1
|
Chen Y, Huang Z, Dai C, Yang S, Shi DQ, Zhao Y. Palladium-Catalyzed Isoquinoline Synthesis by Tandem C-H Allylation and Oxidative Cyclization of Benzylamines with Allyl Acetate. Org Lett 2021; 23:4209-4213. [PMID: 33999646 DOI: 10.1021/acs.orglett.1c01153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel approach to synthesize 3-methylisoquinolines via a one-pot, two-step, palladium(II)-catalyzed tandem C-H allylation/intermolecular amination and aromatization is reported. A wide series of 3-methylisoquinoline derivatives were obtained directly using this method in moderate to good yields, and we highlight the synthetic importance of this new transformation.
Collapse
Affiliation(s)
- Yujie Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chenyang Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R.China
| |
Collapse
|
2
|
Wen J, Tiwari DP, Bolm C. 1,2-Benzothiazines from Sulfoximines and Allyl Methyl Carbonate by Rhodium-Catalyzed Cross-Coupling and Oxidative Cyclization. Org Lett 2017; 19:1706-1709. [DOI: 10.1021/acs.orglett.7b00488] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jian Wen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Deo Prakash Tiwari
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Abstract
Heterocyclic molecules incorporating fluorinated isoquinoline components are found in many medicinally and agriculturally important bioactive products as well as industrially impactful materials. Within the past decade, a variety of isoquinolinic ring assembly techniques has enabled the introduction of diverse fluorine-containing functionalities which can enhance potential bioactivity and industrial utility. This review examines recent noncatalyzed and transition metal catalyzed synthetic approaches to the assembly of isoquinoline derivatives that are ring-fluorinated and/or result in the incorporation of fluorine-containing functional groups. Specifically, efficient synthetic methods and regioselectivity in the incorporation of functional groups into isoquinoline ring systems are examined.
Collapse
|
4
|
Kim T, Pae AN. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: a patent review (2010-2015; part 1). Expert Opin Ther Pat 2016; 26:1325-1351. [PMID: 27607364 DOI: 10.1080/13543776.2016.1230606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The translocator protein (TSPO) is an emerging target in diverse neurodegenerative diseases. Up-regulated TSPO in the central nervous system (CNS) appears to be involved in neuroinflammatory processes; therefore, the development of potent TSPO ligands is a promising method for alleviating or imaging patients with neurodegenerative diseases. Areas covered: This review will provide an overview of recently developed TSPO ligands patented from 2010 to 2015. Part 1 will present a summary focusing on TSPO ligands other than indole-based or cholesterol-like compounds, which will be discussed in part 2. Part 1 covers diverse benzodiazepine-derived analogues such as isoquinoline carboxamides and aryloxyanilides. Moreover, bicyclic ring structures such as imidazopyridine, pyrazolopyrimidine, and phenylpurine will be highlighted as promising scaffolds for TSPO ligands. A brief analysis of currently reported TSPO structures will also be covered in part 1. Expert opinion: Although the underlying pharmacological mechanism of TSPO remains to be elucidated, several TSPO ligands have shown therapeutic efficacy in experimental animal models of neurodegenerative diseases. In addition, radioactive TSPO ligands have been extensively studied for the diagnosis of neurodegenerative processes. Thus, further studies on both the basic and applied mechanisms of TSPO are warranted in the pursuit of successful pharmacological applications of TSPO ligands.
