1
|
Aleksandrova EV, Ma CX, Klepacki D, Alizadeh F, Vázquez-Laslop N, Liang JH, Polikanov YS, Mankin AS. Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms. Nat Chem Biol 2024; 20:1680-1690. [PMID: 39039256 PMCID: PMC11686707 DOI: 10.1038/s41589-024-01685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
Growing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones. While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel. Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes. Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes.
Collapse
Affiliation(s)
- Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Faezeh Alizadeh
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Ma CX, Li Y, Liu WT, Li Y, Zhao F, Lian XT, Ding J, Liu SM, Liu XP, Fan BZ, Liu LY, Xue F, Li J, Zhang JR, Xue Z, Pei XT, Lin JZ, Liang JH. Synthetic macrolides overcoming MLS BK-resistant pathogens. Cell Discov 2024; 10:75. [PMID: 38992047 PMCID: PMC11239830 DOI: 10.1038/s41421-024-00702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Conventional macrolide-lincosamide-streptogramin B-ketolide (MLSBK) antibiotics are unable to counter the growing challenge of antibiotic resistance that is conferred by the constitutive methylation of rRNA base A2058 or its G2058 mutation, while the presence of unmodified A2058 is crucial for high selectivity of traditional MLSBK in targeting pathogens over human cells. The absence of effective modes of action reinforces the prevailing belief that constitutively antibiotic-resistant Staphylococcus aureus remains impervious to existing macrolides including telithromycin. Here, we report the design and synthesis of a novel series of macrolides, featuring the strategic fusion of ketolide and quinolone moieties. Our effort led to the discovery of two potent compounds, MCX-219 and MCX-190, demonstrating enhanced antibacterial efficacy against a broad spectrum of formidable pathogens, including A2058-methylated Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, and notably, the clinical Mycoplasma pneumoniae isolates harboring A2058G mutations which are implicated in the recent pneumonia outbreak in China. Mechanistic studies reveal that the modified quinolone moiety of MCX-190 establishes a distinctive secondary binding site within the nascent peptide exit tunnel. Structure-activity relationship analysis underscores the importance of this secondary binding, maintained by a sandwich-like π-π stacking interaction and a water-magnesium bridge, for effective engagement with A2058-methylated ribosomes rather than topoisomerases targeted by quinolone antibiotics. Our findings not only highlight MCX-219 and MCX-190 as promising candidates for next-generation MLSBK antibiotics to combat antibiotic resistance, but also pave the way for the future rational design of the class of MLSBK antibiotics, offering a strategic framework to overcome the challenges posed by escalating antibiotic resistance.
Collapse
Affiliation(s)
- Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ye Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Xiao-Tian Lian
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xie-Peng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bing-Zhi Fan
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Li-Yong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Jue-Ru Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhao Xue
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Xiao-Tong Pei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Jin-Zhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Center for mRNA Translational Research, Fudan University, Shanghai, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
3
|
Liu XP, Lv W, Zhao F, Ding J, Zhang JR, Xue F, Zhang JZ, Liu LY, Cushman M, Li Y, Liang JH. Design and synthesis of novel macrolones bridged with linkers from 11,12-positions of macrolides. Bioorg Med Chem Lett 2022; 68:128761. [PMID: 35483593 DOI: 10.1016/j.bmcl.2022.128761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
Resistance to telithromycin and off-target effects associated with the metabolic instability present serious and challenging problems for the development of novel macrolides. Herein, studies of hybrids of macrolides and quinolones (termed macrolones) bridged with linkers from 11,12-cyclic carbamate of macrolides revealed different structure-activity relationships from the previously reported macrolones bridged with linkers derived from 6-, 9- and 4''-positions of macrolides. The optimized macrolone 34 g with a longer and rigid sidechain than telithromycin had improved metabolic stability compared to telithromycin (t1/2: 110 vs 32 min), whose future has been heavily clouded by metabolic issues. Moreover, 34 g was 38-fold more potent than telithromycin against A2058/2059-mutated Mycoplasma pneumoniae (8 vs 315 μM), which may be attributed to a novel mode of action between the carboxylic acid of quinolone moiety and the bacterial ribosome. This work increases the prospect for discovery of novel and safe antibacterial agents to combat serious human infectious diseases.
Collapse
Affiliation(s)
- Xie-Peng Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wei Lv
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Jing Ding
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jue-Ru Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| | - Jian-Zhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Li-Yong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China.
