1
|
Moharram FA, Ibrahim RR, Mahgoub S, Abdel-Aziz MS, Said AM, Huang HC, Chen LY, Lai KH, Hashad N, Mady MS. Secondary metabolites of Alternaria alternate appraisal of their SARS-CoV-2 inhibitory and anti-inflammatory potentials. PLoS One 2025; 20:e0313616. [PMID: 39854441 PMCID: PMC11760621 DOI: 10.1371/journal.pone.0313616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/28/2024] [Indexed: 01/26/2025] Open
Abstract
This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells. Two novel compounds, altenuline (1), phthalic acid bis (7'/7'' pentyloxy) isohexyl ester (2), along with 1-deoxyrubralactone (3) alternariol-5-O-methyl ether (4) and alternariol (5) were identified. Molecular docking and in vitro studies showed that compounds 2 and 4 were promising to counteract SARS-CoV-2 attachment to human ACE-2. Thus, they are considered promising natural anti-viral agents. SwissADME in silico analysis was conducted to predict the drug-like potential. Immunoblotting analysis confirmed that the tested compounds (1-4) demonstrated downregulation of ACE-2 expression in the endothelial cells from the lungs with variable degrees. Furthermore, the tested compounds (1-4) showed promising anti-inflammatory activities through TNF-α: TNFR2 inhibitory activity and their inhibitory effect on the proinflammatory cytokines (TNF-α and IL-6) in LPS-stimulated monocytes. In conclusion, our study, for the first time, provides beneficial experimental confirmation for the efficiency of the A. alternate secondary metabolites for the treatment of COVID-19 as they hinder SARS-CoV-2 infection and lower inflammatory responses initiated by SARS-CoV-2. A. alternate and its metabolites are considered in developing preventative and therapeutic tactics for COVID-19.
Collapse
Affiliation(s)
- Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Reham R. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Shahenda Mahgoub
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed S. Abdel-Aziz
- Genetic Engineering and Biotechnology Division, Microbial Chemistry Department, National Research Centre, Giza, Egypt
| | - Ahmed M. Said
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hui-Chi Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Nashwa Hashad
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed S. Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Chen G, Liu B, Zhang L, Yan F, Pan S, Li F, Cai Z, Chen X, Cai S. Visible-Light-Enabled Catalytic Intramolecular Double Oxidation of Olefins to ortho-Hydroxylactones. Org Lett 2024; 26:11096-11104. [PMID: 39670800 DOI: 10.1021/acs.orglett.4c03875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We have effectively utilized cost-effective 2-bromoanthraquinone as a photocatalyst to develop an efficient and environmentally friendly method for producing o-hydroxy lactones under mild visible light irradiation. Importantly, this protocol only relies on oxygen as an oxidant, completely eliminating the need for additional chemical reagents and showcasing a sustainable approach to chemical transformation. Operating at room temperature, we utilized a mixed solvent system of DMF and CHCl3, which greatly facilitated the selective conversion of various 2-vinylbenzoic acids and carboxylic acids to functional o-hydroxyl lactones. The process also exhibited excellent diastereoselectivity. Moreover, this versatile strategy is compatible with a wide range of biologically active and complex molecules, offering new opportunities for late-stage structural modifications of these compounds.
Collapse
Affiliation(s)
- Guangxian Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Boyi Liu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Lele Zhang
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Feiwei Yan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Sanmei Pan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Feiming Li
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhixiong Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Xiaoping Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
3
|
Zhu S, Xu TC, Huang R, Gao Y, Wu SH. Four new polyketides from an endophytic fungus Talaromyces muroii. Fitoterapia 2024; 177:106073. [PMID: 38897246 DOI: 10.1016/j.fitote.2024.106073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
In our continuous work on the isolation of endophytes, the endophytic fungal strain YIMF00209 was obtained from the roots of Gmelina arborea, which is an ethnic medicinal plant mainly distributed in Southeast Asia. The fermentation extracts of the strain exhibited significant antimicrobial activities against Staphylococcus aureus, Fusarium solani, and Escherichia coli. Based on morphological characteristics and phylogenetic analysis, it was identified as Talaromyces muroii. Four new polyketides, talaromurolides A-D (1-4), along with 26 known compounds (5-30), were isolated from the culture broth of the strain in two different media. Their structures were identified based on HRESIMS, NMR, and CD spectral data. Among them, compounds 2, 4-6, 19, 22, 24, 27, 28, and 30 were isolated from the fermentation broth in CYM medium; compounds 1, 3, 7-18, 20, 21, 23, 25, 26, and 29 were obtained from the fermentation broth in PDB medium; and compounds 2, 5, and 30 were existed in both two media. Compounds 6-9, 12, 16, 20, 21, 23, 25, and 29 were obtained from the genus Talaromyces for the first time. The antimicrobial activities of several compounds were assayed against six pathogens. Compound 1 exhibited inhibitory activities against S. aureus, E. coli, Candida albicans, Salmonella typhimurium, and Botrytis cinerea with MIC value of 64 μg/mL. Compound 25 exhibited antibacterial activity against E. coli with MIC value of 32 μg/mL.
Collapse
Affiliation(s)
- Sha Zhu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Tang-Chang Xu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Rong Huang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuan Gao
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shao-Hua Wu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
4
|
Podlech J. Natural resorcylic lactones derived from alternariol. Beilstein J Org Chem 2024; 20:2171-2207. [PMID: 39224229 PMCID: PMC11368053 DOI: 10.3762/bjoc.20.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
In this overview, naturally occurring resorcylic lactones biosynthetically derived from alternariol and almost exclusively produced by fungi, are discussed with view on their isolation, structure, biological activities, biosynthesis, and total syntheses. This class of compounds consists until now of 127 naturally occurring compounds, with very divers structural motifs. Although only a handful of these toxins (i.e., alternariol and its 9-O-methyl ether, altenusin, dehydroaltenusin, altertenuol, and altenuene) were frequently found and isolated as fungal contaminants in food and feed and have been investigated in significant detail, further metabolites, which were much more rarely found as natural products, similarly show interesting biological activities.
