1
|
Zhu H, Zhang X, Zhang B, Ma C. Design and synthesis of novel sulfanilamide derivatives as aminopeptidase N inhibitors. Bioorg Med Chem Lett 2025; 124:130257. [PMID: 40280449 DOI: 10.1016/j.bmcl.2025.130257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Guided by the structural architecture of the aminopeptidase N (APN) active site, we designed and synthesized a series of novel APN inhibitors featuring sulfanilamide scaffold coupled with hydroxamate zinc-binding motifs. Among the series, compound 2k exhibited the inhibitory activity (IC50 = 4.3 μM) as effectively as a positive control drug Bestatin. Notably, our compounds exhibited pronounced selectivity against zinc-dependent metallopeptidase MMP-2. The SAR research indicated that ortho-disubstitution in the phenyl group could lead to an order of magnitude improvement. A molecular docking study validated the novel binding mode of compound 2k. The predicted ADME properties highlighted the improved hydrophilicity, cell permeability, and human oral absorption of 2k than that of bestatin. These results validated simultaneously occupying S1' and S2' pockets as a viable design strategy for discovering APN inhibitors with a non-canonical binding modality. We anticipate that compound 2k with high selectivity will be harnessed as a structurally distinctive probe candidate to investigate the pathophysiological roles of APN in tumor angiogenesis and metastasis.
Collapse
Affiliation(s)
- Hong Zhu
- Anesthesiology and Perioperative, Xinxiang Central Hospital, Xinxiang 453007, China
| | - Xiaoyan Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang 453007, China
| | - Baojun Zhang
- Anesthesiology and Perioperative, Xinxiang Central Hospital, Xinxiang 453007, China.
| | - Chunhua Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang 453007, China.
| |
Collapse
|
2
|
Pinto AF, Nunes JS, Severino Martins JE, Leal AC, Silva CCVC, da Silva AJFS, da Cruz Olímpio DS, da Silva ETN, Campos TA, Lima Leite AC. Thiazole, Isatin and Phthalimide Derivatives Tested in vivo against Cancer Models: A Literature Review of the Last Six Years. Curr Med Chem 2024; 31:2991-3032. [PMID: 37170994 DOI: 10.2174/0929867330666230426154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cancer is a disease characterized by the abnormal multiplication of cells and is the second leading cause of death in the world. The search for new effective and safe anticancer compounds is ongoing due to factors such as low selectivity, high toxicity, and multidrug resistance. Thus, heterocyclic compounds derived from isatin, thiazole and phthalimide that have achieved promising in vitro anticancer activity have been tested in vivo and in clinical trials. OBJECTIVE This review focused on the compilation of promising data from thiazole, isatin, and phthalimide derivatives, reported in the literature between 2015 and 2022, with in vivo anticancer activity and clinical trials. METHODS A bibliographic search was carried out in the PUBMED, MEDLINE, ELSEVIER, and CAPES PERIODIC databases, selecting relevant works for each pharmacophoric group with in vivo antitumor activity in the last 6 years. RESULTS In our study, 68 articles that fit the scope were selected and critically analyzed. These articles were organized considering the type of antitumor activity and their year of publication. Some compounds reported here demonstrated potent antitumor activity against several tumor types. CONCLUSION This review allowed us to highlight works that reported promising structures for the treatment of various cancer types and also demonstrated that the privileged structures thiazole, isatin and phthalimide are important in the design of new syntheses and molecular optimization of compounds with antitumor activity.