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.
| |
Collapse
|
4
|
Gawrońska M, Kowalik M, Makowski M. Recent advances in medicinal chemistry of ampicillin: Derivatives, metal complexes, and sensing approaches. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Fan BZ, Hiasa H, Lv W, Brody S, Yang ZY, Aldrich C, Cushman M, Liang JH. Design, synthesis and structure-activity relationships of novel 15-membered macrolides: Quinolone/quinoline-containing sidechains tethered to the C-6 position of azithromycin acylides. Eur J Med Chem 2020; 193:112222. [DOI: 10.1016/j.ejmech.2020.112222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 02/01/2023]
|
6
|
Dissecting erm(41)-Mediated Macrolide-Inducible Resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64:AAC.01879-19. [PMID: 31791943 DOI: 10.1128/aac.01879-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
Macrolides are the cornerstone of Mycobacterium abscessus multidrug therapy, despite that most patients respond poorly to this class of antibiotics due to the inducible resistance phenotype that occurs during drug treatment. This mechanism is driven by the macrolide-inducible ribosomal methylase encoded by erm(41), whose expression is activated by the transcriptional regulator WhiB7. However, it has been debated whether clarithromycin and azithromycin differ in the extent to which they induce erm(41)-mediated macrolide resistance. Herein, we show that macrolide resistance is induced more rapidly in various M. abscessus isolates upon exposure to azithromycin than to clarithromycin, based on MIC determination. Macrolide-induced expression of erm(41) was assessed in vivo using a strain carrying tdTomato placed under the control of the erm(41) promoter. Visualization of fluorescent bacilli in infected zebrafish demonstrates that azithromycin and clarithromycin activate erm(41) expression in vivo That azithromycin induces a more rapid expression of erm(41) was confirmed by measuring the β-galactosidase activity of a reporter strain in which lacZ was placed under the control of the erm(41) promoter. Shortening the promoter region in the lacZ reporter plasmid identified DNA elements involved in the regulation of erm(41) expression, particularly an AT-rich motif sharing partial conservation with the WhiB7-binding site. Mutation of this motif abrogated the macrolide-induced and WhiB7-dependent expression of erm(41). This study provides new mechanistic information on the adaptive response to macrolide treatment in M. abscessus.
Collapse
|
7
|
Janas A, Przybylski P. 14- and 15-membered lactone macrolides and their analogues and hybrids: structure, molecular mechanism of action and biological activity. Eur J Med Chem 2019; 182:111662. [DOI: 10.1016/j.ejmech.2019.111662] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 11/15/2022]
|
8
|
Ma CX, Lv W, Li YX, Fan BZ, Han X, Kong FS, Tian JC, Cushman M, Liang JH. Design, synthesis and structure-activity relationships of novel macrolones: Hybrids of 2-fluoro 9-oxime ketolides and carbamoyl quinolones with highly improved activity against resistant pathogens. Eur J Med Chem 2019; 169:1-20. [PMID: 30852383 DOI: 10.1016/j.ejmech.2019.02.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022]
Abstract
Constitutively erythromycin-resistant apathogens are more difficult to address than inducibly resistant and efflux-resistant strains. Three series of the 4th generation 2-fluoro 9-oxime erythromycin ketolides were synthesized and evaluated. Incorporation of substituted heteroaryl groups (a - m), in contrast to previously reported the unsubstituted heteroaryl groups, proved to the beneficial for enhancement of the activities of the 9-propgargyl ketolide 8 series and the 9-allyl ketolide 14 series. But these aryl groups (a - m) cannot supply the resulting compounds 8 and 14, unlike corresponding the 6-allyl ketolide 20 series, with activity against constitutively resistant Streptococcus pneumoniae. However, hybrids of macrolides and quinolones (8, 14 and 20, Ar = n - t) exhibited not only high activities against susceptible, inducibly erm-mediated resistant, and efflux-mediated resistant strains, but also significantly improved potencies against constitutively resistant Streptococcus pneumoniae and Streptococcus pyogenes. The capacity was highlighted by introduction of newly designed carbamoyl quinolones (q, r, s and t) rather than commonly seen carboxy quinolones (o and p) as the pharmacophores. Structure-activity relationships and molecular modelling indicated that 8r, 14r and 20q may have different binding sites compared to current erythromycins. Moreover, 8r, 14r and 20q have 2.5-3.6 times prolonged half-life and 2.3- to 2.6-fold longer mean residence time in vivo over telithromycin. These findings pave the way for rational design of novel non-telithromycin macrolides that target new binding sites within bacterial ribosomes.