Collapse
Affiliation(s)
- Joachim Podlech
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
Wu Z, Li XM, Yang SQ, Wang BG, Li X. Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258. Mar Drugs 2024; 22:204. [PMID: 38786595 PMCID: PMC11122946 DOI: 10.3390/md22050204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 μg/mL.
Collapse
Affiliation(s)
- Zhenger Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| |
Collapse
|
6
|
Machado FP, Rodrigues IC, Georgopolou A, Gales L, Pereira JA, Costa PM, Mistry S, Hafez Ghoran S, Silva AMS, Dethoup T, Sousa E, Kijjoa A. New Hybrid Phenalenone Dimer, Highly Conjugated Dihydroxylated C 28 Steroid and Azaphilone from the Culture Extract of a Marine Sponge-Associated Fungus, Talaromyces pinophilus KUFA 1767. Mar Drugs 2023; 21:md21030194. [PMID: 36976243 PMCID: PMC10051590 DOI: 10.3390/md21030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
An undescribed hybrid phenalenone dimer, talaropinophilone (3), an unreported azaphilone, 7-epi-pinazaphilone B (4), an unreported phthalide dimer, talaropinophilide (6), and an undescribed 9R,15S-dihydroxy-ergosta-4,6,8 (14)-tetraen-3-one (7) were isolated together with the previously reported bacillisporins A (1) and B (2), an azaphilone derivative, Sch 1385568 (5), 1-deoxyrubralactone (8), acetylquestinol (9), piniterpenoid D (10) and 3,5-dihydroxy-4-methylphthalaldehydic acid (11) from the ethyl acetate extract of the culture of a marine sponge-derived fungus, Talaromyces pinophilus KUFA 1767. The structures of the undescribed compounds were elucidated by 1D and 2D NMR as well as high-resolution mass spectral analyses. The absolute configuration of C-9' of 1 and 2 was revised to be 9'S using the coupling constant value between C-8' and C-9' and was confirmed by ROESY correlations in the case of 2. The absolute configurations of the stereogenic carbons in 7 and 8 were established by X-ray crystallographic analysis. Compounds 1,2, 4-8, 10 and 11 were tested for antibacterial activity against four reference strains, viz. two Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and two Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), as well as three multidrug-resistant strains, viz. an extended-spectrum β-lactamase (ESBL)-producing E. coli, a methicillin-resistant S. aureus (MRSA) and a vancomycin-resistant E. faecalis (VRE). However, only 1 and 2 exhibited significant antibacterial activity against both S. aureus ATCC 29213 and MRSA. Moreover, 1 and 2 also significantly inhibited biofilm formation in S. aureus ATCC 29213 at both MIC and 2xMIC concentrations.
Collapse
Affiliation(s)
- Fátima P Machado
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Inês C Rodrigues
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Aikaterini Georgopolou
- Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Luís Gales
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Instituto de Biologia Molecular e Celular (i3S-IBMC), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José A Pereira
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Paulo M Costa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Sharad Mistry
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Salar Hafez Ghoran
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Artur M S Silva
- Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Tida Dethoup
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10240, Thailand
| | - Emília Sousa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Tammam MA, Gamal El-Din MI, Abood A, El-Demerdash A. Recent advances in the discovery, biosynthesis, and therapeutic potential of isocoumarins derived from fungi: a comprehensive update. RSC Adv 2023; 13:8049-8089. [PMID: 36909763 PMCID: PMC9999372 DOI: 10.1039/d2ra08245d] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023] Open
Abstract
Microorganisms still remain the main hotspots in the global drug discovery avenue. In particular, fungi are highly prolific producers of vast structurally diverse specialized secondary metabolites, which have displayed a myriad of biomedical potentials. Intriguingly, isocoumarins is one distinctive class of fungal natural products polyketides, which demonstrated numerous remarkable biological and pharmacological activities. This review article provides a comprehensive state-of-the-art over the period 2000-2022 about the discovery, isolation, classifications, and therapeutic potentials of isocoumarins exclusively reported from fungi. Indeed, a comprehensive list of 351 structurally diverse isocoumarins were documented and classified according to their fungal sources [16 order/28 family/55 genera] where they have been originally discovered along with their reported pharmacological activities wherever applicable. Also, recent insights around their proposed and experimentally proven biosynthetic pathways are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University Fayoum 63514 Egypt
| | - Mariam I Gamal El-Din
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Amira Abood
- Chemistry of Natural and Microbial Products Department, National Research Center Dokki Cairo Egypt
- School of Bioscience, University of Kent Canterbury UK
| | - Amr El-Demerdash
- Organic Chemistry Division, Department of Chemistry, Faculty of Sciences, Mansoura University Mansoura 35516 Egypt
- Department of Biochemistry and Metabolism, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
8
|
Zhang J, Zhang B, Cai L, Liu L. New Dibenzo- α-pyrone Derivatives with α-Glucosidase Inhibitory Activities from the Marine-Derived Fungus Alternaria alternata. Mar Drugs 2022; 20:md20120778. [PMID: 36547925 PMCID: PMC9785194 DOI: 10.3390/md20120778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Three new dibenzo-α-pyrone derivatives, alternolides A-C (1-3), and seven known congeners (4-10) were isolated from the marine-derived fungus of Alternaria alternata LW37 assisted by the one strain-many compounds (OSMAC) strategy. The structures of 1-3 were established by extensive spectroscopic analyses, and their absolute configurations were determined by modified Snatzke's method and electronic circular dichroism (ECD) calculations. Compounds 6 and 7 showed good 1,1-diphenyl-2-picrylhydrazyl (DPPH) antioxidant scavenging activities with IC50 values of 83.94 ± 4.14 and 23.60 ± 1.23 µM, respectively. Additionally, 2, 3 and 7 exhibited inhibitory effects against α-glucosidase with IC50 values of 725.85 ± 4.75, 451.25 ± 6.95 and 6.27 ± 0.68 µM, respectively. The enzyme kinetics study indicated 2 and 3 were mixed-type inhibitors of α-glucosidase with Ki values of 347.0 and 108.5 µM, respectively. Furthermore, the interactions of 2, 3 and 7 with α-glucosidase were investigated by molecular docking.