Collapse
Affiliation(s)
- Aline Ferreira Pinto
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Janine Siqueira Nunes
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Eduardo Severino Martins
- Regulatory Affairs Advisory, Empresa Brasileira de Hemoderivados e Biotecnologia (HEMOBRAS), CEP 51021-410, Recife, PE, Brazil
| | - Amanda Calazans Leal
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carla Cauanny Vieira Costa Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Anderson José Firmino Santos da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Daiane Santiago da Cruz Olímpio
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Elineide Tayse Noberto da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Thiers Araújo Campos
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
3
|
Preliminary Discovery of Small Molecule Inhibitors of Epidermal Growth Factor Receptor (EGFR) That Bind to the Extracellular Domain. Cancers (Basel) 2022; 14:cancers14153647. [PMID: 35954311 PMCID: PMC9367601 DOI: 10.3390/cancers14153647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is a transmembrane glycoprotein belonging to the protein kinase superfamily. It is composed of an extracellular domain, a transmembrane anchoring region and a cytoplasmic region endowed with tyrosine kinase activity. Genetic mutations of EGFR kinase cause higher activity thereby stimulating downstream signaling pathways that, in turn, impact transcription and cell cycle progression. Due to the involvement of mutant EGFR in tumors and inflammatory diseases, in the past decade, several EGFR inhibitory strategies have been extensively studied, either targeting the extracellular domain (through monoclonal antibodies) or the intracellular kinase domain (through ATP-mimic small molecules). Monoclonal antibodies impair the binding to growth factor, the receptor dimerization, and its activation, whereas small molecules block the intracellular catalytic activity. Herein, we describe the development of a novel small molecule, called DSF-102, that interacts with the extracellular domain of EGFR. When tested in vitro in KRAS mutant A549 cells, it impairs EGFR activity by exerting (i) dose-dependent toxicity effects; (ii) a negative regulation of ERK, MAPK p38 and AKT; and (iii) a modulation of the intracellular trafficking and lysosomal degradation of EGFR. Interestingly, DSF-102 exerts its EGFR inhibitory activity without showing interaction with the intracellular kinase domain. Taken together, these findings suggest that DSF-102 is a promising hit compound for the development of a novel class of anti-EGFR compounds, i.e., small molecules able to interact with the extracellular domain of EGFR and useful for overcoming the KRAS-driven resistance to TKI treatment.
Collapse
|
4
|
Xing X, Li F, Hu Y, Zhang L, Hui Q, Qin H, Jiang Q, Jiang W, Fang C, Zhang L. Discovery of Novel Tetrahydro-β-carboline Containing Aminopeptidase N Inhibitors as Cancer Chemosensitizers. Front Oncol 2022; 12:894842. [PMID: 35677165 PMCID: PMC9168271 DOI: 10.3389/fonc.2022.894842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Aminopeptidase N (APN, CD13) is closely associated with the development and progression of cancer. Previous studies suggested APN as a biomarker for cancer stem cells. APN inhibitors have been intensively evaluated as chemosensitizers for cancer treatments. In the present study, tetrahydro-β-carboline scaffold was introduced to the structure of APN inhibitors. The synthesized compounds showed potent enzyme inhibitory activities compared with Bestatin, an approved APN inhibitor, in cell-based enzymatic assay. In combination with chemotherapeutic drugs, representative APN inhibitor molecules D12, D14 and D16 significantly improved the antiproliferative potency of anticancer drugs in the in vitro tests. Further mechanistic studies revealed that the anticancer effects of these drug combinations are correlated with decreased APN expression, increased ROS level, and induction of cell apoptosis. The spheroid-formation assay and colony-formation assay results showed effectiveness of Paclitaxel-APN inhibitor combination against breast cancer stem cell growth. The combined drug treatment led to reduced mRNA expression of OCT-4, SOX-2 and Nanog in the cancer stem cells tested, suggesting the reduced stemness of the cells. In the in vivo study, the selected APN inhibitors, especially D12, exhibited improved anticancer activity in combination with Paclitaxel compared with Bestatin. Collectively, potent APN inhibitors were discovered, which could be used as lead compounds for tumor chemo-sensitization and cancer stem cell-based therapies.
