1
|
Utpal BK, Mokhfi FZ, Zehravi M, Sweilam SH, Gupta JK, Kareemulla S, C RD, Rao AA, Kumar VV, Krosuri P, Prasad D, Khan SL, Roy SC, Rab SO, Alshehri MA, Emran TB. Resveratrol: A Natural Compound Targeting the PI3K/Akt/mTOR Pathway in Neurological Diseases. Mol Neurobiol 2025; 62:5579-5608. [PMID: 39578340 DOI: 10.1007/s12035-024-04608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Neurological diseases (NDs), including neurodegenerative disorders and acute injuries, are a significant global health concern. The PI3K/Akt/mTOR pathway, a crucial signaling cascade, is responsible for the survival of cells, proliferation, and metabolism. Dysregulation of this pathway has been linked to neurological conditions, indicating its potential as a vital target for therapeutic approaches. Resveratrol (RSV), a natural compound found in berries, peanuts, and red grapes, has antioxidant, anti-cancer, and anti-inflammatory effects. Its ability to modulate the PI3K/Akt/mTOR pathway has been interesting in NDs. Studies have shown that RSV can activate the PI3K/Akt pathway, promoting cell survival and inhibiting apoptosis of neuronal cells. Its impact on mTOR, a downstream effector of Akt, further contributes to its neuroprotective effects. RSV's ability to restore autophagic flux presents a promising avenue for therapeutic intervention. Its anti-inflammatory properties suppress inflammatory responses by inhibiting key signaling molecules within the pathway. Additionally, RSV's role in enhancing mitochondrial function contributes to its neuroprotective profile. This study highlights RSV's potential as a multifaceted therapeutic agent in NDs, specifically by PI3K/Akt/mTOR pathway modulation. Additional investigation is required to optimize its therapeutic capacity in diverse neurological conditions.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatima Zohra Mokhfi
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Chaumuha, Mathura, Uttar Pradesh, 281406, India
| | - Shaik Kareemulla
- Department of Pharmacy Practice, Malla Reddy College of Pharmacy (MRCP), Kompally, Secunderabad, Telangana, 500100, India
| | - Ronald Darwin C
- Department of Pharmacology, School of Pharmaceutical Sciences, Technology and Advanced Studies (VISTAS), Vels Institute of Science, Pallavaram, Chennai, 600117, India
| | - A Anka Rao
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Voleti Vijaya Kumar
- Department of Pharmaceutics, School of Pharmacy, Satyabhama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Pavankumar Krosuri
- Department of Pharmaceutics, Santhiram College of Pharmacy, NH40, Nandyal, Andhra Pradesh, 518112, India
| | - Dharani Prasad
- Depertment of Pharmacology Mohan Babu University MB School of Pharmaceutical Sciences, Erstwhile Sree Vidyaniketan College of Pharmacy, Tirupati, Andhra Pradesh, 517102, India
| | - Sharukh L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
2
|
Pawan, Devi S. Designing of new trans-stilbene derivative: An entry barrier of Zika virus in host cell. J Mol Graph Model 2025; 135:108935. [PMID: 39731815 DOI: 10.1016/j.jmgm.2024.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
A large population in the world lives in tropical and subtropical regions, showing a high risk of Zika viral infection which leads to a situation of global health emergency and demands extensive research to create effective antiviral medicines. Herein, we introduce the design of a new derivatized trans-stilbene molecule to investigate the inhibition of Zika virus entry into the host cell by molecular docking approach. The synthesized compound has been characterized by different analytical techniques such as FTIR, 1H NMR,13C NMR and UV-visible spectroscopy as well as Mass spectrometry (MS). Moreover, the complete structure elucidation was achieved via X-ray crystallography and DFT analysis. The article describes the life cycle and genome of the Zika virus along with its mechanism of entry inhibition by illustrating the structure and function of the ZIKV envelop (E) protein. The docking studies disclosed that the newly synthesized stilbene compound confers an excellent inhibitory response towards the entry of Zika virus in host cells as supported by calculated docking score and its binding conformation with Zika virus E-protein. Further, the normal mode analysis (NMA) simulation technique is used to predict the conformational states of the target E-protein, which explains the potency of the compound to bind with the Zika virus E-protein. We hope that the present study will help and encourage researchers in the field of medicinal chemistry to develop potential drugs against the Zika virus.
Collapse
Affiliation(s)
- Pawan
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma (GGDSD) College, Chandigarh, 160030, India.
| | - Sonia Devi
- Post Graduate Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh, 160036, India
| |
Collapse
|
3
|
Yu X, Xu M, Gao Z, Guan H, Zhu Q. Advances in antitumor effects of pterostilbene and its derivatives. Future Med Chem 2025; 17:109-124. [PMID: 39655793 DOI: 10.1080/17568919.2024.2435251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Pterostilbene (PT) is a naturally occurring small molecule stilbenoid that has garnered significant attention due to its potential therapeutic effects in tumor diseases. In this review, we conducted a comprehensive analysis of the antitumor effects of PT and its derivatives on various cancer types, including colon, breast, liver, lung, and pancreatic cancers in recent 20 years. We have succinctly summarized the PT derivatives that exhibit superior anti-tumor efficacy compared to PT. Additionally, we reviewed the potential structure-activity relationship (SAR) rules and clinical application methods to establish a foundation for chemical modification and clinical utilization of stilbene compounds.