Collapse
Affiliation(s)
- Jinxin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baodan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-64807043
| |
Collapse
|
9
|
Jia S, Li J, Li J, Su X, Li XN, Yao Y, Xue Y. Anti-neuroinflammatory Activity of New Naturally Occurring Benzylated Hydroxyacetophenone Analogs from the Endophytic Fungus Alternaria sp. J030. Chem Biodivers 2022; 19:e202200751. [PMID: 36082622 DOI: 10.1002/cbdv.202200751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
Chemical studies on the culture broth of the endophytic fungus Alternaria sp. J030 led to the identification of three benzylated hydroxyacetophenone derivatives, bauvaroalterins A-C (1-3), and 34 structurally diverse metabolites (4-37). The new structures were elucidated by extensive spectroscopic analyses including UV, IR, 1D and 2D NMR, HRESIMS, and further confirmed using single crystal X-ray diffraction. The in vitro anti-neuroinflammatory effects of the co-isolated metabolites were evaluated in lipopolysaccharide (LPS)-stimulated microglial cells. Compounds 1-3 were shown to significantly reduce LPS-induced NO production by inhibiting the expression of iNOS, as well as inhibiting LPS-induced production of the inflammatory factors TNF-α, IL-1β and IL-6. Further studies revealed that 1-3 were capable of down-regulating the expression of NF-κB subunits p50 and p65, thereby suppressing the activation of NF-κB by inhibiting the LPS-induced phosphorylation of IκB-α. Together these findings demonstrate that bauvaroalterins A-C (1-3) exert anti-neuroinflammatory effects via inhibition of the NF-κB/iNOS signalling pathway in LPS induced BV-2 cells.
Collapse
Affiliation(s)
- Shujie Jia
- Sun Yat-sen University - Shenzhen Campus, School of Pharmaceutical Sciences (Shenzhen), No. 66, Gongchang Road, Guangming District, 518107, Shenzhen, CHINA
| | - Juan Li
- Ningxia Medical University, School of Pharmacy, No. 1160, Shengli Street, Yinchuan, CHINA
| | - Jia Li
- Ningxia Medical University, School of Pharmacy, No.1160, Shengli Street, Yinchuan, CHINA
| | - Xiangdong Su
- Sun Yat-sen University - Shenzhen Campus, School of Pharmaceutical Sciences (Shenzhen), No. 66 Gongchang Road, Shenzhen, CHINA
| | - Xiao-Nian Li
- Kunming Institute of Botany Chinese Academy of Sciences, State Key Laboratory of Phytochemistry and Plant Resources in West China, No. 132 Lanhei Road, Kunming, CHINA
| | - Yao Yao
- Ningxia Medical University, School of Basic Medical Sciences, No. 1160, Shengli Street, Yinchuan, CHINA
| | - Yongbo Xue
- Sun Yat-sen University - Shenzhen Campus, School of Pharmaceutical Sciences (Shenzhen), No. 66 Gongchang Road, Guangming District, 518107, Shenzhen, CHINA
| |
Collapse
|
10
|
Zhou ZY, Liu X, Cui JL, Wang JH, Wang ML, Zhang G. Endophytic fungi and their bioactive secondary metabolites in medicinal leguminosae plants: Nearly untapped medical resources. FEMS Microbiol Lett 2022; 369:6615458. [PMID: 35746878 DOI: 10.1093/femsle/fnac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/07/2022] [Indexed: 11/12/2022] Open
Abstract
There are many species of Chinese traditional leguminosae family plants that are well known for their medicinal applications, such as Astragalus membranaceus, Catsia tora, Glycyrrhiza uralensis, Sophora flavescens and Albacia acacia. Their unique bioactive composition and internal phenological environment contribute to the formation of specific and unique endophytic fungal communities, which are important resources for new compounds used in a variety of pharmacological activities. Nonetheless, they have not been systematically studied. In the last decade, nearly 64 genera and thousands of species of endophytic fungi have been discovered from leguminosae plants, as well as 138 secondary metabolites (with 34 new compounds) including flavonoid, alkaloids, phenol, anthraquinone, macrolide, terpenoid, phytohormone and many more. They were shown to have diverse applications and benefits, such as antibacterial, antitumor, antioxidative, immunoregulatory and neuroprotective properties. Here, we provide a summarized overview with the aim of raising awareness of endophytic fungi from medicinal leguminosae plants and providing a comprehensive review of the discoveries of new natural products that may be of medicinal and pharmaceutical importance.
Collapse
Affiliation(s)
- Zhong-Ya Zhou
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.,Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Xi Liu
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.,Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jun-Hong Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Meng-Liang Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Gang Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Century Avenue, Xianyang 712046, China
| |
Collapse
|
11
|
Budiyanto F, Alhomaidi EA, Mohammed AE, Ghandourah MA, Alorfi HS, Bawakid NO, Alarif WM. Exploring the Mangrove Fruit: From the Phytochemicals to Functional Food Development and the Current Progress in the Middle East. Mar Drugs 2022; 20:303. [PMID: 35621954 PMCID: PMC9146169 DOI: 10.3390/md20050303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the logarithmic production of existing well-known food materials is unable to keep up with the demand caused by the exponential growth of the human population in terms of the equality of access to food materials. Famous local food materials with treasury properties such as mangrove fruits are an excellent source to be listed as emerging food candidates with ethnomedicinal properties. Thus, this study reviews the nutrition content of several edible mangrove fruits and the innovation to improve the fruit into a highly economic food product. Within the mangrove fruit, the levels of primary metabolites such as carbohydrates, protein, and fat are acceptable for daily intake. The mangrove fruits, seeds, and endophytic fungi are rich in phenolic compounds, limonoids, and their derivatives as the compounds present a multitude of bioactivities such as antimicrobial, anticancer, and antioxidant. In the intermediary process, the flour of mangrove fruit stands as a supplementation for the existing flour with antidiabetic or antioxidant properties. The mangrove fruit is successfully transformed into many processed food products. However, limited fruits from species such as Bruguiera gymnorrhiza, Rhizophora mucronata, Sonneratia caseolaris, and Avicennia marina are commonly upgraded into traditional food, though many more species demonstrate ethnomedicinal properties. In the Middle East, A. marina is the dominant species, and the study of the phytochemicals and fruit development is limited. Therefore, studies on the development of mangrove fruits to functional for other mangrove species are demanding. The locally accepted mangrove fruit is coveted as an alternate food material to support the sustainable development goal of eliminating world hunger in sustainable ways.