Collapse
Affiliation(s)
- Xiaoyan Xing
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Fahui Li
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yajie Hu
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lin Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qian Hui
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongyu Qin
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wenyan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chunyan Fang
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
5
|
Chaudhari P, Bari S, Surana S, Shirkhedkar A, Wakode S, Shelar S, Racharla S, Ugale V, Ghodke M. Logical synthetic strategies and structure-activity relationship of indolin-2-one hybrids as small molecule anticancer agents: An overview. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Aminopeptidase N inhibitory peptides derived from hen eggs: Virtual screening, inhibitory activity, and action mechanisms. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
8
|
Thakur A, Singh A, Kaur N, Ojha R, Nepali K. Steering the antitumor drug discovery campaign towards structurally diverse indolines. Bioorg Chem 2020; 94:103436. [DOI: 10.1016/j.bioorg.2019.103436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
9
|
Amin SA, Adhikari N, Jha T. Design of Aminopeptidase N Inhibitors as Anti-cancer Agents. J Med Chem 2018; 61:6468-6490. [DOI: 10.1021/acs.jmedchem.7b00782] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sk. Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| |
Collapse
|
10
|
Doan P, Anufrieva O, Yli-Harja O, Kandhavelu M. In vitro characterization of alkylaminophenols-induced cell death. Eur J Pharmacol 2017; 820:229-234. [PMID: 29275157 DOI: 10.1016/j.ejphar.2017.12.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
Alkylaminophenols are synthetic derivatives well known for their anticancer activity. In the previous studies, we described the activity of the series of Alkylaminophenols derivatives and their ability to induce cell death for many cancer cell lines. However, temporal heterogeneity in cell death induced by lead compounds, N-(2-hydroxy-5-nitrophenyl (4'-methylphenyl) methyl) indoline (Compound I) and 2-((3,4-dihydroquinolin-1(2H)-yl) (4-methoxyphenyl) methyl) phenol (Compound II), has never been tested on osteosarcoma cells (U2OS). Here, we address the level of cell-to-cell heterogeneity by examine whether differences in the type of compounds could influence its effects on cell death of U2OS. Here, we applied imaging, computational methods and biochemical methods to study heterogeneity, apoptosis, reactive oxygen species and caspase. Our results demonstrate that the Hill coefficient of dose-response curve of Compound II is greater than compound I in treated U2OS cells. Both Compounds trigger not only apoptotic cell death but also necro-apoptotic and necrotic cell death. The percentage of these sub-populations varies depending on compounds in which greater variance is induced by compound II than Compound I. We also identified the accumulation of compounds-induced reactive oxygen species during the treatment. This resulted in caspase 3/7 activation in turn induced apoptosis. In summary, the screening of Compound I and II molecules for heterogeneity, apoptosis, reactive oxygen species and caspase has identified compound II as promising anti-osteosarcoma cancer agent. Compound II could be a promising lead compound for future antitumor agent development.
Collapse
Affiliation(s)
- Phuong Doan
- Molecular Signaling Lab, Computational Systems Biology Research Group, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, P.O.Box 553, 33101 Tampere, Finland
| | - Olga Anufrieva
- Molecular Signaling Lab, Computational Systems Biology Research Group, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, P.O.Box 553, 33101 Tampere, Finland
| | - Olli Yli-Harja
- Molecular Signaling Lab, Computational Systems Biology Research Group, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, P.O.Box 553, 33101 Tampere, Finland; Institute for Systems Biology, 1441N 34th Street, Seattle, WA 98103-8904, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Computational Systems Biology Research Group, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, P.O.Box 553, 33101 Tampere, Finland.
| |
Collapse
|
11
|
Pascual I, Valiente PA, García G, Valdés-Tresanco ME, Arrebola Y, Díaz L, Bounaadja L, Uribe RM, Pacheco MC, Florent I, Charli JL. Discovery of novel non-competitive inhibitors of mammalian neutral M1 aminopeptidase (APN). Biochimie 2017; 142:216-225. [PMID: 28964831 PMCID: PMC7127808 DOI: 10.1016/j.biochi.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/22/2017] [Indexed: 12/17/2022]
Abstract
Neutral metallo-aminopeptidase (APN) catalyzes the cleavage of neutral and basic amino acids from the N-terminus of protein or peptide substrates. APN expression is dysregulated in inflammatory diseases as well as in several types of cancer. Therefore, inhibitors of APN may be effective against cancer and inflammation. By virtual screening and enzymatic assays, we identified three non-competitive inhibitors (α > 1) of the porcine and human APN with Ki values in the μM range. These non-peptidic compounds lack the classical zinc-binding groups (ZBG) present in most of the APN inhibitors. Molecular docking simulations suggested the novel inhibitors suppress APN activity by an alternative mechanism to Zn coordination: they interacted with residues comprising the S1 and S5′ subsites of APN. Of note, these compounds also inhibited the porcine aminopeptidase A (pAPA) using a competitive inhibition mode. This indicated differences in the binding mode of these compounds with APN and APA. Based on sequence and structural analyses, we predicted the significance of targeting human APN residues: Ala-351, Arg-442, Ala-474, Phe-896 and Asn-900 for improving the selectivity of the identified compounds. Remarkably, the intraperitoneal injection of compounds BTB07018 and JFD00064 inhibited APN activity in rat brain, liver and kidney indicating good bio-distribution of these inhibitors in vivo. These data reinforce the idea of designing novel APN inhibitors based on lead compounds without ZBG. We identified three non-competitive inhibitors of the human and porcine APN. These compounds lack the classical zinc-binding groups of the APN inhibitors. We proposed these molecules block APN by an alternative mechanism to Zn chelation. All the inhibitors interact with APN residues comprising the S1 and S5′ subsites. Two compounds blocked the APN activity in the brain, liver and kidney of rats.
