1
|
Aisha, Raza MA, Farwa U, Rashid U, Maurin JK, Budzianowski A. Synthesis, single crystal, in-silico and in-vitro assessment of the thiazolidinones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
A facile one pot multi component synthesis of alkyl 4-oxo-coumarinyl ethylidene hydrazono-thiazolidin-5-ylidene acetates and their antiviral activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Zeinali S, Zare Fekri L, Hassan Zadeh L. Recent advances on the nanocatalyzed synthesis of 1,3‐thiazolidines. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Zare Fekri L. Synthesis of Thiazolidin-4-ones Using Novel Magnetic Nanoparticles Modified with S-Proline. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1908045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Hebishy AMS, Abdelfattah MS, Elmorsy A, Elwahy AHM. Novel bis(thiazolidin-4-ones) linked to aliphatic or aromatic spacers: synthesis, characterization, and anticancer evaluation. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1823978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ali M. S. Hebishy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Abdullah Elmorsy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | |
Collapse
|
6
|
Fekri LZ, Zeinali S. Copper/Schiff‐base complex immobilized on amine functionalized silica mesoporous magnetic nanoparticles under solvent‐free condition: A facile and new avenue for the synthesis of thiazolidin‐4‐ones. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Leila Zare Fekri
- Department of ChemistryPayame Noor University PO Box 19395‐3697 Tehran Iran
| | - Shohreh Zeinali
- Department of Pharmaceutical Chemistry, Koochesfahan, GuilanGhadr Institute of Higher Education Iran
| |
Collapse
|
7
|
Fekri LZ. s-Proline Covalented Silicapropyl Modified Magnetic Nanoparticles: Synthesis, Characterization, Biological and Catalytic Activity for the Synthesis of thiazolidin-4- ones. Curr Org Synth 2020; 17:464-472. [PMID: 32351185 DOI: 10.2174/1570179417666200430121809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thiazolidinoneones are important pharmaceutical compounds because of their biological activities. Several methods for the synthesis of 4-thiazolidinones are widely reported in the literature. The main synthetic routes to synthesize 1,3-thiazolidin-4-ones involve three components reaction between amine, a carbonyl compound and thioglycolic acid. OBJECTIVE s-Proline covalented silicapropyl modified magnetic nanoparticles (Fe3O4@SiO2-Pr @s-proline) were prepared. The antibacterial activity of synthesized nanoparticles against four bacterias was investigated that showed that 30 Mg/L of synthesized nanoparticles is a suitable concentration for bacterial inhibitory. Finally, the catalytic application of the synthesized s-Proline covalented silicapropyl modified magnetic nanoparticles for the synthesis of thiazolidinones and pyrazolyl thiazolidinones under stirring in aqueous media was evaluated. All of the synthesized organic compounds were characterized by mp, FT IR, 1H NMR, 13C NMR and elemental analysis. MATERIALS AND METHODS A combination of aldehyde (1.0 mmol), thioglycolic acid (1.0 mmol), various amines (1mmol) and 0.05 g Fe3O4@SiO2propyl@L-proline, were reacted at room temperature under stirring in 10 mL water. After completion of the reaction, as indicated by TLC (4:1 hexane: ethylacetate), the reaction mixture was filtered in the presence of an effective magnetic bar to separate the nanocatalyst. The nanocatalyst was washed with a mixture of hot EtOH: H2O two times. The crude products were collected and recrystallized from ethanol, if necessary. RESULTS AND DISCUSSION We present a novel avenue for the synthesis of thiazolidinones in the presence of Fe3O4@SiO2-Pr @s-proline under solvent-free conditions. CONCLUSION In conclusion, we have synthesized Fe3O4@SiO2-Pr@s-proline nanoparticles. Their biological activity against 4 bacterias was investigated. It released that 30Mg/L is the suitable concentration of synthesized nanoparticle for bacterial inhibitory. The catalytic efficiency of the catalyst was checked in the multicomponent reaction of various aldehyde, thioglycolic acid and various amines under stirring. This nanoparticle is a new organic-inorganic hybrid nanoparticle. The operational simplicity, the excellent yields of products, ease of separation and recyclability of the magnetic catalyst, waste reduction and high selectivity are the main advantages of this catalytic method. Furthermore, this new avenue is inexpensive and environmentally benign.
