1
|
Zainal Abidin A, Norrrahim MNF, Mohamed Shakrin NNS, Ibrahim B, Abdullah N, Abdul Rashid JI, Mohd Kasim NA, Ahmad Shah NA. Amidine containing compounds: Antimicrobial activity and its potential in combating antimicrobial resistance. Heliyon 2024; 10:e32010. [PMID: 39170404 PMCID: PMC11336351 DOI: 10.1016/j.heliyon.2024.e32010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 08/23/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing and concerning threat to global public health, necessitating innovative strategies to combat this crisis. Amidine-containing compounds have emerged as promising agents in the battle against AMR. This review gives a summary of recent advances from the past decade in studies of antimicrobial amidine-containing compounds with the aim to feature their structural diversity and the pharmacological relevance of the moiety to antimicrobial activity and their potential use in combating antimicrobial resistance, to the greatest extent possible. Highlighting is put on chemical structure of such compounds in relation to antimicrobial activities such as antibacterial, antifungal, and antiparasitic activities. Researchers commonly modify molecules containing amidine or incorporate amidine into existing antimicrobial agents to enhance their pharmacological attributes and combat antimicrobial resistance. This comprehensive review consolidates the current knowledge on amidine-containing compounds, elucidating their antimicrobial mechanisms and highlighting their promise in addressing the global AMR crisis. By offering a multidisciplinary perspective, we aim to inspire further research and innovation in this critical area of antimicrobial research.
Collapse
Affiliation(s)
- Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | | | - Baharudin Ibrahim
- Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norli Abdullah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Azilah Mohd Kasim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Aisyah Ahmad Shah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Synthesis and antifungal activities of novel trifluoroethane derivatives with coumarin, indole and thiophene. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Fang S, Chen W, Jiang H, Ma R, Wu W. Palladium-catalyzed oxidative C-H activation/annulation of N-alkylanilines with bromoalkynes: access to functionalized 3-bromoindoles. Chem Commun (Camb) 2022; 58:9666-9669. [PMID: 35946388 DOI: 10.1039/d2cc03298h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward approach to the synthesis of 3-bromoindoles via palladium-catalyzed oxidative C-H activation/annulation of N-alkylanilines with bromoalkynes has been described. This protocol features high atom economy, excellent chemo- and regioselectivities, and good functional group tolerance. Moreover, the resultant 3-bromoindoles can be transformed to various functionalized indole derivatives, which demonstrates the practicability of this method in organic synthesis.
Collapse
Affiliation(s)
- Songjia Fang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wenhao Chen
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ruize Ma
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Roman G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm (Weinheim) 2022; 355:e2100462. [PMID: 35289443 DOI: 10.1002/ardp.202100462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Thiophene, as a member of the group of five-membered heterocycles containing one heteroatom, is one of the simplest heterocyclic systems. Many synthetic strategies allow the accurate positioning of various functionalities onto the thiophene ring. This review provides a comprehensive, systematic and detailed account of the developments in the field of antimicrobial compounds featuring at least one thiophene ring in their structure, over the last decade.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| |
Collapse
|
5
|
Lactic Acid Bacteria Bacteriocin, an Antimicrobial Peptide Effective Against Multidrug Resistance: a Comprehensive Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10317-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Mardaneh J, Beyzaei H, Hashemi SH, Ghasemi B, Rahdar A. Comparative Evaluation of the Inhibitory Potential of Synthetic N-Heterocycles, Cu/Fe 3O 4@SiO 2 Nanocomposites and Some Natural Products against Non-Resistant and Antibiotic-Resistant Acinetobacter baumannii. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background:
Acinetobacter baumannii is a common infectious agent in hospitals. New antimicrobial agents are identified and prepared to combat these bacterial pathogens. In this context, the blocking potentials of a series of synthesized N-heterocyclic compounds, Cu/Fe3O4@SiO2 nanocomposites, glycine, poly-L-lysine, nisin and hydroalcoholic extracts of Trachyspermum ammi, Curcuma longa and green tea catechins were evaluated against non-resistant and multidrug-resistant strains of A. baumannii. Methods: Solutions of heterocyclic derivatives and hydroalcoholic extracts of Trachyspermum ammi, Curcuma longa and green tea catechins were prepared at initial concentration of 10240 μg ml-1 in 10% DMSO. Other compounds were dissolved in water at the same concentrations. Their in vitro inhibitory activity was assessed by determination of IZD, MIC and MBC values. Results: Glycine, poly-L-lysine, nisin, Curcuma longa and green tea catechins extracts, and thiazoles 3a, 3d and 3f were ineffective at their initial concentrations. Heterocyclic derivatives 7a-f, 3c, 3e and 3h, Cu/Fe3O4@SiO2 nanocomposites and Trachyspermum ammi extract could block the growth of bacterial strains with IZDs (7.40-15.51 mm), MICs (32-1024 µg ml-1) and MBCs (128-2048 µg ml-1). Conclusion: Among synthetic chemicals and natural products, the best antimicrobial effects were recorded with (E)-2-(5-acetyl-4-methylthiazol-2-yl)-2-(thiazolidin-2-ylidene)acetonitrile (7b) and the extract of Trachyspermum ammi. It is imperative that their toxic and histopathologic effects were assessed in future researches. It is predicted that the essential oil of Trachyspermum ammi will improve its antibacterial activities.
Collapse
Affiliation(s)
- Jalal Mardaneh
- Department of Microbiology, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Seyed Hadi Hashemi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Zabol University, Zabol, Iran
| | - Behzad Ghasemi
- Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
7
|
Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 194:112245. [DOI: 10.1016/j.ejmech.2020.112245] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
|
8
|
Chen X, Liu Y, Wang C, Hu X, Wu Y, Zhang Y, Bian C, You X, Hu L. Synthesis and in vitro activity of asymmetric indole-based bisamidine compounds against Gram-positive and Gram-negative pathogens. Bioorg Med Chem Lett 2020; 30:126887. [DOI: 10.1016/j.bmcl.2019.126887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
|
9
|
A Whole-Cell Screen Identifies Small Bioactives That Synergize with Polymyxin and Exhibit Antimicrobial Activities against Multidrug-Resistant Bacteria. Antimicrob Agents Chemother 2020; 64:AAC.01677-19. [PMID: 31844003 DOI: 10.1128/aac.01677-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
The threat of diminished antibiotic discovery has global health care in crisis. In the United States, it is estimated each year that over 2 million bacterial infections are resistant to first-line antibiotic treatments and cost in excess of 20 billion dollars. Many of these cases result from infection with the ESKAPE pathogens ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), which are multidrug-resistant bacteria that often cause community- and hospital-acquired infections in both healthy and immunocompromised patients. Physicians have turned to last-resort antibiotics like polymyxins to tackle these pathogens, and as a consequence, polymyxin resistance has emerged and is spreading. Barring the discovery of new antibiotics, another route to successfully mitigate polymyxin resistance is to identify compounds that can complement the existing arsenal of antibiotics. We recently designed and performed a large-scale robotic screen to identify 43 bioactive compounds that act synergistically with polymyxin B to inhibit the growth of polymyxin-resistant Escherichia coli Of these 43 compounds, 5 lead compounds were identified and characterized using various Gram-negative bacterial organisms to better assess their synergistic activity with polymyxin. Several of these compounds reduce polymyxin to an MIC of <2 μg/ml against polymyxin-resistant and polymyxin-heteroresistant Gram-negative pathogens. Likewise, four of these compounds exhibit antimicrobial activity against Gram-positive bacteria, one of which rapidly eradicated methicillin-resistant Staphylococcus aureus We present multiple first-generation (i.e., not yet optimized) compounds that warrant further investigation and optimization, since they can act both synergistically with polymyxin and also as lone antimicrobials for combating ESKAPE pathogens.