Collapse
Affiliation(s)
- Isel Pascual
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba.
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba.
| | - Gabriela García
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba.
| | | | - Yarini Arrebola
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba.
| | - Lisset Díaz
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba.
| | - Lotfi Bounaadja
- Molécules de Communication et Adaptation des Microorganismes, (MCAM, UMR 7245), Muséum National Histoire Naturelle, Sorbonne Universités, CNRS, CP 52, 57 Rue Cuvier, 75005, Paris, France.
| | - Rosa María Uribe
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Ave Universidad 2001, Cuernavaca, Morelos, Mexico.
| | | | - Isabelle Florent
- Molécules de Communication et Adaptation des Microorganismes, (MCAM, UMR 7245), Muséum National Histoire Naturelle, Sorbonne Universités, CNRS, CP 52, 57 Rue Cuvier, 75005, Paris, France.
| | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Ave Universidad 2001, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
12
|
Hou J, Jin K, Li J, Jiang Y, Li X, Wang X, Huang Y, Zhang Y, Xu W. LJNK, an indoline-2,3-dione-based aminopeptidase N inhibitor with promising antitumor potency. Anticancer Drugs 2016; 27:496-507. [PMID: 26872309 DOI: 10.1097/cad.0000000000000351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In our previous study, we found that LJNK showed potent aminopeptidase N (APN)-inhibitory activity. In the current study, we further evaluated the antitumor effects of LJNK both in vitro and in vivo. Enzyme experiments showed that LJNK showed better inhibitory activity than bestatin against APN both from human carcinoma cells' surface and from porcine kidney microsomes. In addition, LJNK could suppress rat aortic ring microvessel growth and HUVEC tubular structure formation, which showed its stronger antiangiogenesis effects than bestatin. [(3-[4,5-Dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide)] assay and clonogenic assay showed that LJNK suppressed cancer cell growth both in the short and the long term. Mice bearing H22 transplantation tumor proved its antitumor effects in vivo. Annexin V-fluorescein isothiocyanate/propidium iodide assay showed that LJNK could induce 28.1% PLC/PRF/5 cell apoptosis and the apoptotic pathway was probably identified by western blot. The above-mentioned results suggested that LJNK inhibited cell proliferation and angiogenesis, and induced apoptosis by decreasing APN activity.
Collapse
Affiliation(s)
- Jinning Hou
- aDepartment of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan bKey Laboratory of Applied Pharmacology in Shandong Province, Department of Pharmacology, School of Pharmacy, Weifang Medical College cBochuang International Medical Institute, Weifang, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jin K, Li S, Li X, Zhang J, Xu W, Li X. Design, synthesis and preliminary biological evaluation of indoline-2,3-dione derivatives as novel HDAC inhibitors. Bioorg Med Chem 2015; 23:4728-4736. [DOI: 10.1016/j.bmc.2015.05.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/26/2022]
|
14
|
Liu Z, Hou Y, Zhang G, Xu N, Mi B, Gong P, Zhao Y. Design, synthesis and antitumor activity of novel indolin-2-one derivatives containing 4-thiazolidinone moiety. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-4335-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Katiyar A, Hegde M, Kumar S, Gopalakrishnan V, Bhatelia KD, Ananthaswamy K, Ramareddy SA, De Clercq E, Choudhary B, Schols D, Raghavan SC, Karki SS. Synthesis and evaluation of the biological activity of N′-[2-oxo-1,2 dihydro-3H-indol-3-ylidene] benzohydrazides as potential anticancer agents. RSC Adv 2015. [DOI: 10.1039/c5ra01528f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
New N′-[2-oxo-1,2-dihydro-3H-indol-3-ylidene]benzohydrazide derivatives were synthesized and evaluated for their cytotoxic properties against murine leukemia, L1210, human leukemia, REH, K562 and CEM and human cervix carcinoma, HeLa cells.
