungi to sequester iron, which is essential for virulence and pathogenicity. Since the process involves active transport, which is highly regulated, remarkably efficient and often microbially selective, it has been exploited as a Trojan Horse method for development of microbe-selective antibiotics. Siderophores also have significant potential for the development of imaging contrast agents and diagnostics for pathogen-selective detection. These promising results demonstrate the versatility of natural and synthetic microbial iron chelators and their potential therapeutic applications.
Collapse
|
5
|
Heli H, Mirtorabi S, Karimian K. Advances in iron chelation: an update. Expert Opin Ther Pat 2011; 21:819-56. [PMID: 21449664 DOI: 10.1517/13543776.2011.569493] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Oxidative stress (caused by excess iron) can result in tissue damage, organ failure and finally death, unless treated by iron chelators. The causative factor in the etiology of a variety of disease states is the presence of iron-generated reactive oxygen species (ROS), which can result in cell damage or which can affect the signaling pathways involved in cell necrosis-apoptosis or organ fibrosis, cancer, neurodegeneration and cardiovascular, hepatic or renal dysfunctions. Iron chelators can reduce oxidative stress by the removal of iron from target tissues. Equally as important, removal of iron from the active site of enzymes that play key roles in various diseases can be of considerable benefit to the patients. AREAS COVERED This review focuses on iron chelators used as therapeutic agents. The importance of iron in oxidative damage is discussed, along with the three clinically approved iron chelators. EXPERT OPINION A number of iron chelators are used as approved therapeutic agents in the treatment of thalassemia major, asthma, fungal infections and cancer. However, as our knowledge about the biochemistry of iron and its role in etiologies of seemingly unrelated diseases increases, new applications of the approved iron chelators, as well as the development of new iron chelators, present challenging opportunities in the areas of drug discovery and development.
Collapse
Affiliation(s)
- Hossein Heli
- Islamic Azad University, Science and Research Branch, Department of Chemistry, Fars, 7348113111, Iran
| | | | | |
Collapse
|
6
|
Yang LX, Huang KX, Li HB, Gong JX, Wang F, Feng YB, Tao QF, Wu YH, Li XK, Wu XM, Zeng S, Spencer S, Zhao Y, Qu J. Design, synthesis, and examination of neuron protective properties of alkenylated and amidated dehydro-silybin derivatives. J Med Chem 2009; 52:7732-52. [PMID: 19673490 DOI: 10.1021/jm900735p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A series of C7-O- and C20-O-amidated 2,3-dehydrosilybin (DHS) derivatives ((+/-)-1a-f and (+/-)-2), as well as a set of alkenylated DHS analogues ((+/-)-4a-f), were designed and de novo synthesized. A diesteric derivative of DHS ((+/-)-3) and two C23 esterified DHS analogues ((+/-)-5a and (+/-)-5b) were also prepared for comparison. The cell viability of PC12 cells, Fe(2+) chelation, lipid peroxidation (LPO), free radical scavenging, and xanthine oxidase inhibition models were utilized to evaluate their antioxidative and neuron protective properties. The study revealed that the diether at C7-OH and C20-OH as well as the monoether at C7-OH, which possess aliphatic substituted acetamides, demonstrated more potent LPO inhibition and Fe(2+) chelation compared to DHS and quercetin. Conversely, the diallyl ether at C7-OH and C20-OH was more potent in protection of PC12 cells against H(2)O(2)-induced injury than DHS and quercetin. Overall, the more lipophilic alkenylated DHS analogues were better performing neuroprotective agents than the acetamidated derivatives. The results in this study would be beneficial for optimizing the therapeutic potential of lignoflavonoids, especially in neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Lei Xiang Yang
- Key Laboratory of Southern Zhejiang TCM R&D, Pharmacy School of Wenzhou Medical College, Wenzhou 325035, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lin W, Gupta A, Kim KH, Mendel D, Miller MJ. Syntheses of new spirocarbocyclic nucleoside analogs using iminonitroso Diels-Alder reactions. Org Lett 2009; 11:449-52. [PMID: 19072701 PMCID: PMC2671554 DOI: 10.1021/ol802553g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Cbz- and Boc-protected spirocyclic dienes were prepared by dialkylation of cyclopentadiene. These dienes coupled efficiently in a series of iminonitroso Diels-Alder reactions to produce a series of new spirocyclic adducts. Hydrogenolysis of these adducts afforded new spirocycles that contain multiple handles for further functionalization. Furthermore, stereocontrolled dihydroxylation and reductive cleavage of the spirocyclic adducts generated versatile scaffolds for the syntheses and derivatization of novel spirocyclic carbocyclic nucleoside analogs.
Collapse
Affiliation(s)
- Weimin Lin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|