Collapse
|
8
|
Fekri LZ, Hamidian H, Chekosarani MA. Urazolium diacetate as a new, efficient and reusable Brønsted acid ionic liquid for the synthesis of novel derivatives of thiazolidine-4-ones. RSC Adv 2020; 10:556-564. [PMID: 35492548 PMCID: PMC9047527 DOI: 10.1039/c9ra08649h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/14/2019] [Indexed: 12/16/2022] Open
Abstract
Urazolium diacetate catalyzed synthesis of new derivatives of 1,3-thiazolidine-4-ones (azo dispersive dyes family)viamulticomponent reaction of various aldehydes, thioglycolic acid and 4-aminoazobenzene under solvent-free reaction was reported.
Collapse
|
9
|
Covaleda G, Gallego P, Vendrell J, Georgiadis D, Lorenzo J, Dive V, Aviles FX, Reverter D, Devel L. Synthesis and Structural/Functional Characterization of Selective M14 Metallocarboxypeptidase Inhibitors Based on Phosphinic Pseudopeptide Scaffold: Implications on the Design of Specific Optical Probes. J Med Chem 2019; 62:1917-1931. [PMID: 30688452 DOI: 10.1021/acs.jmedchem.8b01465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Metallocarboxypeptidases (MCPs) of the M14 family are Zn2+-dependent exoproteases present in almost every tissue or fluid in mammals. These enzymes perform a large variety of physiological functions and are involved in several pathologies, such as pancreatic diseases, inflammation, fibrinolysis, and cancer. Here, we describe the synthesis and functional/structural characterization of a series of reversible tight-binding phosphinic pseudopeptide inhibitors that show high specificity and potency toward these proteases. Characterization of their inhibitory potential against a large variety of MCPs, combined with high-resolution crystal structures of three selected candidates in complex with human carboxypeptidase A (CPA)1, allowed to decipher the structural determinants governing selectivity for type-A of the M14A MCP family. Further, the phosphinic pseudopeptide framework was exploited to generate an optical probe selectively targeting human CPAs. The phosphinic pseudopeptides presented here constitute the first example of chemical probes useful to selectively report on type-A MCPs activity in complex media.
Collapse
Affiliation(s)
- Giovanni Covaleda
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Pablo Gallego
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Josep Vendrell
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry , University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Vincent Dive
- CEA, Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO) , Université Paris-Saclay , Gif-sur-Yvette 91190 , France
| | - Francesc Xavier Aviles
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Laurent Devel
- CEA, Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO) , Université Paris-Saclay , Gif-sur-Yvette 91190 , France
| |
Collapse
|
10
|
Semi-synthesis, antibacterial and antifungal activities of three novel thiazolidin-4-one by essential oil of Anethum graveolens seeds as starting material. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Nguyen W, Hodder AN, de Lezongard RB, Czabotar PE, Jarman KE, O'Neill MT, Thompson JK, Jousset Sabroux H, Cowman AF, Boddey JA, Sleebs BE. Enhanced antimalarial activity of plasmepsin V inhibitors by modification of the P 2 position of PEXEL peptidomimetics. Eur J Med Chem 2018; 154:182-198. [PMID: 29800827 DOI: 10.1016/j.ejmech.2018.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
Abstract
Plasmepsin V is an aspartyl protease that plays a critical role in the export of proteins bearing the Plasmodium export element (PEXEL) motif (RxLxQ/E/D) to the infected host erythrocyte, and thus the survival of the malaria parasite. Previously, development of transition state PEXEL mimetic inhibitors of plasmepsin V have primarily focused on demonstrating the importance of the P3 Arg and P1 Leu in binding affinity and selectivity. Here, we investigate the importance of the P2 position by incorporating both natural and non-natural amino acids into this position and show disubstituted beta-carbon amino acids convey the greatest potency. Consequently, we show analogues with either cyclohexylglycine or phenylglycine in the P2 position are the most potent inhibitors of plasmepsin V that impair processing of the PEXEL motif in exported proteins resulting in death of P. falciparum asexual stage parasites.