Collapse
|
10
|
Gaiser BI, Danielsen M, Marcher-Rørsted E, Røpke Jørgensen K, Wróbel TM, Frykman M, Johansson H, Bräuner-Osborne H, Gloriam DE, Mathiesen JM, Sejer Pedersen D. Probing the Existence of a Metastable Binding Site at the β 2-Adrenergic Receptor with Homobivalent Bitopic Ligands. J Med Chem 2019; 62:7806-7839. [PMID: 31298548 DOI: 10.1021/acs.jmedchem.9b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we report the development of bitopic ligands aimed at targeting the orthosteric binding site (OBS) and a metastable binding site (MBS) within the same receptor unit. Previous molecular dynamics studies on ligand binding to the β2-adrenergic receptor (β2AR) suggested that ligands pause at transient, less-conserved MBSs. We envisioned that MBSs can be regarded as allosteric binding sites and targeted by homobivalent bitopic ligands linking two identical pharmacophores. Such ligands were designed based on docking of the antagonist (S)-alprenolol into the OBS and an MBS and synthesized. Pharmacological characterization revealed ligands with similar potency and affinity, slightly increased β2/β1AR-selectivity, and/or substantially slower β2AR off-rates compared to (S)-alprenolol. Truncated bitopic ligands suggested the major contribution of the metastable pharmacophore to be a hydrophobic interaction with the β2AR, while the linkers alone decreased the potency of the orthosteric fragment. Altogether, the study underlines the potential of targeting MBSs for improving the pharmacological profiles of ligands.
Collapse
Affiliation(s)
- Birgit I Gaiser
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Mia Danielsen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Emil Marcher-Rørsted
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Kira Røpke Jørgensen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Tomasz M Wróbel
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark.,Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy , Medical University of Lublin , 4A Chodźki 20093 Lublin , Poland
| | - Mikael Frykman
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Henrik Johansson
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Jesper Mosolff Mathiesen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| |
Collapse
|
11
|
Kaur M, Jangra M, Singh H, Tambat R, Singh N, Jachak SM, Mishra S, Sharma C, Nandanwar H, Pinnaka AK. Pseudomonas koreensis Recovered From Raw Yak Milk Synthesizes a β-Carboline Derivative With Antimicrobial Properties. Front Microbiol 2019; 10:1728. [PMID: 31417521 PMCID: PMC6681700 DOI: 10.3389/fmicb.2019.01728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/12/2019] [Indexed: 11/13/2022] Open
Abstract
Natural evolution in microbes exposed to antibiotics causes inevitable selection of resistant mutants. This turns out to be a vicious cycle which requires the continuous discovery of new and effective antibiotics. For the last six decades, we have been relying on semisynthetic derivatives of natural products discovered in "Golden Era" from microbes, especially Streptomyces sp. Low success rates of rational drug-design sparked a resurgence in the invention of novel natural products or scaffolds from untapped or uncommon microbial niches. Therefore, in this study, we examined the microbial diversity inhabiting the yak milk for their ability to produce antimicrobial compounds. We prepared the crude fermentation extracts of fifty isolates from yak milk and screened them against indicator strains for the inhibitory activity. Later, with the aid of gel filtration chromatography followed by reversed-phase HPLC, we isolated one antimicrobial compound Y5-P1 from the strain Y5 (Pseudomonas koreensis) which showed bioactivity against Gram-positive and Gram-negative bacteria. The compound was chemically characterized using HRMS, FTIR, and NMR spectroscopy and identified as 1-acetyl-9H-β-carboline-3-carboxylic acid. It showed minimum inhibitory activity (MIC) in the range of 62.5-250 μg /ml. The cytotoxicity results revealed that IC50 against two mammalian cell lines i.e., HepG2 and HEK293T was 500 and 750 μg/ml, respectively. This is the first report on the production of this derivative of β-carboline by the microorganism. Also, the study enlightens the importance of microbes residing in uncommon environments or unexplored habitats in the discovery of a diverse array of natural products which could be designed further as drug candidates against highly resistant pathogens.