Collapse
Affiliation(s)
- Fitri Budiyanto
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
- National Research and Innovation Agency, Jl. M.H. Thamrin No. 8, Jakarta 10340, Indonesia
| | - Eman A. Alhomaidi
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed A. Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
| | - Hajer S. Alorfi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (H.S.A.); (N.O.B.)
| | - Nahed O. Bawakid
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (H.S.A.); (N.O.B.)
| | - Wailed M. Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
| |
Collapse
|
12
|
Zhai YJ, Huo GM, Wei J, Lin LB, Zhang Q, Li JN, Chen X, Han WB, Gao JM. Structures and absolute configurations of butenolide derivatives from the isopod-associated fungus Pidoplitchkoviella terricola. PHYTOCHEMISTRY 2022; 193:112981. [PMID: 34653910 DOI: 10.1016/j.phytochem.2021.112981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this research, twenty aromatic and branched aliphatic polyketides, including seven previously undescribed butenolide derivatives, piterriones A-G and one known analogue, along with twelve known altenusin derivatives, were isolated from the isopod-associated fungus Pidoplitchkoviella terricola. Their structures were elucidated by analysis of NMR (1D and 2D) and mass spectrometry data, and their absolute configurations were determined by Mosher's method, microscale derivatization, and comparison of their specific rotations and ECD spectra. Dihydroaltenuene B exhibited mushroom tyrosinase inhibitory activity with an IC50 value of 38.33 ± 1.59 μM, which was comparable to that of the positive control, kojic acid (IC50 = 39.72 ± 1.34 μM). A molecular-docking study disclosed the hydrogen bonding interactions between the 3-OH and 4'-OH of dihydroaltenuene B and the His244, Met280 and Gly281 residues of tyrosinase.
Collapse
Affiliation(s)
- Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Guang-Ming Huo
- Institute of Medicinal Fungi, School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, 210017, People's Republic of China
| | - Jing Wei
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo, 726000, Shaanxi, People's Republic of China
| | - Li-Bin Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jian-Nan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xin Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Zhao S, Wang B, Tian K, Ji W, Zhang T, Ping C, Yan W, Ye Y. Novel metabolites from the Cercis chinensis derived endophytic fungus Alternaria alternata ZHJG5 and their antibacterial activities. PEST MANAGEMENT SCIENCE 2021; 77:2264-2271. [PMID: 33423351 DOI: 10.1002/ps.6251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Phytopathogenic bacteria, such as Xanthomonas oryzae pv. oryzae (Xoo) and Ralstonia solanacearum (Rs), seriously threaten crop production and are the cause of enormous yield losses. Endophytic fungi are abundant sources of bioactive metabolites that may be potential candidates in the development of new agrochemicals. This work emphasizes the discovery of bioactive polyketides from endophytic Alternaria alternata ZHJG5 and reports their structural elucidation and antibacterial activities in detail. RESULTS Five novel polyketide derivatives, isotalaroflavone (2), (+/-)-5'-dehydroxytalaroflavone (3a/3b), (+)-talaroflavone (4b), and bialternacin G (7), along with five known compounds (1, 4a, 5, 6, and 8), were obtained from the Cercis chinensis-derived fungus A. alternata ZHJG5. The compounds' structures were characterized using spectroscopic methods and X-ray diffraction. Chiral high-performance liquid chromatography was used to separate the racemates 3 and 4, whose absolute configurations were unambiguously confirmed by comparing their experimental and calculated electron circular dichroism data. All isolated compounds were tested for antibacterial activity against the phytopathogenic bacteria Xoo, Xanthomonas oryzae pv. oryzicola (Xoc) and Rs. Compounds 1, 2 and 8 showed pronounced antibacterial activity against all tested bacteria, with minimal inhibitory concentrations ranging from 0.5 to 64 μg/ml. In addition, compound 1 showed a potent protective effect against rice bacterial leaf blight caused by Xoo with a protective efficacy of 75.1% at a concentration of 200 μg/ml. CONCLUSION These findings highlight the practical potential of antibacterial compounds as candidates for the discovery of novel bactericides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Biao Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Wenxia Ji
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Tianyi Zhang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Chuan Ping
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Patel SM, Dash RC, Hadden MK. Translesion synthesis inhibitors as a new class of cancer chemotherapeutics. Expert Opin Investig Drugs 2021; 30:13-24. [PMID: 33179552 PMCID: PMC7832080 DOI: 10.1080/13543784.2021.1850692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Introduction: Translesion synthesis (TLS) is a DNA damage tolerance mechanism that replaces the replicative DNA polymerase with a specialized, low-fidelity TLS DNA polymerase that can copy past DNA lesions during active replication. Recent studies have demonstrated a primary role for TLS in replicating past DNA lesions induced by first-line genotoxic agents, resulting in decreased efficacy and acquired chemoresistance. With this in mind, targeting TLS as a combination strategy with first-line genotoxic agents has emerged as a promising approach to develop a new class of anti-cancer adjuvant agents. Areas covered: In this review, we provide a brief background on TLS and its role in cancer. We also discuss the identification and development of inhibitors that target various TLS DNA polymerases or key protein-protein interactions (PPIs) in the TLS machinery. Expert opinion: TLS inhibitors have demonstrated initial promise; however, their continued study is essential to more fully understand the clinical potential of this emerging class of anti-cancer chemotherapeutics. It will be important to determine whether a specific protein involved in TLS is an optimal target. In addition, an expanded understanding of what current genotoxic chemotherapies synergize with TLS inhibitors will guide the clinical strategies for devising combination therapies.