Collapse
Affiliation(s)
- William Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Anthony N Hodder
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Richard Bestel de Lezongard
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Jennifer K Thompson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Helene Jousset Sabroux
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
12
|
Mahmoodi NO, Mohammadgholipour S, Ghanbari Pirbasti F. Microwave-assisted one-pot three-component synthesis of thiazolidinones using KSF@Ni as an efficient heterogeneous catalyst. J Sulphur Chem 2017. [DOI: 10.1080/17415993.2017.1343334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nosrat O. Mahmoodi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | | | | |
Collapse
|
13
|
Gazdik M, Jarman KE, O'Neill MT, Hodder AN, Lowes KN, Jousset Sabroux H, Cowman AF, Boddey JA, Sleebs BE. Exploration of the P3 region of PEXEL peptidomimetics leads to a potent inhibitor of the Plasmodium protease, plasmepsin V. Bioorg Med Chem 2016; 24:1993-2010. [PMID: 27021426 DOI: 10.1016/j.bmc.2016.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/06/2016] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
The use of arginine isosteres is a known strategy to overcome poor membrane permeability commonly associated with peptides or peptidomimetics that possess this highly polar amino acid. Here, we apply this strategy to peptidomimetics that are potent inhibitors of the malarial protease, plasmepsin V, with the aim of enhancing their activity against Plasmodium parasites, and exploring the structure-activity relationship of the P3 arginine within the S3 pocket of plasmepsin V. Of the arginine isosteres trialled in the P3 position, we discovered that canavanine was the ideal and that this peptidomimetic potently inhibits plasmepsin V, efficiently blocks protein export and inhibits parasite growth. Structure studies of the peptidomimetics bound to plasmepsin V provided insight into the structural basis for the enzyme activity observed in vitro and provides further evidence why plasmepsin V is highly sensitive to substrate modification.
Collapse
Affiliation(s)
- Michelle Gazdik
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Anthony N Hodder
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Kym N Lowes
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Helene Jousset Sabroux
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
14
|
Liu X, Li B, Gu Z. Palladium-Catalyzed Heck-type Domino Cyclization and Carboxylation to Synthesize Carboxylic Acids by Utilizing Chloroform as the Carbon Monoxide Source. J Org Chem 2015; 80:7547-54. [DOI: 10.1021/acs.joc.5b01126] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xianglei Liu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Bin Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| |
Collapse
|
15
|
New paradigm of an old target: an update on structural biology and current progress in drug design towards plasmepsin II. Eur J Med Chem 2015; 95:324-48. [PMID: 25827401 DOI: 10.1016/j.ejmech.2015.03.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/09/2015] [Accepted: 03/20/2015] [Indexed: 11/20/2022]
Abstract
Malaria is one of the major parasitic disease whose rapid spreading and mortality rate affects all parts of the world especially several parts of Asia as well as Africa. The emergence of multi-drug resistant strains hamper the progress of current antimalarial therapy and displayed an urgent need for new antimalarials by targeting novel drug targets. Until now, several promising targets were explored in order to develop a promising Achilles hill to counter malaria. Plasmepsin, an aspartic protease, which is involved in the hemoglobin breakdown into smaller peptides emerged as a crucial target to develop new chemical entities to counter malaria. Due to early crystallographic evidence, plasmepsin II (Plm II) emerged as well explored target to develop novel antimalarials as well as a starting point to develop inhibitors targeting some other subtypes of plasmepsins i.e. Plm I, II, IV and V. With the advancements in drug discovery, several computational and synthetic approaches were employed in order to develop novel inhibitors targeting Plm II. Strategies such as fragment based drug design, molecular dynamics simulation, double drug approach etc. were employed in order to develop new chemical entities targeting Plm II. But majority of Plm II inhibitors suffered from poor selectivity over cathepsin D as well as other subtypes of plasmepsins. This review highlights an updated account of drug discovery efforts targeting plasmepsin II from a medicinal chemistry perspective.