Collapse
Affiliation(s)
- Manpreet Kaur
- Clinical Microbiology and Bioactive Screening Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Microbial Type Culture Collection and Gene Bank, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Council of Scientific and Industrial Research-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi, India
| | - Manoj Jangra
- Clinical Microbiology and Bioactive Screening Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Harjodh Singh
- Microbial Type Culture Collection and Gene Bank, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Council of Scientific and Industrial Research-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi, India
| | - Rushikesh Tambat
- Clinical Microbiology and Bioactive Screening Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Nittu Singh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Sanjay M. Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Sunita Mishra
- Council of Scientific and Industrial Research-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi, India
| | - Charu Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Hemraj Nandanwar
- Clinical Microbiology and Bioactive Screening Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi, India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi, India
| |
Collapse
|
12
|
Shiri M, Heravi MM, Zadsirjan V, Ghiasi M, Shintre SA, Koorbanally NA, Singh T. Highly regio- and diastereoselective synthesis of oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indoles, based on a post-Ugi condensation: joint experimental and computational study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01632-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Sanna G, Madeddu S, Giliberti G, Piras S, Struga M, Wrzosek M, Kubiak-Tomaszewska G, Koziol AE, Savchenko O, Lis T, Stefanska J, Tomaszewski P, Skrzycki M, Szulczyk D. Synthesis and Biological Evaluation of Novel Indole-Derived Thioureas. Molecules 2018; 23:molecules23102554. [PMID: 30301264 PMCID: PMC6222422 DOI: 10.3390/molecules23102554] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022] Open
Abstract
A series of 2-(1H-indol-3-yl)ethylthiourea derivatives were prepared by condensation of 2-(1H-indol-3-yl)ethanamine with appropriate aryl/alkylisothiocyanates in anhydrous media. The structures of the newly synthesized compounds were confirmed by spectroscopic analysis and the molecular structures of 8 and 28 were confirmed by X-ray crystallography. All obtained compounds were tested for antimicrobial activity against Gram-positive cocci, Gram-negative rods and for antifungal activity. Microbiological evaluation was carried out over 20 standard strains and 30 hospital strains. Compound 6 showed significant inhibition against Gram-positive cocci and had inhibitory effect on the S. aureus topoisomerase IV decatenation activity and S. aureus DNA gyrase supercoiling activity. Compounds were tested for cytotoxicity and antiviral activity against a large panel of DNA and RNA viruses, including HIV-1 and other several important human pathogens. Interestingly, derivative 8 showed potent activity against HIV-1 wild type and variants bearing clinically relevant mutations. Newly synthesized tryptamine derivatives showed also a wide spectrum activity, proving to be active against positive- and negative-sense RNA viruses.
Collapse
Affiliation(s)
- Giuseppina Sanna
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, Italy.
| | - Silvia Madeddu
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, Italy.
| | - Gabriele Giliberti
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, Italy.
| | - Sandra Piras
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy.
| | - Marta Struga
- Chair and Department of Biochemistry, First Faculty of Medicine, Medical University, 02-097 Warszawa, Poland.
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland.
| | - Małgorzata Wrzosek
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland.
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland.
| | - Grażyna Kubiak-Tomaszewska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland.
| | - Anna E Koziol
- Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| | | | - Tadeusz Lis
- Faculty of Chemistry, Univeristy of Wrocław, 50-383 Wrocław, Poland.
| | - Joanna Stefanska
- Department of Pharmaceutical Microbiology, Medical University, 02-007 Warszawa, Poland.
| | - Piotr Tomaszewski
- Department of Biochemistry, Second Faculty of Medicine, Medical University of Warsaw, 02-097 Warszawa, Poland.
| | - Michał Skrzycki
- Department of Biochemistry, Second Faculty of Medicine, Medical University of Warsaw, 02-097 Warszawa, Poland.
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, First Faculty of Medicine, Medical University, 02-097 Warszawa, Poland.