Collapse
Affiliation(s)
- Cong-Xuan Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Lv
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, 47907, USA
| | - Ya-Xin Li
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bing-Zhi Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xu Han
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Fan-Sheng Kong
- Beijing Increasepharm Safety & Efficacy Co. Ltd, Beijing, 102206, China
| | - Jing-Chao Tian
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, 47907, USA
| | - Jian-Hua Liang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China; School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
9
|
Ezelarab HAA, Abbas SH, Hassan HA, Abuo-Rahma GEDA. Recent updates of fluoroquinolones as antibacterial agents. Arch Pharm (Weinheim) 2018; 351:e1800141. [DOI: 10.1002/ardp.201800141] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Hend A. A. Ezelarab
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | - Samar H. Abbas
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | - Heba A. Hassan
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | | |
Collapse
|
10
|
Jiang D. 4-Quinolone Derivatives and Their Activities Against Gram-negative Pathogens. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dan Jiang
- School of Nuclear Technology and Chemistry & Biology; Hubei University of Science and Technology; Xianning Hubei China
| |
Collapse
|
11
|
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018; 146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infections represent a significant health threat globally, and are responsible for the majority of hospital-acquired infections, leading to extensive mortality and burden on global healthcare systems. The second generation fluoroquinolone ciprofloxacin which exhibits excellent antimicrobial activity and pharmacokinetic properties as well as few side effects is introduced into clinical practice for the treatment of various bacterial infections for around 3 decades. The emergency and widely spread of drug-resistant pathogens making ciprofloxacin more and more ineffective, so it's imperative to develop novel antibacterials. Numerous of ciprofloxacin derivatives have been synthesized for seeking for new antibacterials, and some of them exhibited promising potency. This review aims to summarize the recent advances made towards the discovery of ciprofloxacin derivatives as antibacterial agents and the structure-activity relationship of these derivatives was also discussed.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Hubei, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China.
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China.
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
12
|
4-Quinolone hybrids and their antibacterial activities. Eur J Med Chem 2017; 141:335-345. [DOI: 10.1016/j.ejmech.2017.09.050] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 01/28/2023]
|
13
|
Zhang GF, Zhang S, Pan B, Liu X, Feng LS. 4-Quinolone derivatives and their activities against Gram positive pathogens. Eur J Med Chem 2017; 143:710-723. [PMID: 29220792 DOI: 10.1016/j.ejmech.2017.11.082] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Gram-positive bacteria are responsible for a broad range of infectious diseases, and the emergency and wide spread of drug-resistant Gram-positive pathogens including MRSA and MRSE has caused great concern throughout the world. 4-Quinolones which are exemplified by fluoroquinolones are mainstays of chemotherapy against various bacterial infections including Gram-positive pathogen infections, and their value and role in the treatment of bacterial infections continues to expand. However, the resistance of Gram-positive organisms to 4-quinolones develops rapidly and spreads widely, making them more and more ineffective. To overcome the resistance and reduce the toxicity, numerous of 4-quinolone derivatives were synthesized and screened for their in vitro and in vivo activities against Gram-positive pathogens, and some of them exhibited excellent potency. This review aims to outlines the recent advances made towards the discovery of 4-quinolone-based derivatives as anti-Gram-positive pathogens agents and the critical aspects of design as well as the structure-activity relationship of these derivatives. The enriched SAR paves the way to the further rational development of 4-quinolones with a unique mechanism of action different from that of the currently used drugs to overcome the resistance, well-tolerated and low toxic profiles.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Life Science, Hubei University of Science and Technology, Hubei, PR China
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China.
| |
Collapse
|
14
|
Synthesis and antibacterial evaluation of novel 11-O-carbamoyl clarithromycin ketolides. Bioorg Med Chem Lett 2017; 27:3693-3697. [PMID: 28711353 DOI: 10.1016/j.bmcl.2017.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 11/23/2022]
Abstract
A series of novel 11-O-carbamoyl clarithromycin ketolides were designed, synthesized and evaluated for their in vitro antibacterial activity. The results showed that the majority of the target compounds displayed improved activity compared with references against erythromycin-resistant S. pneumoniae A22072 expressing the mef gene, S. pneumoniae B1 expressing the erm gene and S. pneumoniae AB11 expressing the mef and erm genes. In particular, compounds 9, 18, 19 and 22 showed the most potent activity against erythromycin-resistant S. pneumoniae A22072 with the MIC values of 0.5μg/mL. Furthermore, compounds 11, 18, 19, 24 and 29 were also found to exhibit favorable antibacterial activity against erythromycin-susceptible S. pyogenes with the MIC values of 0.125-1μg/mL, and moderate activity against erythromycin-susceptible S. aureus ATCC25923 and B. subtilis ATCC9372.