Collapse
|
16
|
Motwani HV, De Rosa M, Odell LR, Hallberg A, Larhed M. Aspartic protease inhibitors containing tertiary alcohol transition-state mimics. Eur J Med Chem 2014; 90:462-90. [PMID: 25481814 DOI: 10.1016/j.ejmech.2014.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 11/30/2022]
Abstract
Aspartic proteases (APs) are a class of enzymes engaged in the proteolytic digestion of peptide substrates. APs play important roles in physiological and infectious pathways, making them plausible drug targets. For instance in the treatment of HIV infections, access to an efficient combination of protease and reverse transcriptase inhibitors have changed a terminal illness to a chronic but manageable disease. However, the benefits have been limited due to the emergence of drug resistant viral strains, poor pharmacokinetic properties of peptidomimetic inhibitors and adverse effects associated with the treatment. In the 1980s, D. Rich and co-workers proposed a novel strategy for the development of AP inhibitors by replacing the secondary hydroxyl group with a tertiary alcohol as part of the transition state (TS) mimicking moiety. This strategy has been extensively explored over the last decade with a common belief that masking of the polar group, e.g. by intramolecular hydrogen bonding, has the potential to enhance transcellular transport. This is the first review presenting the advances of AP inhibitors comprising a tertiary hydroxyl group. The inhibitors have been classified into different tert-hydroxy TS mimics and their design strategies, synthesis, biological activities, structure-activity-relationships and X-ray structures are discussed.
Collapse
Affiliation(s)
- Hitesh V Motwani
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Maria De Rosa
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
17
|
Samadhiya P, Sharma R, Srivastava S, Srivastava S. Synthesis and biological evaluation of 4-thiazolidinone derivatives as antitubercular and antimicrobial agents. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2010.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Evaluation of the anti-Schistosoma mansoni activity of thiosemicarbazones and thiazoles. Antimicrob Agents Chemother 2013; 58:352-63. [PMID: 24165185 DOI: 10.1128/aac.01900-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis is a chronic and debilitating disease caused by a trematode of the genus Schistosoma and affects over 207 million people. Chemotherapy is the only immediate recourse for minimizing the prevalence of this disease and involves predominately the administration of a single drug, praziquantel (PZQ). Although PZQ has proven efficacy, there is a recognized need to develop new drugs as schistosomicides since studies have shown that repeated use of this drug in areas of endemicity may cause a temporary reduction in susceptibility in isolates of Schistosoma mansoni. Hydrazones, thiosemicarbazones, phthalimides, and thiazoles are thus regarded as privileged structures used for a broad spectrum of activities and are potential candidates for sources of new drug prototypes. The present study determined the in vitro schistosomicidal activity of 10 molecules containing these structures. During the assays, parameters such motility and mortality, oviposition, morphological changes in the tegument, cytotoxicity, and immunomodulatory activity caused by these compounds were evaluated. The results showed that compounds formed of thiazole and phthalimide led to higher mortality of worms, with a significant decline in motility, inhibition of pairing and oviposition, and a mortality rate of 100% starting from 144 h of exposure. These compounds also stimulated the production of nitric oxide and tumor necrosis factor alpha (TNF-α), thereby demonstrating the presence of immunomodulatory activity. The phthalyl thiazole LpQM-45 caused significant ultrastructural alterations, with destruction of the tegument in both male and female worms. According to the present study, phthalyl thiazole compounds possess antischistosomal activities and should form the basis for future experimental and clinical trials.
Collapse
|
19
|
Dali B, Keita M, Megnassan E, Frecer V, Miertus S. Insight into Selectivity of Peptidomimetic Inhibitors with Modified Statine Core for Plasmepsin II of Plasmodium falciparum over Human Cathepsin D. Chem Biol Drug Des 2012; 79:411-30. [DOI: 10.1111/j.1747-0285.2011.01276.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Gising J, Odell LR, Larhed M. Microwave-assisted synthesis of small molecules targeting the infectious diseases tuberculosis, HIV/AIDS, malaria and hepatitis C. Org Biomol Chem 2012; 10:2713-29. [PMID: 22227602 DOI: 10.1039/c2ob06833h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The unique properties of microwave in situ heating offer unparalleled opportunities for medicinal chemists to speed up lead optimisation processes in early drug discovery. The technology is ideal for small-scale discovery chemistry because it allows full reaction control, short reaction times, high safety and rapid feedback. To illustrate these advantages, we herein describe applications and approaches in the synthesis of small molecules to combat four of the most prevalent infectious diseases; tuberculosis, HIV/AIDS, malaria and hepatitis C, using dedicated microwave instrumentation.