Collapse
Affiliation(s)
- Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziye Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haixing Guan
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Yu X, Chen M, Wu J, Song R. Research progress of SIRTs activator resveratrol and its derivatives in autoimmune diseases. Front Immunol 2024; 15:1390907. [PMID: 38962006 PMCID: PMC11219927 DOI: 10.3389/fimmu.2024.1390907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Autoimmune diseases (AID) have emerged as prominent contributors to disability and mortality worldwide, characterized by intricate pathogenic mechanisms involving genetic, environmental, and autoimmune factors. In response to this challenge, a growing body of research in recent years has delved into genetic modifications, yielding valuable insights into AID prevention and treatment. Sirtuins (SIRTs) constitute a class of NAD-dependent histone deacetylases that orchestrate deacetylation processes, wielding significant regulatory influence over cellular metabolism, oxidative stress, immune response, apoptosis, and aging through epigenetic modifications. Resveratrol, the pioneering activator of the SIRTs family, and its derivatives have captured global scholarly interest. In the context of AID, these compounds hold promise for therapeutic intervention by modulating the SIRTs pathway, impacting immune cell functionality, suppressing the release of inflammatory mediators, and mitigating tissue damage. This review endeavors to explore the potential of resveratrol and its derivatives in AID treatment, elucidating their mechanisms of action and providing a comprehensive analysis of current research advancements and obstacles. Through a thorough examination of existing literature, our objective is to advocate for the utilization of resveratrol and its derivatives in AID treatment while offering crucial insights for the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaolong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Ruixiao Song
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Navarro-Orcajada S, Conesa I, Vidal-Sánchez FJ, Matencio A, Albaladejo-Maricó L, García-Carmona F, López-Nicolás JM. Stilbenes: Characterization, bioactivity, encapsulation and structural modifications. A review of their current limitations and promising approaches. Crit Rev Food Sci Nutr 2022; 63:7269-7287. [PMID: 35234546 DOI: 10.1080/10408398.2022.2045558] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stilbenes are phenolic compounds naturally synthesized as secondary metabolites by the shikimate pathway in plants. Research on them has increased in recent years due to their therapeutic potential as antioxidant, antimicrobial, anti-inflammatory, anticancer, cardioprotective and anti-obesity agents. Amongst them, resveratrol has attracted the most attention, although there are other natural and synthesized stilbenes with enhanced properties. However, stilbenes have some physicochemical and pharmacokinetic problems that need to be overcome before considering their applications. Human clinical evidence of their bioactivity is still controversial due to this fact and hence, exhaustive basis science on stilbenes is needed before applied science. This review gathers the main physicochemical and biological properties of natural stilbenes, establishes structure-activity relationships among them, emphasizing the current problems that limit their applications and presenting some promising approaches to overcome these issues: the encapsulation in different agents and the structural modification to obtain novel stilbenes with better features. The bioactivity of stilbenes should move from promising to evident.
Collapse
Affiliation(s)
- Silvia Navarro-Orcajada
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Irene Conesa
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco José Vidal-Sánchez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | | | - Lorena Albaladejo-Maricó
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
6
|
Kumar A, Kurmi BD, Singh A, Singh D. Potential role of resveratrol and its nano-formulation as anti-cancer agent. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:643-658. [PMCID: PMC9630550 DOI: 10.37349/etat.2022.00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
The uncontrolled and metastatic nature of cancer makes it worse and more unpredictable. Hence, many therapy and medication are used to control and treat cancer. However, apart from this, many medications cause various side effects. In America, nearly 8% of patients admitted to the hospital are due to side effects. Cancer is more seen in people residing in developed countries related of their lifestyle. There are various phytoconstituents molecules in which resveratrol (RSV) is the best-fitted molecule for cancer due to its significantly less adverse effect on the body. RSV inhibits the initiation and progression of cell proliferation due to the modulation of various pathways like the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. RSV downgraded cell cycle-regulated proteins like cyclin E, cyclin D1, and proliferating cell nuclear antigen (PCNA) and induced the release of cytochrome c from the mitochondria, causing apoptosis or programmed cell death (PCD). A great benefit comes with some challenges, hence, RSV does suffer from poor solubility in water i.e. 0.05 mg/mL. It suffers from poor bioavailability due to being highly metabolized by the liver and intestine. Surprisingly, RSV metabolites also induce the metabolism of RSV. Hence, significantly less amount of RSV presented in the urine in the unchanged form. Due to some challenges like poor bioavailability, less aqueous solubility, and retention time in the body, researchers concluded to make the nanocarriers for better delivery. Adopting the technique of nano-formulations, increased topical penetration by up to 21%, improved nano-encapsulation and consequently improved bioavailability and permeability by many folds. Hence, the present review describes the complete profile of RSV and its nano-formulations for improving anti-cancer activity along with a patent survey.