Collapse
|
15
|
Pavlović D, Kimmins S, Mutak S. Synthesis of novel 15-membered 8a-azahomoerythromycin A acylides: Consequences of structural modification at the C-3 and C-6 position on antibacterial activity. Eur J Med Chem 2017; 125:210-224. [DOI: 10.1016/j.ejmech.2016.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
|
16
|
Yan M, Ma R, Jia L, Venter H, Ma S. Synthesis and antibacterial activity of novel 3-O-descladinosylazithromycin derivatives. Eur J Med Chem 2016; 127:874-884. [PMID: 27836198 DOI: 10.1016/j.ejmech.2016.10.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/14/2016] [Accepted: 10/31/2016] [Indexed: 12/01/2022]
Abstract
Novel series of novel 3-O-arylalkylcarbamoyl descladinosylazithromycin derivatives with the 2'-O-acetyl and 11,12-cyclic carbonate groups, the 11,12-cyclic carbonate group and the 11-O-arylalkylcarbamoyl side chain, and 2'-O-arylalkylcarbamoyl descladinosylazithromycin with the 11,12-cyclic carbonate group were designed, synthesized and evaluated for their antibacterial activity using broth microdilution method. The results showed that the majority of the target compounds showed moderate to favorable activity against six kinds of susceptible strains and almost all of them displayed significantly improved activity compared with references against three erythromycin-resistant strains of S. pneumoniae B1 expressing the ermB gene, S. pneumoniae AB11 expressing the ermB and mefA genes, and S. pyogenes R1. In particular, compound 6h exhibited the most potent activity against susceptible B. subtilis ATCC9372 (0.5 μg/mL), penicillin-resistant S. epidermidis (0.125 μg/mL), and erythromycin-resistant S. pneumoniae B1 (1 μg/mL) and S. pneumoniae AB11 (1 μg/mL), which were 2-, 2-, 256-, 256-fold better activity than azithromycin, respectively. Additionally, compounds 6f (0.5 μg/mL) and 6g (0.25 μg/mL) were the most active against S. pneumoniae A22072, which were 8- and 16-fold better activity than azithromycin (4 μg/mL). As for erythromycin-resistant S. pyogenes R1, compound 5a presented the most excellent activity (8 μg/mL), showing 32- and 32-fold higher activity than azithromycin (256 μg/mL) and clarithromycin (256 μg/mL).
Collapse
Affiliation(s)
- Mi Yan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Ruixin Ma
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Li Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Henrietta Venter
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China.
| |
Collapse
|
17
|
Andreou NP, Dafnopoulos K, Tortopidis C, Koumbis AE, Koffa M, Psomas G, Fylaktakidou KC. Alkyl and aryl sulfonyl p-pyridine ethanone oximes are efficient DNA photo-cleavage agents. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:30-8. [DOI: 10.1016/j.jphotobiol.2016.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 01/30/2023]
|
18
|
Tevyashova AN, Olsufyeva EN, Preobrazhenskaya MN. Design of dual action antibiotics as an approach to search for new promising drugs. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4448] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Pavlović D, Mutak S, Andreotti D, Biondi S, Cardullo F, Paio A, Piga E, Donati D, Lociuro S. Synthesis and Structure-Activity Relationships of α-Amino-γ-lactone Ketolides: A Novel Class of Macrolide Antibiotics. ACS Med Chem Lett 2014; 5:1133-7. [PMID: 25313326 DOI: 10.1021/ml500279k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/15/2014] [Indexed: 11/30/2022] Open
Abstract
An efficient synthesis of α-amino-γ-lactone ketolide (3) was developed, which provided a versatile intermediate for the incorporation of a variety of aryl and heteroaryl groups onto the C-21 position of clarithromycin via HBTU-mediated amidation. The biological data for this important new class of macrolides revealed significantly potent activity against erythromycin-susceptible strains as well as efflux-resistant and erythromycin MLSB-resistant strains of S. pneumoniae and S. pyogenes. In addition, ketolide 11o showed excellent in vitro antibacterial activity against H. influenzae strain as compared to telithromycin. These results indicate that C-21 substituted γ-lactone ketolides have potential as a next generation macrolide antibiotics.