Collapse
Affiliation(s)
- TaeHun Kim
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology (KIST) , Seongbuk-Gu , Seoul , Republic of Korea.,b Biological Chemistry , Korea University of Science and Technology , Yuseong-Gu , Daejon , Republic of Korea
| | - Ae Nim Pae
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology (KIST) , Seongbuk-Gu , Seoul , Republic of Korea.,b Biological Chemistry , Korea University of Science and Technology , Yuseong-Gu , Daejon , Republic of Korea
| |
Collapse
|
5
|
A Novel PET Imaging Probe for the Detection and Monitoring of Translocator Protein 18 kDa Expression in Pathological Disorders. Sci Rep 2016; 6:20422. [PMID: 26853260 PMCID: PMC4745082 DOI: 10.1038/srep20422] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022] Open
Abstract
A new fluorine-substituted ligand, compound 1 (CB251), with a very high affinity (Ki = 0.27 ± 0.09 nM) and selectivity for the 18-kDa translocator protein (TSPO), is presented as an attractive biomarker for the diagnosis of neuroinflammation, neurodegeneration and tumour progression. To test compound 1 as a TSPO PET imaging agent in vivo, 2-(2-(4-(2-[18F]fluoroethoxy)phenyl)-6,8-dichloroimidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide ([18F]1; [18F]CB251) was synthesized by nucleophilic aliphatic substitution in a single-step radiolabelling procedure with a 11.1 ± 3.5% (n = 14, decay corrected) radiochemical yield and over 99% radiochemical purity. In animal PET imaging studies, [18F]CB251 provided a clearly visible image of the inflammatory lesion with the binding potential of the specifically bound radioligand relative to the non-displaceable radioligand in tissue (BPND 1.83 ± 0.18), in a neuroinflammation rat model based on the unilateral stereotaxic injection of lipopolysaccharide (LPS), comparable to that of [11C]PBR28 (BPND 1.55 ± 0.41). [18F]CB251 showed moderate tumour uptake (1.96 ± 0.11%ID/g at 1 h post injection) in human glioblastoma U87-MG xenografts. These results suggest that [18F]CB251 is a promising TSPO PET imaging agent for neuroinflammation and TSPO-rich cancers.
Collapse
|
6
|
Comparison [3H]-flumazenil binding parameters in rat cortical membrane using different separation methods, filtration and centrifugation. Nucl Med Biol 2013; 40:896-900. [DOI: 10.1016/j.nucmedbio.2013.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/11/2013] [Accepted: 06/20/2013] [Indexed: 11/21/2022]
|
7
|
Shi L, Yang H, Jiang Y, Fu H. Copper-Catalyzed C-Arylation and Denitrogenation of Tetrazoles: Domino Synthesis of 1,3-Diaminoisoquinoline Derivatives. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201201022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Shi L, Wang R, Yang H, Jiang Y, Fu H. Efficient copper-catalyzed domino synthesis of tetrazoloisoquinolines. RSC Adv 2013. [DOI: 10.1039/c3ra23230a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Guillet GL, Hyatt IFD, Hillesheim PC, Abboud KA, Scott MJ. 1,2,4-Triazine-picolinamide functionalized, nonadentate chelates for the segregation of lanthanides(iii) and actinides(iii) in biphasic systems. NEW J CHEM 2013. [DOI: 10.1039/c2nj40586e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Yang X, Luo Y, Jin Y, Liu H, Jiang Y, Fu H. Concise and efficient one-pot copper-catalyzed synthesis of H-pyrazolo[5,1-a]isoquinolines. RSC Adv 2012. [DOI: 10.1039/c2ra21305b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Fluorinated molecules in the diagnosis and treatment of neurodegenerative diseases. Future Med Chem 2011; 1:821-33. [PMID: 21426082 DOI: 10.4155/fmc.09.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of fluorinated molecules as drugs and imaging agents for CNS disorders has been studied extensively over the years. Incorporating a fluorine atom into the structure of a drug changes its physiochemical properties and can thereby lead to much more desirable pharmacokinetic and pharmacodynamic properties. This change can help to facilitate blood-brain barrier permeability, which is a critical matter for drugs intended for CNS activities. Fluorine incorporation into structures of drugs for the treatment of neurodegenerative diseases has been an attractive field for drug discovery. Such incorporation can greatly influence the physicochemical properties, metabolic stability and receptor binding affinity of the resulting molecule. Some studies have shown that when a proton was substituted with fluorine, the binding or inhibitory potency was greatly increased. The fluorine-18 isotope, (18)F, is utilized in detection and diagnosis of neurodegenerative diseases, whereas (19)F compounds are used in the treatment of these diseases and in MRI. (18)F is widely used in PET imaging because it offers the advantage of a longer half-life compared with other radionuclides. It is used for imaging various receptors and transporters that have been linked to neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and multiple system atrophy. Fluorine plays an important role in the diagnosis and treatment of many CNS diseases, including neurodegenerative disorders. The use of fluorine in the diagnosis and treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, will be discussed in this review.