Collapse
Affiliation(s)
- Akshay Kumar
- Department of Quality Assurance, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India,Correspondence: Dilpreet Singh, Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India.
| |
Collapse
|
7
|
Jin M, Li S, Wu Y, Li D, Han Y. Construction of Chitosan/Alginate Nano-Drug Delivery System for Improving Dextran Sodium Sulfate-Induced Colitis in Mice. NANOMATERIALS 2021; 11:nano11081884. [PMID: 34443715 PMCID: PMC8402175 DOI: 10.3390/nano11081884] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
(1) Background: In the treatment of ulcerative colitis (UC), accurate delivery and release of anti-inflammatory drugs to the site of inflammation can reduce systemic side effects. (2) Methods: We took advantage of this goal to prepare resveratrol-loaded PLGA nanoparticles (RES-PCAC-NPs) by emulsification solvent volatilization. After layer-by-layer self-assembly technology, we deposited chitosan and alginate to form a three-layer polyelectrolyte film. (3) Results: It can transport nanoparticles through the gastric environment to target inflammation sites and slowly release drugs at a specific pH. The resulting RES-PCAC-NPs have an ideal average diameter (~255 nm), a narrow particle size distribution and a positively charged surface charge (~13.5 mV). The Fourier transform infrared spectroscopy showed that resveratrol was successfully encapsulated into PCAC nanoparticles, and the encapsulation efficiency reached 87.26%. In addition, fluorescence imaging showed that RES-PCAC-NPs with positive charges on the surface can effectively target and accumulate in the inflammation site while continuing to penetrate downward to promote mucosal healing. Importantly, oral RES-PCAC-NPs treatment in DSS-induced mice was superior to other results in significantly improved inflammatory markers of UC. (4) Conclusions: Our results strongly prove that RES-PCAC-NPs can target the inflamed colon for maximum efficacy, and this oral pharmaceutical formulation can represent a promising formulation in the treatment of UC.
Collapse
|
8
|
Tian B, Liu J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1392-1404. [PMID: 31756276 DOI: 10.1002/jsfa.10152] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Resveratrol, a stilbene molecule belonging to the polyphenol family, is usually extracted from a great many natural plants. The technologies of preparation and extraction methods are developing rapidly. As resveratrol has many beneficial properties, it has been widely utilized in food and medicine industry. In terms of its structure, it is susceptible to degradation and can undergo chemical changes during food processing. Different studies have therefore given more attention to various aspects of resveratrol, including anti-aging, anti-oxidant, and anti-cancer activity. This review classifies the study of resveratrol, considers plant sources, synthesis, stability, common reactions, and food applications, and provides references to boost its food and medical utilization. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingren Tian
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumchi, China
| | - Jiayue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Hou Y, Zhang Y, Mi Y, Wang J, Zhang H, Xu J, Yang Y, Liu J, Ding L, Yang J, Chen G, Wu C. A Novel Quinolyl‐Substituted Analogue of Resveratrol Inhibits LPS‐Induced Inflammatory Responses in Microglial Cells by Blocking the NF‐κB/MAPK Signaling Pathways. Mol Nutr Food Res 2019; 63:e1801380. [DOI: 10.1002/mnfr.201801380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/13/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Hou
- College of Life and Health SciencesNortheastern University Shenyang 110169 P. R. China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryNortheastern University, Ministry of Education Shenyang 110169 P. R. China
| | - Yuchen Zhang
- Department of PharmacologyShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Yan Mi
- College of Life and Health SciencesNortheastern University Shenyang 110169 P. R. China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryNortheastern University, Ministry of Education Shenyang 110169 P. R. China
| | - Jian Wang
- Key Laboratory of Structure‐Based Drugs Design and Discovery of Ministry of EducationShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Haotian Zhang
- Department of PharmacologyShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Jikai Xu
- College of Life and Health SciencesNortheastern University Shenyang 110169 P. R. China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryNortheastern University, Ministry of Education Shenyang 110169 P. R. China
| | - Yanqiu Yang
- College of Life and Health SciencesNortheastern University Shenyang 110169 P. R. China
| | - Jingyu Liu
- College of Life and Health SciencesNortheastern University Shenyang 110169 P. R. China
| | - Lingling Ding
- Department of PharmacologyShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Jingyu Yang
- Department of PharmacologyShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure‐Based Drugs Design and Discovery of Ministry of EducationShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Chunfu Wu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang 110016 P. R. China
| |
Collapse
|
10
|