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
14
|
Tian K, Li XQ, Zhang L, Gan YY, Meng J, Wu SQ, Wan JL, Xu Y, Cai CT, Ouyang GP, Wang ZC. Synthesis of novel indole derivatives containing double 1,3,4-oxadiazole moiety as efficient bactericides against phytopathogenic bacterium Xanthomonas oryzae. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0555-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Castiñeira Reis M, Marín-Luna M, Silva López C, Faza ON. Mechanism of the Molybdenum-Mediated Cadogan Reaction. ACS OMEGA 2018; 3:7019-7026. [PMID: 31458865 PMCID: PMC6644586 DOI: 10.1021/acsomega.8b01278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 05/24/2023]
Abstract
Oxygen atom transfer reactions are receiving increasing attention because they bring about paramount transformations in the current biomass processing industry. Significant efforts have therefore been made lately in the development of efficient and scalable methods to deoxygenate organic compounds. One recent alternative involves the modification of the Cadogan reaction in which a Mo(VI) core catalyzes the reduction of o-nitrostyrene derivatives to indoles in the presence of PPh3. We have used density functional theory calculations to perform a comprehensive mechanistic study on this transformation, in which we find two clearly defined stages: an associative path from the nitro to the nitroso compound, characterized by the reduction of the catalyst in the first step, and a peculiar mechanism involving oxazaphosphiridine and nitrene intermediates leading to an indole product, where the metal catalyst does not participate.
Collapse
Affiliation(s)
- Marta Castiñeira Reis
- Departamento
de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta Marín-Luna
- Departamento
de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Carlos Silva López
- Departamento
de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Olalla Nieto Faza
- Departamento
de Química Orgánica, Universidade de Vigo, Campus As Lagoas, 32004 Orense, Spain
| |
Collapse
|
16
|
Kumar M R, Alagumuthu M, V VD. Synthesis and Molecular Drug Efficacy of Indoline-based Dihydroxy-thiocarbamides: Inflammation Regulatory Property Unveiled over COX-2 Inhibition, Molecular Docking, and Cytotoxicity Prospects. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rajesh Kumar M
- Department of Chemistry; Bishop Heber College; Tiruchirappalli India
| | - Manikandan Alagumuthu
- Department of Biotechnology, School of Bio-Sciences and Technology; VIT University; Vellore 632014 India
| | | |
Collapse
|
17
|
Kaur M, Kumar R. C‐N and N‐N bond formation via Reductive Cyclization: Progress in Cadogan /Cadogan‐Sundberg Reactionǂ. ChemistrySelect 2018. [DOI: 10.1002/slct.201800779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manpreet Kaur
- Laboratory for Drug Design and SynthesisDepartment of Pharmaceutical Sciences and Natural ProductsCentral University of Punjab Mansa Road Bathinda-151001 India
| | - Raj Kumar
- Laboratory for Drug Design and SynthesisDepartment of Pharmaceutical Sciences and Natural ProductsCentral University of Punjab Mansa Road Bathinda-151001 India
| |
Collapse
|
18
|
Liu Y, Hu X, Wu Y, Zhang W, Chen X, You X, Hu L. Synthesis and structure-activity relationship of novel bisindole amidines active against MDR Gram-positive and Gram-negative bacteria. Eur J Med Chem 2018; 150:771-782. [PMID: 29604581 DOI: 10.1016/j.ejmech.2018.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022]
Abstract
A series of novel diamidines with N-substituents on an amidine N-atom were synthesized and evaluated for their cytotoxicity and in vitro antibacterial activity against a range of Gram-positive and Gram-negative bacterial strains. Based on structure-activity relationship, N-substituents with a branched chain and a shorter carbon chain on the amidine N-atom exhibited more promising activity against Gram-negative and MDR-Gram-positive bacteria; compounds 5c and 5i were the most powerful candidate compounds. Compound 5c showed greater efficacy than levofloxacin against most drug-resistant Gram-positive bacteria and exhibited broad-spectrum antibacterial activity against Gram-negative bacteria, with MIC values in the range of 2-16 μg/mL. Slightly more potent antibacterial activity against Klebsiella pneumoniae, Acinetobacter calcoaceticus, Enterobacter cloacae, and Proteus mirabilis was observed for 5i in comparison with 5c. Compound 5i also showed remarkable antibacterial activity against NDM-1-producing Gram-negative bacteria, with MIC values in the range of 2-4 μg/mL, and was superior to the reference drugs meropenem and levofloxacin. Effective antibacterial activity of 5i was also shown in vivo in a mouse model of Staphylococcus aureus MRSA strain, with an ED50values of 2.62 mg/kg.