Collapse
|
12
|
Lu J, Fu H. Copper-Catalyzed Cascade Synthesis of Alkyl 6-Aminobenzimidazo[2,1-a]isoquinoline-5-carboxylates. J Org Chem 2011; 76:4600-5. [DOI: 10.1021/jo200508q] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juyou Lu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
13
|
Pimlott SL, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev 2010; 40:149-62. [PMID: 20818455 DOI: 10.1039/b922628c] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging continues to grow due to the ability of these techniques to allow the non-invasive in vivo visualisation of biological processes at the molecular and cellular levels. As well as finding application for the diagnosis of disease, these techniques have also been used in the drug discovery process. Crucial to the growth of these techniques is the continued development of molecular probes that can bind to the target biological receptor with high selectivity. This tutorial review describes the use of PET and SPECT for molecular imaging and highlights key strategies for the development of molecular probes for the imaging of both cancer and neurological diseases.
Collapse
Affiliation(s)
- Sally L Pimlott
- West of Scotland Radionuclide Dispensary, NHS Greater Glasgow and Clyde, Glasgow G11 6NT, UK
| | | |
Collapse
|
14
|
Stevenson L, Tavares AAS, Brunet A, McGonagle FI, Dewar D, Pimlott SL, Sutherland A. New iodinated quinoline-2-carboxamides for SPECT imaging of the translocator protein. Bioorg Med Chem Lett 2009; 20:954-7. [PMID: 20045646 DOI: 10.1016/j.bmcl.2009.12.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/17/2022]
Abstract
With the aim of developing new SPECT imaging agents for the translocator protein (TSPO), a small library of iodinated quinoline-2-carboxamides have been prepared and tested for binding affinity with TSPO. N,N-Diethyl-3-iodomethyl-4-phenylquinoline-2-carboxamide was found to have excellent affinity (K(i) 12.0 nM), comparable to that of the widely used TSPO imaging agent PK11195.
Collapse
Affiliation(s)
- Louise Stevenson
- WestCHEM, Department of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Kim SH, Lee HS, Kim KH, Kim JN. An expedient synthesis of poly-substituted 1-arylisoquinolines from δ-ketonitriles via indium-mediated Barbier reaction protocol. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Briard E, Zoghbi SS, Siméon FG, Imaizumi M, Gourley JP, Shetty HU, Lu S, Fujita M, Innis RB, Pike VW. Single-step high-yield radiosynthesis and evaluation of a sensitive 18F-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. J Med Chem 2009; 52:688-99. [PMID: 19119848 DOI: 10.1021/jm8011855] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated levels of peripheral benzodiazepine receptors (PBR) are associated with activated microglia in their response to inflammation. Hence, PBR imaging in vivo is valuable for investigating brain inflammatory conditions. Sensitive, easily prepared, and readily available radioligands for imaging with positron emission tomography (PET) are desirable for this purpose. We describe a new 18F-labeled PBR radioligand, namely [18F]N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline ([18F]9). [18F]9 was produced easily through a single and highly efficient step, the reaction of [18F]fluoride ion with the corresponding bromo precursor, 8. Ligand 9 exhibited high affinity for PBR in vitro. PET showed that [18F]9 was avidly taken into monkey brain and gave a high ratio of PBR-specific to nonspecific binding. [18F]9 was devoid of defluorination in rat and monkey and gave predominantly polar radiometabolite(s). In rat, a low level radiometabolite of intermediate lipophilicity was identified as [18F]2-fluoro-N-(2-phenoxyphenyl)acetamide ([18F]11). [18F]9 is a promising radioligand for future imaging of PBR in living human brain.
Collapse
Affiliation(s)
- Emmanuelle Briard
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim JS, Oh SJ, Moon DH. Molecular Imaging in Neurodegenerative Diseases. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2009. [DOI: 10.5124/jkma.2009.52.2.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jae Seung Kim
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Korea. , ,
| | - Seung Jun Oh
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Korea. , ,
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Korea. , ,
| |
Collapse
|
18
|
Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 2008; 35:2304-19. [DOI: 10.1007/s00259-008-0908-9] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 07/17/2008] [Indexed: 12/22/2022]
|