Barbosa C, Santos-Pereira C, Soares I, Martins V, Terra-Matos J, Côrte-Real M, Lúcio M, Oliveira MECDR, Gerós H. Resveratrol-Loaded Lipid Nanocarriers Are Internalized By Endocytosis in Yeast. JOURNAL OF NATURAL PRODUCTS 2019; 82:1240-1249. [PMID: 30964667 DOI: 10.1021/acs.jnatprod.8b01003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Different positive pharmacological effects have been attributed to the natural product resveratrol (RSV), including antioxidant, antiaging, and cancer chemopreventive properties. However, its low bioavailability and rapid metabolic degradation has led to the suspicion that many of the biological activities of this compound observed in vitro may not be attainable in humans. To improve its bioavailability and pharmacokinetic profile, attempts have been made to encapsulate RSV into lipid-based nanocarrier systems. Here, the dioctadecyldimethylammonium bromide (DODAB):monoolein (MO) liposomal system (1:2) loaded with RSV revealed appropriate characteristics for drug release purposes: reduced size for cellular uptake (157 ± 23 nm), stability up to 80 days, positive surface charge (ζ ≈ +40 mV), and a controlled biphasic release of RSV from the lipid nanocarriers over a period of almost 50 h at pH 5.0 and 7.4. Moreover, the encapsulation efficiency of the nanocarrier ranged from 70% to 92% and its RSV loading capacity from 9% to 14%, when [RSV] was between 100 and 200 μM. The partition coefficient ( Kp) of RSV between lipid and aqueous phase was log Kp = 3.37 ± 0.10, suggesting moderate to high lipophilicity of this natural compound and reinforcing the lipid nanocarriers' suitability for RSV incorporation. The thermodynamic parameters of RSV partitioning in the lipid nanocarriers at 37 °C (Δ H = 43.76 ± 5.68 kJ mol-1; Δ S = 0.20 ± 0.005 kJ mol-1; and Δ G = -18.46 ± 3.48 kJ mol-1) reflected the spontaneity of the process and the establishment of hydrophobic interactions. The cellular uptake mechanism of the RSV-loaded nanocarriers labeled with the lipophilic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was studied in the eukaryotic model system Saccharomyces cerevisiae. Thirty minutes after incubation, yeast cells readily internalized nanocarriers and the spots of blue fluorescence of DPH clustered around the central vacuole in lipid droplets colocalized with the green fluorescence of the lipophilic endocytosis probe FM1-43. Subsequent studies with the endocytosis defective yeast deletion mutant ( end3Δ) and with the endocytosis inhibitor methyl-β-cyclodextrin supported the involvement of an endocytic pathway. This novel nanotechnology approach opens good perspectives for medical applications.
Collapse
Affiliation(s)
- Célia Barbosa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Inês Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Viviana Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB) , University of Trás-os-Montes e Alto Douro , Quinta de Prados , 5000-801 Vila Real , Portugal
| | - Joana Terra-Matos
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Marlene Lúcio
- Centre of Physics (CFUM), Department of Physics , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - M E C D Real Oliveira
- Centre of Physics (CFUM), Department of Physics , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB) , University of Trás-os-Montes e Alto Douro , Quinta de Prados , 5000-801 Vila Real , Portugal
| |
Collapse
|
11
|
Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int J Mol Sci 2019; 20:ijms20061381. [PMID: 30893846 PMCID: PMC6471659 DOI: 10.3390/ijms20061381] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.
Collapse
|
12
|
Nasr T, Bondock S, Rashed HM, Fayad W, Youns M, Sakr TM. Novel hydrazide-hydrazone and amide substituted coumarin derivatives: Synthesis, cytotoxicity screening, microarray, radiolabeling and in vivo pharmacokinetic studies. Eur J Med Chem 2018; 151:723-739. [PMID: 29665526 DOI: 10.1016/j.ejmech.2018.04.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
The current work presents the synthesis and biological evaluation of new series of coumarin hydrazide-hydrazone derivatives that showed in vitro broad spectrum antitumor activities against resistant pancreatic carcinoma (Panc-1), hepatocellular carcinoma (HepG2) and leukemia (CCRF) cell lines using doxorubicin as reference standard. Bromocoumarin hydrazide-hydrazone derivative (BCHHD) 11b showed excellent anticancer activity against all tested cancer cell lines. Enzyme assays showed that BCHHD 11b induced apoptosis due to activation of caspases 3/7. Moreover, 11b inhibited GST and CYP3A4 in a dose dependent manner and the induced cell death could be attributed to metabolic inhibition. Moreover, 11b microarray analysis showed significant up- and down-regulation of many genes in the treated cells related to apoptosis, cell cycle, tumor growth and suppressor genes. All of the above presents BCHHD 11b as a potent anticancer agent able to overcome drug resistance. In addition, compound 11b was able to serve as a chemical carrier for 99mTc and the in vivo biodistribution study of 99mTc-11b complex revealed a remarkable targeting ability of 99mTc into solid tumor showing that 99mTc-11b might be used as a promising radiopharmaceutical imaging agent for cancer.
Collapse
Affiliation(s)
- Tamer Nasr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information, Egypt.
| | - Samir Bondock
- Department of Chemistry, Faculty of Science, Mansoura University, ET-35516, Mansoura, Egypt; Department of Chemistry, Faculty of Science, King Khalid University, 9004, Abha, Saudi Arabia
| | - Hassan M Rashed
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, P.O. Code 13759, Cairo, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generators Department, Hot Laboratories Centre, Atomic Energy Authority, P.O. Code 13759, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University of Modern Sciences and Arts (MSA), Giza, Egypt.