Collapse
Affiliation(s)
- Dražen Pavlović
- PLIVA Research Institute, Prilaz baruna Filipovića
29, 10000 Zagreb, Croatia
| | - Stjepan Mutak
- PLIVA Research Institute, Prilaz baruna Filipovića
29, 10000 Zagreb, Croatia
| | - Daniele Andreotti
- Medicine Research Centre, GlaxoSmithKline, Via
Fleming 4, I-37135 Verona, Italy
| | - Stefano Biondi
- Medicine Research Centre, GlaxoSmithKline, Via
Fleming 4, I-37135 Verona, Italy
| | - Francesca Cardullo
- Medicine Research Centre, GlaxoSmithKline, Via
Fleming 4, I-37135 Verona, Italy
| | - Alfredo Paio
- Medicine Research Centre, GlaxoSmithKline, Via
Fleming 4, I-37135 Verona, Italy
| | - Elisa Piga
- Medicine Research Centre, GlaxoSmithKline, Via
Fleming 4, I-37135 Verona, Italy
| | - Daniele Donati
- Medicine Research Centre, GlaxoSmithKline, Via
Fleming 4, I-37135 Verona, Italy
| | - Sergio Lociuro
- Medicine Research Centre, GlaxoSmithKline, Via
Fleming 4, I-37135 Verona, Italy
| |
Collapse
|
20
|
Seixas RSGR, Almeida AIS, Pereira SIG, Cavaleiro JAS, Silva AMS. Diastereoselective syntheses of (Z)- and (E)-3-styrylquinolin-4(1H)-ones. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1263-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Abstract
Ketolides are erythromycin A derivatives with a keto group replacing the cladinose sugar and an aryl-alkyl group attached to the lactone macrocycle. The aryl-alkyl extension broadens its antibacterial spectrum to include all pathogens responsible for community-acquired pneumonia (CAP): Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis as well as atypical pathogens (Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila). Ketolides have extensive tissue distribution, favorable pharmacokinetics (oral, once-a-day) and useful anti-inflammatory/immunomodulatory properties. Hence, they were considered attractive additions to established oral antibacterials (quinolones, β-lactams, second-generation macrolides) for mild-to-moderate CAP. The first ketolide to be approved, Sanofi-Aventis' telithromycin (RU 66647, HMR 3647, Ketek®), had tainted clinical development, controversial FDA approval and subsequent restrictions due to rare, irreversible hepatotoxicity that included deaths. Three additional ketolides progressed to non-inferiority clinical trials vis-à-vis clarithromycin for CAP. Abbott's cethromycin (ABT-773), acquired by Polymedix and subsequently by Advanced Life Sciences, completed Phase III trials, but its New Drug Application was denied by the FDA in 2009. Enanta's modithromycin (EDP-420), originally codeveloped with Shionogi (S-013420) and subsequently by Shionogi alone, is currently in Phase II in Japan. Optimer's solithromycin (OP-1068), acquired by Cempra (CEM-101), is currently in Phase III. Until this hepatotoxicity issue is resolved, ketolides are unlikely to replace established antibacterials for CAP, or lipoglycopeptides and oxazolidinones for gram-positive infections.