Collapse
Affiliation(s)
- Seema M Patel
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, CT, United States
| | - Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, CT, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, CT, United States
| |
Collapse
|
15
|
Liu SS, Gao WB, Kang J, Yang XH, Cao F, Kong FD, Zhao YX, Luo DQ. Isolation and Cytotoxicity of Isocoumarins from the Entomogenous Fungus Setosphaeria sp. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03155-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Gao Y, Zhou J, Ruan H. Trichothecenes from an Endophytic Fungus Alternaria sp. sb23. PLANTA MEDICA 2020; 86:976-982. [PMID: 32018306 DOI: 10.1055/a-1091-8831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three new (alterchothecenes A - C, 1: -3: ) and 3 known (4: -6: ) trichothecenes, along with 9 known compounds (7: -15: ), were isolated from the culture of Alternaria sp. sb23, an endophytic fungus separated from the root of Schisandra sphenanthera Rehd. et Wils. Their structures were elucidated by spectroscopic analyses, and the absolute configurations of 1: -3: were determined through comparison of the experimental electronic circular dichroism (ECD) spectra and optical rotations with similar analogues. In vitro cytotoxicity tests of compounds 1: -6: against human HT-29 colon carcinoma and human MCF-7 breast cancer cell lines indicated that 4: -6: exhibited significant cytotoxic effects, with IC50 values ranging from 0.89 to 9.38 µM. And the potential of compounds 1: -6: as tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) sensitizers in HT-29 cells was evaluated. The results revealed that combination treatment of TRAIL with compounds 1: -6: synergistically decreased cell viability compared with the sole treatment with those compounds.
Collapse
Affiliation(s)
- Ying Gao
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, People's Republic of China
| | - Jia Zhou
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, People's Republic of China
| | - Hanli Ruan
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, People's Republic of China
| |
Collapse
|
17
|
Yang H, Qi B, Ding N, Jiang F, Jia F, Luo Y, Xu X, Wang L, Zhu Z, Liu X, Tu P, Shi S. Polyketides from Alternaria alternata MT-47, an endophytic fungus isolated from Huperzia serrata. Fitoterapia 2019; 137:104282. [PMID: 31381956 DOI: 10.1016/j.fitote.2019.104282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 12/29/2022]
Abstract
Four new polyketides, alternatains A-D (1-4), along with 17 known compounds (5-21) were obtained from the solid substrate fermentation cultures of Alternaria alternata MT-47, an endophytic fungus isolated from the medicinal plant of Huperzia serrata. Their structures were elucidated by extensive spectroscopic and spectrometric techniques (1D and 2D NMR, IR, and HRESIMS) and calculated electronic circular dichroism (ECD) method. Compounds 4, 6, 15, and 21 exhibited inhibitory activities on ATP release of thrombin-activated platelets with IC50 values in the range of 18.2-68.8 μM.
Collapse
Affiliation(s)
- Hongyun Yang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Bowen Qi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Ning Ding
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Fangfang Jiang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Fangfang Jia
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yuan Luo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiping Xu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Lili Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Zhixiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; Beijing Key Lab for Quality Evaluation of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
18
|
Wang JT, Ma ZH, Wang GK, Xu FQ, Yu Y, Wang G, Peng DY, Liu JS. Chemical constituents from plant endophytic fungus Alternaria alternata. Nat Prod Res 2019; 35:1199-1206. [PMID: 31305141 DOI: 10.1080/14786419.2019.1639699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Five new natural compounds (1-5) along with four known ones, involving dibenzo-α-pyrone derivatives, a benzo-γ-pyrone derivative and an amide-type compound were obtained from Alternaria alternata, an endophyte isolated from Paeonia lactiflora. The structures of these isolates were elucidated by intensive analysis of spectroscopic data including NMR, HRMS (ESI and EI), UV and IR spectra. Compounds (1-4) were evaluated for their cytotoxicities against five selected human tumourtumour cell lines (A-549, MDA-MB-231, MCF-7, KB and KB-VIN), and compound 3 exhibited activities against MDA-MB-231and MCF-7 with IC50 values of 20.1 μM and 32.2 μM.
Collapse
Affiliation(s)
- Ju-Tao Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Zong-Hui Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China
| | - Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Feng-Qing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Yang Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| |
Collapse
|
19
|
Chromones with lipoprotein oxidation inhibitory activity from an endophytic fungus Alternaria brassicae JS959 derived from Vitex rotundifolia. J Antibiot (Tokyo) 2019; 72:709-713. [PMID: 31182771 DOI: 10.1038/s41429-019-0198-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 11/08/2022]
Abstract
Chemical investigation of the ethyl acetate extract of an endophytic fungus, Alternaria brassicae JS959 derived from a halophyte, Vitex rotundifolia, led to the isolation of a new chromone, (2'S)-2-(2-acetoxypropyl)-7-hydroxy-5-methylchromone (1), along with sixteen known compounds: a chromone (2), twelve benzopyranones (3-14) and three perylenequinones (15-17). The chemical structures of the isolated compounds were identified by extensive spectroscopic data analysis including 1D, 2D NMR, HRESIMS, and optical rotation. Of these compounds, 1 and 2 showed inhibitory activity on Cu2+‒induced low density lipoprotein (LDL) and high density lipoprotein (HDL) oxidation in human blood plasma. The results suggest that metabolites of endophytic microbes could provide the basis for developing treatments for heart disease.