| |
Collapse
|
13
|
Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS. The Role of Resveratrol in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18122589. [PMID: 29194365 PMCID: PMC5751192 DOI: 10.3390/ijms18122589] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6009, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
14
|
Therapeutic Versatility of Resveratrol Derivatives. Nutrients 2017; 9:nu9111188. [PMID: 29109374 PMCID: PMC5707660 DOI: 10.3390/nu9111188] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/26/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Resveratrol, a natural phytoalexin, exhibits a remarkable range of biological activities, such as anticancer, cardioprotective, neuroprotective and antioxidant properties. However, the therapeutic application of resveratrol was encumbered for its low bioavailability. Therefore, many researchers focused on designing and synthesizing the derivatives of resveratrol to enhance the bioavailability and the pharmacological activity of resveratrol. During the past decades, a large number of natural and synthetic resveratrol derivatives were extensively studied, and the methoxylated, hydroxylated and halogenated derivatives of resveratrol received particular more attention for their beneficial bioactivity. So, in this review, we will summarize the chemical structure and the therapeutic versatility of resveratrol derivatives, and thus provide the related structure activity relationship reference for their practical applications.
Collapse
|
15
|
Urbaniak A, Delgado M, Kacprzak K, Chambers TC. Activity of resveratrol triesters against primary acute lymphoblastic leukemia cells. Bioorg Med Chem Lett 2017; 27:2766-2770. [DOI: 10.1016/j.bmcl.2017.04.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
|
16
|
De Filippis B, Ammazzalorso A, Fantacuzzi M, Giampietro L, Maccallini C, Amoroso R. Anticancer Activity of Stilbene-Based Derivatives. ChemMedChem 2017; 12:558-570. [PMID: 28266812 DOI: 10.1002/cmdc.201700045] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/28/2017] [Indexed: 12/27/2022]
Abstract
Stilbene is an abundant structural scaffold in nature, and stilbene-based compounds have been widely reported for their biological activity. Notably, (E)-resveratrol and its natural stilbene-containing derivatives have been extensively investigated as cardioprotective, potent antioxidant, anti-inflammatory, and anticancer agents. Starting from its potent chemotherapeutic activity against a wide variety of cancers, the stilbene scaffold has been subject to synthetic manipulations with the aim of obtaining new analogues with improved anticancer activity and better bioavailability. Within the last decade, the majority of new synthetic stilbene derivatives have demonstrated significant anticancer activity against a large number of cancer cell lines, depending on the type and position of substituents on the stilbene skeleton. This review focuses on the structure-activity relationship of the key compounds containing a stilbene scaffold and describes how the structural modifications affect their anticancer activity.
Collapse
Affiliation(s)
- Barbara De Filippis
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandra Ammazzalorso
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Marialuigia Fantacuzzi
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Letizia Giampietro
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Cristina Maccallini
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
17
|
Synthesis and anticancer activity of new azo compounds containing extended π-conjugated systems. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0140-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Frlan R, Sova M, Gobec S, Stavber G, Časar Z. Cobalt-Catalyzed Cross-Coupling of Grignards with Allylic and Vinylic Bromides: Use of Sarcosine as a Natural Ligand. J Org Chem 2015; 80:7803-9. [DOI: 10.1021/acs.joc.5b01156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rok Frlan
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Matej Sova
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Gaj Stavber
- API
Development, Organic Synthesis Department, Lek Pharmaceuticals, d.d., Sandoz Development Centre Slovenia, Kolodvorska 27, 1234 Mengeš, Slovenia
| | - Zdenko Časar
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
- API
Development, Organic Synthesis Department, Lek Pharmaceuticals, d.d., Sandoz Development Centre Slovenia, Kolodvorska 27, 1234 Mengeš, Slovenia
- Global
Portfolio Management API, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria
| |
Collapse
|
19
|
Perez CC, Pena JM, Duarte Correia CR. Improved synthesis of bioactive stilbene derivatives applying design of experiments to the Heck–Matsuda reaction. NEW J CHEM 2014. [DOI: 10.1039/c4nj00601a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design of experiments (DOE) was instrumental to optimize reaction conditions which allowed the efficient synthesis of key bioactive stilbenes.
Collapse
|
20
|
Kasiotis KM, Pratsinis H, Kletsas D, Haroutounian SA. Resveratrol and related stilbenes: their anti-aging and anti-angiogenic properties. Food Chem Toxicol 2013; 61:112-20. [PMID: 23567244 DOI: 10.1016/j.fct.2013.03.038] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 12/22/2022]
Abstract
Dietary stilbenes comprise a class of natural compounds that display significant biological activities of medicinal interest. Among them, their antioxidant, anti-aging and anti-angiogenesic properties are well established and subjects of numerous research endeavors. This mini-review aspires to account and present the literature reports published on research concerning various natural and synthetic stilbenes, such as trans-resveratrol. Special focus was given to most recent research findings, while the mechanisms underlying their anti-aging and anti-angiogenic effects as well as the respective signaling pathways involved were also presented and discussed.