Collapse
|
22
|
Li Q, Xing J, Cheng H, Wang H, Wang J, Wang S, Zhou J, Zhang H. Design, Synthesis, Antibacterial Evaluation and Docking Study of Novel 2-Hydroxy-3-(nitroimidazolyl)-propyl-derived Quinolone. Chem Biol Drug Des 2014; 85:79-90. [DOI: 10.1111/cbdd.12395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/11/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Qing Li
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Junhao Xing
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Haibo Cheng
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| | - Hui Wang
- School of Life Science and Technology; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| | - Jing Wang
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| | - Shuai Wang
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| | - Jinpei Zhou
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| | - Huibin Zhang
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| |
Collapse
|
23
|
Banning JE, Gentillon J, Ryabchuk PG, Prosser AR, Rogers A, Edwards A, Holtzen A, Babkov IA, Rubina M, Rubin M. Formal Substitution of Bromocyclopropanes with Nitrogen Nucleophiles. J Org Chem 2013; 78:7601-16. [DOI: 10.1021/jo4011798] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Joseph E. Banning
- Department of Chemistry, The University
of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832
| | - Jacob Gentillon
- Department of Chemistry, The University
of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832
| | - Pavel G. Ryabchuk
- Department of Chemistry, The University
of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832
| | - Anthony R. Prosser
- Department of Chemistry, The University
of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832
| | - Andrew Rogers
- Department of Chemistry, The University
of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832
| | - Andrew Edwards
- Department of Chemistry, The University
of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832
| | - Andrew Holtzen
- Department of Chemistry, The University
of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832
| | - Ivan A. Babkov
- Department of Chemistry, The University
of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832
| | - Marina Rubina
- Department of Chemistry, The University
of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832
| | - Michael Rubin
- Department of Chemistry, The University
of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-75832
| |
Collapse
|
24
|
Ruan ZX, Huangfu DS, Xu XJ, Sun PH, Chen WM. 3D-QSAR and molecular docking for the discovery of ketolide derivatives. Expert Opin Drug Discov 2013; 8:427-44. [DOI: 10.1517/17460441.2013.774369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhi-Xiong Ruan
- Jinan University, College of Pharmacy, Department of Medicinal Chemistry,
Guangzhou 510632, P. R. China ;
| | - De-Sheng Huangfu
- Jinan University, College of Pharmacy, Department of Medicinal Chemistry,
Guangzhou 510632, P. R. China ;
| | - Xing-Jun Xu
- Jinan University, College of Pharmacy, Department of Medicinal Chemistry,
Guangzhou 510632, P. R. China ;
| | - Ping-Hua Sun
- Jinan University, College of Pharmacy, Department of Medicinal Chemistry,
Guangzhou 510632, P. R. China ;
| | - Wei-Min Chen
- Jinan University, College of Pharmacy, Department of Medicinal Chemistry,
Guangzhou 510632, P. R. China ;
| |
Collapse
|
25
|
Ryabchuk P, Rubina M, Xu J, Rubin M. Formal Nucleophilic Substitution of Bromocyclopropanes with Azoles. Org Lett 2012; 14:1752-5. [DOI: 10.1021/ol300352z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Pavel Ryabchuk
- Department of Chemistry, University of Kansas 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Marina Rubina
- Department of Chemistry, University of Kansas 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Jack Xu
- Department of Chemistry, University of Kansas 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Michael Rubin
- Department of Chemistry, University of Kansas 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
26
|
Synthesis, crystal, computational study and in vitro anti-tuberculosis activity of N-(furan-2-yl-methyl)-N-(phenyl(quinolin-3-yl)methyl) acetamide derivatives. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Pavlović D, Mutak S. Discovery of 4''-ether linked azithromycin-quinolone hybrid series: influence of the central linker on the antibacterial activity. ACS Med Chem Lett 2011; 2:331-6. [PMID: 24900314 DOI: 10.1021/ml100253p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/05/2011] [Indexed: 11/30/2022] Open
Abstract
A series of novel C-4''-substituted azithromycins was synthesized and evaluated for in vitro antibacterial activity against a panel of representative erythromycin-susceptible and macrolide-lincosamide-streptogramin (MLS) resistant pathogens. In summary, azithromycin and quinolone substructures merged in a mutually SAR-compatible design gave rise to a new class of antimicrobials with an improved spectrum and potency over azithromycin. Prototypical analogues 7f and 8f display an improved potency versus azithromycin against Gram-positive and fastidious Gram-negative pathogens. In particular, these new leads maintain activity against MLS-resistant strains of Streptococcus pneumoniae and Streptococcus pyogenes. In addition, they represent an improvement over telithromycin (1) and cethromycin (2) against the fastidious Gram-negative pathogen Haemophilus influenzae.
Collapse
Affiliation(s)
- Dražen Pavlović
- PLIVA Research Institute, Prilaz baruna Filipovića
29, 10000 Zagreb, Croatia
| | - Stjepan Mutak
- PLIVA Research Institute, Prilaz baruna Filipovića
29, 10000 Zagreb, Croatia
| |
Collapse
|