Collapse
|
20
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
21
|
Pandey A. Pharmacological Potential of Marine Microbes. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [DOI: 10.1007/978-3-030-04675-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
|
23
|
Ding H, Zhang D, Zhou B, Ma Z. Inhibitors of BRD4 Protein from a Marine-Derived Fungus Alternaria sp. NH-F6. Mar Drugs 2017; 15:md15030076. [PMID: 28300771 PMCID: PMC5367033 DOI: 10.3390/md15030076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 12/14/2022] Open
Abstract
Bromodomains (BRD) are readers of the epigenetic code that regulate gene transcription through their recognition of acetyl-lysine modified histone tails. Recently, bromodomain-containing proteins such as BRD4 have been demonstrated to be druggable through the discovery of potent inhibitors. These protein–protein interaction inhibitors have the potential to modulate multiple diseases by their profound anti-inflammatory and antiproliferative effects. In order to explore new BRD4 inhibitors as well as lead compounds for the development of new drugs, the secondary metabolites of Alternaria sp. NH-F6, a fungus isolated from deep-sea sediment samples, were analyzed systematically. Five new compounds including two new perylenequinones (1–2), one new alternaric acid (3), 2-(N-vinylacetamide)-4-hydroxymethyl-3-ene-butyrolactone (4), one new cerebroside (5), together with 19 known compounds (6–24) were isolated from the ethyl acetate extracts of this strain. Their structures were elucidated using nuclear magnetic resonance (NMR) and high resolution electrospray ionization mass spectrometry (HR-ESI-MS) analyses. Finally, all these compounds were evaluated for their inhibitory activity against BRD4 protein, and compound 2 exhibited a potent inhibition rate of 88.1% at a concentration of 10 µM. This research provides a new BRD4 inhibitor which may possess potential antitumoral, antiviral, or anti-inflammatory pharmaceutical values.
Collapse
Affiliation(s)
- Hui Ding
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan Campus, No. 1 Zheda Road, Zhoushan 316021, China.
| | - Dashan Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan Campus, No. 1 Zheda Road, Zhoushan 316021, China.
| | - Biao Zhou
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan Campus, No. 1 Zheda Road, Zhoushan 316021, China.
| | - Zhongjun Ma
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan Campus, No. 1 Zheda Road, Zhoushan 316021, China.
| |
Collapse
|
24
|
Ma D, Fu C, Ma S. Diastereoselective construction of cyclopent-2-enone-4-ols from aldehydes and 1,2-allenones catalyzed by N-heterocyclic carbene. Chem Commun (Camb) 2016; 52:14426-14429. [PMID: 27901531 DOI: 10.1039/c6cc07974a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclopent-2-enone-4-ols have been prepared highly diastereoselectively from readily available aromatic aldehydes and 1,2-allenones catalyzed by N-heterocyclic carbene. Mechanistic studies showed that there are four possible pathways.
Collapse
Affiliation(s)
- Dengke Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China.
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China.
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China.
| |
Collapse
|
25
|
Korzhnev DM, Hadden MK. Targeting the Translesion Synthesis Pathway for the Development of Anti-Cancer Chemotherapeutics. J Med Chem 2016; 59:9321-9336. [PMID: 27362876 DOI: 10.1021/acs.jmedchem.6b00596] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human cells possess tightly controlled mechanisms to rescue DNA replication following DNA damage caused by environmental and endogenous carcinogens using a set of low-fidelity translesion synthesis (TLS) DNA polymerases. These polymerases can copy over replication blocking DNA lesions while temporarily leaving them unrepaired, preventing cell death at the expense of increasing mutation rates and contributing to the onset and progression of cancer. In addition, TLS has been implicated as a major cellular mechanism promoting acquired resistance to genotoxic chemotherapy. Owing to its central role in mutagenesis and cell survival after DNA damage, inhibition of the TLS pathway has emerged as a potential target for the development of anticancer agents. This review will recap our current understanding of the structure and regulation of DNA polymerase complexes that mediate TLS and describe how this knowledge is beginning to translate into the development of small molecule TLS inhibitors.
Collapse
Affiliation(s)
- Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| |
Collapse
|
26
|
|
27
|
Liu Y, Wu Y, Zhai R, Liu Z, Huang X, She Z. Altenusin derivatives from mangrove endophytic fungus Alternaria sp. SK6YW3L. RSC Adv 2016. [DOI: 10.1039/c6ra16214b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Five new altenusin derivatives, compounds 1–5, along with six known analogues 6–11, were isolated from a culture of the endophytic fungus Alternaria sp. SK6YW3L, which was isolated from a fresh fruit of the mangrove plant Sonneratia caseolaris, collected from the South China Sea.
Collapse
Affiliation(s)
- Yayue Liu
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
- College of Food Science and Technology
| | - Yingnan Wu
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Rui Zhai
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zhaoming Liu
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Xishan Huang
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zhigang She
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center
| |
Collapse
|
28
|
Antimicrobial compounds from seaweeds-associated bacteria and fungi. Appl Microbiol Biotechnol 2014; 99:1571-86. [PMID: 25549621 DOI: 10.1007/s00253-014-6334-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
In recent decade, seaweeds-associated microbial communities have been significantly evaluated for functional and chemical analyses. Such analyses let to conclude that seaweeds-associated microbial communities are highly diverse and rich sources of bioactive compounds of exceptional molecular structure. Extracting bioactive compounds from seaweed-associated microbial communities have been recently increased due to their broad-spectrum antimicrobial activities including antibacterial, antifungal, antiviral, anti-settlement, antiprotozoan, antiparasitic, and antitumor. These allelochemicals not only provide protection to host from other surrounding pelagic microorganisms, but also ensure their association with the host. Antimicrobial compounds from marine sources are promising and priority targets of biotechnological and pharmaceutical applications. This review describes the bioactive metabolites reported from seaweed-associated bacterial and fungal communities and illustrates their bioactivities. Biotechnological application of metagenomic approach for identifying novel bioactive metabolites is also dealt, in view of their future development as a strong tool to discover novel drug targets from seaweed-associated microbial communities.