Collapse
Affiliation(s)
- Konstantinos M Kasiotis
- Benaki Phytopathological Institute, Laboratory of Pesticides Toxicology, 8 St. Delta Street, Athens, Kifissia 14561, Greece.
| | | | | | | |
Collapse
|
21
|
Kuo CH, Hsiao FW, Chen JH, Hsieh CW, Liu YC, Shieh CJ. Kinetic aspects of ultrasound-accelerated lipase catalyzed acetylation and optimal synthesis of 4'-acetoxyresveratrol. ULTRASONICS SONOCHEMISTRY 2013; 20:546-552. [PMID: 22698950 DOI: 10.1016/j.ultsonch.2012.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 04/27/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
Ultrasonic assistance of lipase (Candida antarctica; Novozym® 435) catalyzed synthesis of 4'-acetoxyresveratrol from resveratrol and vinyl acetate was investigated. Response surface methodology and a three-level-three-factor Box-Behnken design were adopted to evaluate the effects of synthesis variables, including reaction time (4-12h), enzyme amount (2500-4500PLU), and ultrasonic power (90-150 W) on the percentage molar conversion of 4'-acetoxyresveratrol. Based on ridge max analysis, the optimum conditions for synthesis were: reaction time 10.78 h, enzyme amount 5492PLU, and ultrasonic power 147.8 W. With ultrasound assistance, not only the phenolic compound acetylation time decreased, but also a high yield (95.2%) was achieved. The reaction kinetic model agreed with Ping-Pong mechanism, and the apparent kinetic constant V(m)(')/K(2) ratio related to enzyme performance was 2.4 times higher in the ultrasound-assisted reaction than in the mechanical-mixing reaction. The apparent kinetic constant K(2) indicated that ultrasound enhanced the vinyl acetate affinity to the enzyme. The simplified Ping-Pong kinetic model was employed to simulate 4'-acetoxyresveratrol production in batch reaction. It was found that a good prediction existed between the fitting results and the experimental data.
Collapse
Affiliation(s)
- Chia-Hung Kuo
- Biotechnology Center, National Chung Hsing University, 250 Kuo-kuang Road, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Siddiqui A, Dandawate P, Rub R, Padhye S, Aphale S, Moghe A, Jagyasi A, Venkateswara Swamy K, Singh B, Chatterjee A, Ronghe A, Bhat HK. Novel Aza-resveratrol analogs: synthesis, characterization and anticancer activity against breast cancer cell lines. Bioorg Med Chem Lett 2012; 23:635-40. [PMID: 23273518 DOI: 10.1016/j.bmcl.2012.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/18/2012] [Accepted: 12/03/2012] [Indexed: 12/17/2022]
Abstract
Novel Aza-resveratrol analogs were synthesized, structurally characterized and evaluated for cytotoxic activity against MDA-MB-231 and T47D breast cancer cell lines, which exhibited superior inhibitory activity than parent resveratrol compound. The binding mechanism of these compounds with estrogen receptor-α was rationalized by molecular docking studies which indicated additional hydrogen binding interactions and tight binding in the protein cavity. Induction of Beclin-1 protein expression in breast cancer cell lines after treatment with newly synthesized resveratrol analogs indicated inhibition of growth of these cell lines through autophagy. The study highlighted the advantage of introducing the imino-linkage in resveratrol motif in enhancing the anticancer potential of resveratrol suggesting that these analogs can serve as better therapeutic agents against breast cancer and can provide starting point for building more potent analogs in future.
Collapse
Affiliation(s)
- Areej Siddiqui
- ISTRA, MCES's Allana College of Pharmacy, University of Pune, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Moran BW, Kenny PTM. Formation of 4-N-Arylamino-1-butanol Derivatives from Aromatic Nitro Compounds via a Novel Palladium-Catalyzed Tetrahydrofuran Ring-Opening Reaction. SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2011.582978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Brian W. Moran
- a School of Chemical Sciences , National Institute for Cellular Biotechnology, Dublin City University , Glasnevin , Dublin , Ireland
| | - Peter T. M. Kenny
- a School of Chemical Sciences , National Institute for Cellular Biotechnology, Dublin City University , Glasnevin , Dublin , Ireland
| |
Collapse
|
24
|
Chalal M, Vervandier-Fasseur D, Meunier P, Cattey H, Hierso JC. Syntheses of polyfunctionalized resveratrol derivatives using Wittig and Heck protocols. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Rivera H, Morales-Ríos MS, Bautista W, Shibayama M, Tsutsumi V, Muriel P, Pérez-Álvarez V. A novel fluorinated stilbene exerts hepatoprotective properties in CCl4-induced acute liver damage. Can J Physiol Pharmacol 2011; 89:759-66. [DOI: 10.1139/y11-074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There has been a recently increase in the development of novel stilbene-based compounds with in vitro anti-inflamatory properties. For this study, we synthesized and evaluated the anti-inflammatory properties of 2 fluorinated stilbenes on carbon tetrachloride (CCl4)-induced acute liver damage. To achieve this, CCl4 (4 g·kg–1, per os) was administered to male Wistar rats, followed by either 2-fluoro-4′-methoxystilbene (FME) or 2,3-difluoro-4′-methoxystilbene (DFME) (10 mg·kg–1, per os). We found that although both of the latter compounds prevented cholestatic damage (γ-glutamyl transpeptidase activity), only DFME showed partial but consistent results in the prevention of necrosis, as assessed by both alanine aminotransferase activity and histological analysis. Since inflammatory responses are mediated by cytokines, mainly tumour necrosis factor α (TNF-α), we used the Western blot technique to determine the action of FME and DFME on the expression level of this cytokine. The observed increase in the level of TNF-α caused by CCl4 administration was only prevented by treatment with DFME, in agreement with our biochemical findings. This result was confirmed by measuring interleukin-6 (IL-6) levels, since the expression of this protein depends on the level of TNF-α. In this case, DFME completely blocked the CCl4-induced increase of IL-6. Our results suggest that DFME possesses greater anti-inflammatory properties in vivo than FME. DFME constitutes a possible therapeutic agent for liver disease and could serve as a template for structure optimization.