Collapse
Affiliation(s)
- Johan Gising
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala Biomedical Centre, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
21
|
Kortagere S, Lill M, Kerrigan J. Role of computational methods in pharmaceutical sciences. Methods Mol Biol 2012; 929:21-48. [PMID: 23007425 DOI: 10.1007/978-1-62703-050-2_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Over the past two decades computational methods have eased up the financial and experimental burden of early drug discovery process. The in silico methods have provided support in terms of databases, data mining of large genomes, network analysis, systems biology on the bioinformatics front and structure-activity relationship, similarity analysis, docking, and pharmacophore methods for lead design and optimization. This review highlights some of the applications of bioinformatics and chemoinformatics methods that have enriched the field of drug discovery. In addition, the review also provided insights into the use of free energy perturbation methods for efficiently computing binding energy. These in silico methods are complementary and can be easily integrated into the traditional in vitro and in vivo methods to test pharmacological hypothesis.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
22
|
MAOS and medicinal chemistry: some important examples from the last years. Molecules 2011; 16:9274-97. [PMID: 22064269 PMCID: PMC6264757 DOI: 10.3390/molecules16119274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/17/2011] [Accepted: 10/26/2011] [Indexed: 11/16/2022] Open
Abstract
This review aims to highlight microwave-assisted organic synthesis as applied to medicinal chemistry in the last years, showing some reactions performed under microwave irradiation for the synthesis of distinct structurally molecules of biological interest, divided into the following groups: antineoplastics, anti-inflammatory, antimicrobial agents, antivirals, agents for the treatment of neglected diseases and central nervous system-acting prototypes.
Collapse
|
23
|
Tashtoush HI, Abusahyon F, Shkoor M, Al-Talib M. Dual behavior of monothiocarbohydrazones in the cyclization with diethyl acetylene dicarboxylate (DEAD): synthesis of substituted 1,3-thiazolidin-4-ones. J Sulphur Chem 2011. [DOI: 10.1080/17415993.2011.608799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Mohanad Shkoor
- a Chemistry Department , Yarmouk University , Irbid, Jordan
| | | |
Collapse
|
24
|
Computational perspectives into plasmepsins structure-function relationship: implications to inhibitors design. J Trop Med 2011; 2011:657483. [PMID: 21760810 PMCID: PMC3134243 DOI: 10.1155/2011/657483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/01/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
The development of efficient and selective antimalariais remains a challenge for the pharmaceutical industry. The aspartic proteases plasmepsins, whose inhibition leads to parasite death, are classified as targets for the design of potent drugs. Combinatorial synthesis is currently being used to generate inhibitor libraries for these enzymes, and together with computational methodologies have been demonstrated capable for the selection of lead compounds. The high structural flexibility of plasmepsins, revealed by their X-ray structures and molecular dynamics simulations, made even more complicated the prediction of putative binding modes, and therefore, the use of common computational tools, like docking and free-energy calculations. In this review, we revised the computational strategies utilized so far, for the structure-function relationship studies concerning the plasmepsin family, with special focus on the recent advances in the improvement of the linear interaction estimation (LIE) method, which is one of the most successful methodologies in the evaluation of plasmepsin-inhibitor binding affinity.
Collapse
|
25
|
Investigation of α-phenylnorstatine and α-benzylnorstatine as transition state isostere motifs in the search for new BACE-1 inhibitors. Bioorg Med Chem 2011; 19:145-55. [DOI: 10.1016/j.bmc.2010.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 11/12/2010] [Accepted: 11/18/2010] [Indexed: 01/14/2023]
|
26
|
Valiente PA, Gil A, Batista PR, Caffarena ER, Pons T, Pascutti PG. New parameterization approaches of the LIE method to improve free energy calculations of PlmII-Inhibitors complexes. J Comput Chem 2010; 31:2723-34. [PMID: 20839299 DOI: 10.1002/jcc.21566] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pedro A Valiente
- Laboratorio de Biología Computacional y Diseño de Proteínas, Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Cuba.
| | | | | | | | | | | |
Collapse
|