Collapse
Affiliation(s)
- Arpit Katiyar
- Department of Pharmaceutical Chemistry
- KLE University's College of Pharmacy
- Bangalore-560 010
- India
- Department of Pharmacy and Medical Science
| | - Mahesh Hegde
- Department of Biochemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry
- KLE University's College of Pharmacy
- Bangalore-560 010
- India
| | | | - Khyati D. Bhatelia
- Department of Biochemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | - Kavya Ananthaswamy
- Department of Biochemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | - Sureshbabu A. Ramareddy
- Department of Pharmaceutical Chemistry
- KLE University's College of Pharmacy
- Bangalore-560 010
- India
| | - Erik De Clercq
- Rega Institute for Medical Research
- KU Leuven
- B-3000 Leuven
- Belgium
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology
- Bangalore 560 100
- India
| | - Dominique Schols
- Rega Institute for Medical Research
- KU Leuven
- B-3000 Leuven
- Belgium
| | | | - Subhas S. Karki
- Department of Pharmaceutical Chemistry
- KLE University's College of Pharmacy
- Bangalore-560 010
- India
| |
Collapse
|
16
|
Niu M, Wang F, Li F, Dong Y, Gu Y. Establishment of a screening protocol for identification of aminopeptidase N inhibitors. J Taiwan Inst Chem Eng 2014; 49:19-26. [PMID: 32336998 PMCID: PMC7172515 DOI: 10.1016/j.jtice.2014.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/09/2014] [Accepted: 11/30/2014] [Indexed: 11/25/2022]
Abstract
Two pharmacophore models have been developed. Virtual screening was performed by the pharmacophore models and docking. Six selected hits were discovered to have inhibitory activities.
Inhibitors of aminopeptidase N (APN) have been thought as potential drugs for the treatment of tumor angiogenesis, invasion and metastasis and a considerable number of APN inhibitors have been reported recently. To clarify the essential structure–activity relationship for the APN inhibitors as well as identify new potent leads against APN, pharmacophore models were established using structure- and common feature-based approaches and validated with a database of active and inactive compounds. These validated pharmacophores were then used in database screening for novel virtual leads. The hit compounds were further subjected to molecular docking studies to refine the retrieved hits. Finally, six structurally diverse compounds that showed strong interactions with the key amino acids and the zinc ion were selected for biological evaluation, where two hits showed more than 70% inhibition against APN at 60 μM concentration. The evaluation results show the potential of our screening approach in identifying APN inhibitors.
Collapse
Affiliation(s)
- Miaomiao Niu
- Department of Biomedical Engineering, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fengzhen Wang
- Department of Biomedical Engineering, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Li
- Department of Biomedical Engineering, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yaru Dong
- Department of Biomedical Engineering, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yueqing Gu
- Department of Biomedical Engineering, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Wang H, Xu W, Cao J, Wang W. Rapid screening of aminopeptidase N inhibitors by capillary electrophoresis with electrophoretically mediated microanalysis. Electrophoresis 2014; 36:319-25. [DOI: 10.1002/elps.201400283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Hairong Wang
- School of Pharmaceutical Sciences; Shandong University; Jinan P. R. China
| | - Wenfang Xu
- School of Pharmaceutical Sciences; Shandong University; Jinan P. R. China
| | - Jiangying Cao
- School of Pharmaceutical Sciences; Shandong University; Jinan P. R. China
| | - Weihong Wang
- School of Pharmaceutical Sciences; Shandong University; Jinan P. R. China
| |
Collapse
|
18
|
Preliminary detection of the anti-tumour activity of indoline-2,3-dione derivative DH-12a targeting aminopeptidase N. Mol Med Rep 2014; 10:2681-8. [DOI: 10.3892/mmr.2014.2552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/31/2014] [Indexed: 11/05/2022] Open
|
19
|
Kumar M, Narasimhan B, Kumar P, Ramasamy K, Mani V, Mishra RK, Majeed ABA. 4-(1-Aryl-5-chloro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-substituted benzene sulfonamides: Synthesis, antimicrobial, anticancer evaluation and QSAR studies. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
20
|
Ma C, Jin K, Cao J, Zhang L, Li X, Xu W. Novel leucine ureido derivatives as inhibitors of aminopeptidase N (APN). Bioorg Med Chem 2013; 21:1621-7. [DOI: 10.1016/j.bmc.2013.01.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|