Collapse
Affiliation(s)
- Horacio Rivera
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F. 07360 Mexico
| | - Martha S. Morales-Ríos
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F. 07360 Mexico
| | - Wendy Bautista
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E OJ9, Canada
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F. 07360, Mexico
| | - Víctor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F. 07360, Mexico
| | - Pablo Muriel
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F. 07360 Mexico
| | - Víctor Pérez-Álvarez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F. 07360 Mexico
| |
Collapse
|
26
|
Zhang W, Sviripa V, Kril LM, Chen X, Yu T, Shi J, Rychahou P, Evers BM, Watt DS, Liu C. Fluorinated N,N-dialkylaminostilbenes for Wnt pathway inhibition and colon cancer repression. J Med Chem 2011; 54:1288-97. [PMID: 21291235 DOI: 10.1021/jm101248v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality in the United States. CRC is initiated by mutations of the tumor suppressor gene, adenomatous polyposis coli (APC), or β-catenin gene. These mutations stabilize β-catenin and constitutively activate Wnt/β-catenin target genes, such as c-Myc and cyclin D1, ultimately leading to cancer. Naturally occurring stilbene derivatives, resveratrol and pterostilbene, inhibit Wnt signaling and repress CRC cell proliferation but are ineffective at concentrations less than 10 μM. To understand the structure--activity relationship within these stilbene derivatives and to develop more efficacious Wnt inhibitors than these natural products, we synthesized and evaluated a panel of fluorinated N,N-dialkylaminostilbenes. Among this panel, (E)-4-(2,6-difluorostyryl)-N,N-dimethylaniline (4r) inhibits Wnt signaling at nanomolar levels and inhibits the growth of human CRC cell xenografts in athymic nude mice at a dosage of 20 mg/kg. These fluorinated N,N-dialkylaminostilbenes appear to inhibit Wnt signaling downstream of β-catenin, probably at the transcriptional level.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nobre SM, Muniz MN, Seferin M, da Silva WM, Monteiro AL. The synthesis of non-symmetrical stilbene analogs of trans-resveratrol using the same Pd catalyst in a sequential double-Heck arylation of ethylene. Appl Organomet Chem 2011. [DOI: 10.1002/aoc.1756] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Ndiaye M, Philippe C, Mukhtar H, Ahmad N. The grape antioxidant resveratrol for skin disorders: promise, prospects, and challenges. Arch Biochem Biophys 2011; 508:164-70. [PMID: 21215251 DOI: 10.1016/j.abb.2010.12.030] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/21/2010] [Accepted: 12/24/2010] [Indexed: 01/05/2023]
Abstract
Resveratrol, a phytoalexin antioxidant found in red grapes, has been shown to have both chemopreventive and therapeutic effects against many diseases and disorders, including those of the skin. Studies have shown protective effects of resveratrol against ultraviolet radiation-mediated oxidative stress and cutaneous damages including skin cancer. Because many of the skin conditions stem from ultraviolet radiation and oxidative stress, this antioxidant appears to have promise and prospects against a wide range of cutaneous disorders including skin aging and skin cancers. However, there are a few roadblocks in the way of this promising agent regarding its translation from the bench to the bedside. This review discusses the promise and prospects of resveratrol in the management of skin disorders and the associated challenges.
Collapse
Affiliation(s)
- Mary Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
29
|
|
30
|
Karki SS, Bhutle SR, Pedgaonkar GS, Zubaidha PK, Shaikh RM, Rajput CG, Shendarkar GS. Synthesis and biological evaluation of some stilbene-based analogues. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9450-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Medina I, Alcántara D, González MJ, Torres P, Lucas R, Roque J, Plou FJ, Morales JC. Antioxidant activity of resveratrol in several fish lipid matrices: effect of acylation and glucosylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9778-9786. [PMID: 20687612 DOI: 10.1021/jf101472n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The antioxidant activity of resveratrol (1) and several acylated and glycosylated derivatives on fish oil enriched systems has been studied. Two long-chain acylated derivatives, 3-stearoylresveratrol (2) and 4'-stearoylresveratrol (3), and three glucosyl derivatives, resveratrol-3-beta-d-glucopyranoside (piceid, 4), resveratrol-3,5-di-beta-d-glucopyranoside (5), and resveratrol-3,4'-di-beta-d-glucopyranoside (6), have been prepared and tested. The results have shown a notable antioxidant capacity of resveratrol and piceid in fish oil-in-water emulsions, similar to that of the potent antioxidant hydroxytyrosol. Lipophilization of resveratrol did not improve its antioxidant activity, either in emulsions or in bulk fish oil. Further glucosylation of piceid yielding compounds 5 and 6 did not improve either resveratrol or piceid antioxidant efficiency in emulsions or in bulk oil. In all of the examples, the hydroxyl group at the 4'-position seems to be relevant for the antioxidant efficiency of resveratrol, and it should be maintained to keep the antiradical activity. Finally, resveratrol has shown to be a very good antioxidant for fish muscle, as good as the potent antioxidant hydroxytyrosol.