Collapse
|
29
|
Ye F, Chen GD, He JW, Li XX, Sun X, Guo LD, Li Y, Gao H. Xinshengin, the first altenusin with tetracyclic skeleton core from Phialophora spp. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013; 18:851-73. [PMID: 22794079 PMCID: PMC3557440 DOI: 10.1089/ars.2011.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apart from surgical approaches, the treatment of cancer remains largely underpinned by radiotherapy and pharmacological agents that cause damage to cellular DNA, which ultimately causes cancer cell death. DNA polymerases, which are involved in the repair of cellular DNA damage, are therefore potential targets for inhibitors for improving the efficacy of cancer therapy. They can be divided, according to their main function, into two groups, namely replicative and nonreplicative enzymes. At least 15 different DNA polymerases, including their homologs, have been discovered to date, which vary considerably in processivity and fidelity. Many of the nonreplicative (specialized) DNA polymerases replicate DNA in an error-prone fashion, and they have been shown to participate in multiple DNA damage repair and tolerance pathways, which are often aberrant in cancer cells. Alterations in DNA repair pathways involving DNA polymerases have been linked with cancer survival and with treatment response to radiotherapy or to classes of cytotoxic drugs routinely used for cancer treatment, particularly cisplatin, oxaliplatin, etoposide, and bleomycin. Indeed, there are extensive preclinical data to suggest that DNA polymerase inhibition may prove to be a useful approach for increasing the effectiveness of therapies in patients with cancer. Furthermore, specialized DNA polymerases warrant examination of their potential use as clinical biomarkers to select for particular cancer therapies, to individualize treatment for patients.
Collapse
Affiliation(s)
- Jason L Parsons
- Cancer Research UK-Medical Research Council, Oncology Department, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
31
|
de Souza GD, Mithöfer A, Daolio C, Schneider B, Rodrigues-Filho E. Identification of Alternaria alternata mycotoxins by LC-SPE-NMR and their cytotoxic effects to soybean (Glycine max) cell suspension culture. Molecules 2013; 18:2528-38. [PMID: 23442929 PMCID: PMC6270395 DOI: 10.3390/molecules18032528] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/29/2013] [Accepted: 02/16/2013] [Indexed: 11/16/2022] Open
Abstract
This present work describes the application of liquid chromatography-solid phase extraction-nuclear magnetic resonance spectroscopy to analyse Alternaria alternata crude extracts. Altenusin (1), alternariol (2), 3'-hydroxyalternariol monomethyl ether (3), and alternariol monomethyl ether (4), were separated and identified. High-resolution mass spectrometry confirmed the proposed structures. The cytotoxic effects of these compounds towards plants were determined using soybean (Glycine max) cell cultures as a model. EC(50) values which range from 0.11 (± 0.02) to 4.69 (± 0.47) μM showed the high cytotoxicity of these compounds.
Collapse
Affiliation(s)
- Gezimar D. de Souza
- Laboratório de Bioquímica Micromolecular de Micro-organismos, Departamento de Química, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luiz, Km 235, 676 São Carlos-SP, Brazil; E-Mail:
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8, Jena D-07745, Germany; E-Mail:
- Accert Chemistry and Biotechnology Inc., Rua Alfredo Lopes 1717, São Carlos-SP, Brazil
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8, Jena D-07745, Germany; E-Mail:
| | - Cristina Daolio
- Biosynthesis/NMR Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany; E-Mails: (C.D.); (B.S.)
- NMR Applications Group, Bruker Biospin GmbH, Silberstreifen 4, Rheinstetten 76287, Germany
| | - Bernd Schneider
- Biosynthesis/NMR Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany; E-Mails: (C.D.); (B.S.)
| | - Edson Rodrigues-Filho
- Laboratório de Bioquímica Micromolecular de Micro-organismos, Departamento de Química, Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luiz, Km 235, 676 São Carlos-SP, Brazil; E-Mail:
| |
Collapse
|
32
|
Takeuchi T, Mizushina Y, Takaichi S, Inoue N, Kuramochi K, Shimura S, Myobatake Y, Katayama Y, Takemoto K, Endo S, Kamisuki S, Sugawara F. Total Synthesis of (+)-Sch 725680: Inhibitor of Mammalian A–, B–, and Y–Family DNA Polymerases. Org Lett 2012; 14:4303-5. [DOI: 10.1021/ol301865u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshifumi Takeuchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Yoshiyuki Mizushina
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Satoshi Takaichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Natsuki Inoue
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Satomi Shimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Yusuke Myobatake
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Yuri Katayama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Kenji Takemoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Shogo Endo
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Shinji Kamisuki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| | - Fumio Sugawara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan, Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (RIKADAI), Noda-shi, Chiba 278-8510, Japan, and Graduate School of Life and Environmental Sciences, Kyoto Prefectural
| |
Collapse
|
33
|
Mayer AMS, Rodríguez AD, Berlinck RGS, Fusetani N. Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:191-222. [PMID: 20826228 PMCID: PMC7110230 DOI: 10.1016/j.cbpc.2010.08.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 11/23/2022]
Abstract
The peer-reviewed marine pharmacology literature in 2007-8 is covered in this review, which follows a similar format to the previous 1998-2006 reviews of this series. The preclinical pharmacology of structurally characterized marine compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 74 marine natural products. Additionally, 59 marine compounds were reported to affect the cardiovascular, immune and nervous systems as well as to possess anti-inflammatory effects. Finally, 65 marine metabolites were shown to bind to a variety of receptors and miscellaneous molecular targets, and thus upon further completion of mechanism of action studies, will contribute to several pharmacological classes. Marine pharmacology research during 2007-8 remained a global enterprise, with researchers from 26 countries, and the United States, contributing to the preclinical pharmacology of 197 marine compounds which are part of the preclinical marine pharmaceuticals pipeline. Sustained preclinical research with marine natural products demonstrating novel pharmacological activities, will probably result in the expansion of the current marine pharmaceutical clinical pipeline, which currently consists of 13 marine natural products, analogs or derivatives targeting a limited number of disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | | | | | | |
Collapse
|
34
|
Lin L, Tan RX. Cross-kingdom actions of phytohormones: a functional scaffold exploration. Chem Rev 2011; 111:2734-60. [PMID: 21250668 DOI: 10.1021/cr100061j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lan Lin
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | | |
Collapse
|
35
|
|
36
|
|
37
|
Zhang AH, Jiang N, Gu W, Ma J, Wang YR, Song YC, Tan RX. Characterization, Synthesis and Self-Aggregation of (−)-Alternarlactam: A New Fungal Cytotoxin with Cyclopentenone and Isoquinolinone Scaffolds. Chemistry 2010; 16:14479-85. [DOI: 10.1002/chem.201002205] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 27:165-237. [DOI: 10.1039/b906091j] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Mizushina Y, Motoshima H, Yamaguchi Y, Takeuchi T, Hirano K, Sugawara F, Yoshida H. 3-O-methylfunicone, a selective inhibitor of mammalian Y-family DNA polymerases from an Australian sea salt fungal strain. Mar Drugs 2009; 7:624-39. [PMID: 20098603 PMCID: PMC2810227 DOI: 10.3390/md7040624] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/16/2022] Open
Abstract
We isolated a pol inhibitor from the cultured mycelia extract of a fungal strain isolated from natural salt from a sea salt pan in Australia, which was identified as 3-O-methylfunicone by spectroscopic analyses. This compound selectively inhibited the activities of mammalian Y-family DNA polymerases (pols) (i.e., pols eta, iota and kappa). Among these pols, human pol kappa activity was most strongly inhibited, with an IC(50) value of 12.5 microM. On the other hand, the compound barely influenced the activities of the other families of mammalian pols, such as A-family (i.e., pol gamma), B-family (i.e., pols alpha, delta and epsilon) or X-family (i.e., pols beta, lambda and terminal deoxynucleotidyl transferase), and showed no effect on the activities of fish pol delta, plant pols, prokaryotic pols and other DNA metabolic enzymes, such as calf primase of pol alpha, human immunodeficiency virus type-1 (HIV-1) reverse transcriptase, human telomerase, T7 RNA polymerase, mouse IMP dehydrogenase (type II), human topoisomerases I and II, T4 polynucleotide kinase or bovine deoxyribonuclease I. This compound also suppressed the growth of two cultured human cancer cell lines, HCT116 (colon carcinoma cells) and HeLa (cervix carcinoma cells), and UV-treated HeLa cells exhibited lower clonogenic survival in the presence of inhibitor.
Collapse
Affiliation(s)
- Yoshiyuki Mizushina
- Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan; E-Mail:
(H.Y.)
- Cooperative Research Center of Life Sciences, Kobe-Gakuin University, Chuo-ku, Kobe, Hyogo 650-8586, Japan
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +81-78-974-1551 (ext.3232); Fax: +81-78-974-5689
| | - Hirohisa Motoshima
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; E-Mails:
(H.M.);
(Y.Y.);
(T.T.);
(F.S.)
| | - Yasuhiro Yamaguchi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; E-Mails:
(H.M.);
(Y.Y.);
(T.T.);
(F.S.)
| | - Toshifumi Takeuchi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; E-Mails:
(H.M.);
(Y.Y.);
(T.T.);
(F.S.)
| | - Ken Hirano
- Nano-bioanalysis Team, Health Technology Research Center, Takamatsu, Kagawa 761-0395 Japan; E-Mail:
(K.H.)
| | - Fumio Sugawara
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; E-Mails:
(H.M.);
(Y.Y.);
(T.T.);
(F.S.)
| | - Hiromi Yoshida
- Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan; E-Mail:
(H.Y.)
- Cooperative Research Center of Life Sciences, Kobe-Gakuin University, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| |
Collapse
|
40
|
Kimura T, Takeuchi T, Kumamoto-Yonezawa Y, Ohashi E, Ohmori H, Masutani C, Hanaoka F, Sugawara F, Yoshida H, Mizushina Y. Penicilliols A and B, novel inhibitors specific to mammalian Y-family DNA polymerases. Bioorg Med Chem 2009; 17:1811-6. [PMID: 19223184 DOI: 10.1016/j.bmc.2009.01.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 01/25/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
Penicilliols A (1) and B (2) are novel 5-methoxy-3(2H)-furanones isolated from cultures of a fungus (Penicillium daleae K.M. Zalessky) derived from a sea moss, and their structures were determined by spectroscopic analyses. These compounds selectively inhibited activities of eukaryotic Y-family DNA polymerases (pols) (i.e., pols eta, iota and kappa), and compound 1 was a stronger inhibitor than compound 2. Among mammalian Y-family pols, mouse pol iota activity was most strongly inhibited by compounds 1 and 2, with IC(50) values of 19.8 and 32.5 microM, respectively. On the other hand, activities of many other pols, such as A-family (i.e., pol gamma), B-family (i.e., pols alpha, delta and epsilon) or X-family (i.e., pols beta, lambda and terminal deoxynucleotidyl transferase), and some DNA metabolic enzymes, such as calf primase of pol alpha, human immunodeficiency virus type-1 (HIV-1) reverse transcriptase, human telomerase, T7 RNA polymerase, mouse IMP dehydrogenase (type II), human topoisomerases I and II, T4 polynucleotide kinase or bovine deoxyribonuclease I, are not influenced by these compounds. In conclusion, this is the first report on potent inhibitors of mammalian Y-family pols.
Collapse
Affiliation(s)
- Takuma Kimura
- Department of Applied Biological Science, Science University of Tokyo, Noda, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kimura T, Nishida M, Kuramochi K, Sugawara F, Yoshida H, Mizushina Y. Novel azaphilones, kasanosins A and B, which are specific inhibitors of eukaryotic DNA polymerases β and λ from Talaromyces sp. Bioorg Med Chem 2008; 16:4594-9. [DOI: 10.1016/j.bmc.2008.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/11/2008] [Accepted: 02/11/2008] [Indexed: 11/25/2022]
|