Collapse
Affiliation(s)
- Isabel Medina
- Instituto de Investigaciones Marinas, CSIC, 6 Eduardo Cabello, 36208 Vigo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Li NG, Shi ZH, Tang YP, Yang JP, Wang ZJ, Song SL, Lu TL, Duan JA. Targeting the development of resveratrol as a chemopreventive agent. Drug Dev Res 2010. [DOI: 10.1002/ddr.20380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Effects of resveratrol on membrane biophysical properties: relevance for its pharmacological effects. Chem Phys Lipids 2010; 163:747-54. [PMID: 20691168 DOI: 10.1016/j.chemphyslip.2010.07.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 07/05/2010] [Accepted: 07/22/2010] [Indexed: 01/05/2023]
Abstract
The current study gathers a range of spectrophotometric and spectrofluorimetric techniques to systematically monitor the effects of resveratrol (trans-3,5,4'-trihydrostilbene) on the biophysical properties of membrane model systems consisting of unilamellar liposomes of phosphatidylcholine (DPPC) with the ultimate goal of relating these effects with some of the well documented pharmacological properties of this compound, and clarifying some controversial results reported on the literature. Physiological conditions have been pursued, such as a buffered pH control with adjusted ionic strength similar to the blood plasma conditions (pH 7.4, I=0.1M) and the study at different membrane physical states (gel phase and fluid phase) for the assessment of resveratrol-membrane: aqueous partition coefficient by derivative spectroscopy. Results obtained by fluorescence quenching and anisotropy studies indicate that resveratrol has a membrane fluidizing effect and is able to permeate the membrane even in the gel phase. These results mirror the well described antioxidant effect of resveratrol, since antioxidants have to reach peroxidised rigid membranes and increase membrane fluidity in order to interact more efficiently with lipid radicals in the disordered lipid bilayer. Location of resveratrol pointed also to a membrane distribution that is favourable for scavenging the lipid radicals and was elucidated using probes positioned at different membrane depths suggesting that this compound penetrates into the acyl membrane region but also positions its polar hydroxyl group near the headgroup region of the membrane.
Collapse
|
34
|
Sun B, Hoshino J, Jermihov K, Marler L, Pezzuto JM, Mesecar AD, Cushman M. Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer. Bioorg Med Chem 2010; 18:5352-66. [PMID: 20558073 PMCID: PMC2903642 DOI: 10.1016/j.bmc.2010.05.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/07/2023]
Abstract
A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC50 0.59 microM) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC50 70 nM) and 84 (IC50 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC50 of 80 microM. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC50 1.7 microM and 0.27 microM, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Bin Sun
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Juma Hoshino
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Katie Jermihov
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, Illinois 60612
| | - Laura Marler
- College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720
| | - John M. Pezzuto
- College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720
| | - Andrew D. Mesecar
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, Illinois 60612
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
35
|
Szekeres T, Fritzer-Szekeres M, Saiko P, Jäger W. Resveratrol and resveratrol analogues--structure-activity relationship. Pharm Res 2010; 27:1042-8. [PMID: 20232118 DOI: 10.1007/s11095-010-0090-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/09/2010] [Indexed: 01/23/2023]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a compound found in wine and is held responsible for a number of beneficial effects of red wine. Besides the prevention of heart disease and significant anti-inflammatory effects, resveratrol might inhibit tumor cell growth and even play a role in the aging process. We here describe the structure-activity relationship of resveratrol and analogues of resveratrol regarding the free radical scavenging and antitumor effects of this exciting natural compound. In addition, we have synthesized a number of analogues of resveratrol with the aim to further improve the beneficial effects of resveratrol. Our studies were based on the analysis of structural properties, which were responsible for the most important effects of this compound. Striking in vivo effects can be observed with hexahydroxystilbene (M8), the most effective synthetic analogue of resveratrol. We could show that M8 inhibits tumor as well as metastasis growth of human melanoma in two different animal models, alone and in combination with dacarbacine.
Collapse
Affiliation(s)
- Thomas Szekeres
- Department of Medical and Chemical Laboratory Diagnostics, General Hospital of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | |
Collapse
|
36
|
Kee CH, Ariffin A, Awang K, Takeya K, Morita H, Hussain SI, Chan KM, Wood PJ, Threadgill MD, Lim CG, Ng S, Weber JFF, Thomas NF. Challenges associated with the synthesis of unusual o-carboxamido stilbenes by the Heck protocol: Intriguing substituent effects, their toxicological and chemopreventive implications. Org Biomol Chem 2010; 8:5646-60. [DOI: 10.1039/c0ob00296h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|