Collapse
Affiliation(s)
- Yonghua Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| | - Xinxin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Yanbin Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Weixing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Xiaofang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| | - Laixing Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| |
Collapse
|
19
|
Xu Y, Gao H, Shen Y, Chai S, Zhang J, Zou Q. Application of Gemini quaternary ammonium with ester groups in cationic P(St-co-BA) nanolatex and study on its antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:417-424. [DOI: 10.1016/j.msec.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/26/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023]
|
20
|
DNA Targeting as a Likely Mechanism Underlying the Antibacterial Activity of Synthetic Bis-Indole Antibiotics. Antimicrob Agents Chemother 2016; 60:7067-7076. [PMID: 27620482 DOI: 10.1128/aac.00309-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023] Open
Abstract
We previously reported the synthesis and biological activity of a series of cationic bis-indoles with potent, broad-spectrum antibacterial properties. Here, we describe mechanism of action studies to test the hypothesis that these compounds bind to DNA and that this target plays an important role in their antibacterial outcome. The results reported here indicate that the bis-indoles bind selectively to DNA at A/T-rich sites, which is correlated with the inhibition of DNA and RNA synthesis in representative Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) organisms. Further, exposure of E. coli and S. aureus to representative bis-indoles resulted in induction of the DNA damage-inducible SOS response. In addition, the bis-indoles were found to be potent inhibitors of cell wall biosynthesis; however, they do not induce the cell wall stress stimulon in S. aureus, suggesting that this pathway is inhibited by an indirect mechanism. In light of these findings, the most likely basis for the observed activities of these compounds is their ability to bind to the minor groove of DNA, resulting in the inhibition of DNA and RNA synthesis and other secondary effects.
Collapse
|
21
|
|
22
|
Nguyen ST, Kwasny SM, Ding X, Williams JD, Peet NP, Bowlin TL, Opperman TJ. Synthesis and antifungal evaluation of head-to-head and head-to-tail bisamidine compounds. Bioorg Med Chem 2015. [PMID: 26209266 DOI: 10.1016/j.bmc.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Herein, we describe the antifungal evaluation of 43 bisamidine compounds, of which 26 are new, having the scaffold [Am]-[HetAr]-[linker]-[HetAr]-[Am], in which [Am] is a cyclic or acyclic amidine group, [linker] is a benzene, pyridine, pyrimidine, pyrazine ring, or an aliphatic chain of two to four carbon, and [HetAr] is a 5,6-bicyclic heterocycle such as indole, benzimidazole, imidazopyridine, benzofuran, or benzothiophene. In the head-to-head series the two [HetAr] units are oriented such that the 5-membered rings are connected through the linker, and in the head-to-tail series, one of the [HetAr] systems is connected through the 6-membered ring; additionally, in some of the head-to-tail compounds, the [linker] is omitted. Many of these compounds exhibited significant antifungal activity against Candida albicans, Candida krusei, Candida glabrata, Candida parapsilosis, and Cryptococcus neoformans (MIC ⩽ 4 μg/ml). The most potent compounds, for example, P10, P19 and P34, are comparable in antifungal activities to amphotericin B (MIC 0.125 μg/ml). They exhibited rapid fungicidal activity (>3 log10 decrease in cfu/ml in 4h) at concentrations equivalent to 4× the MIC in time kill experiments. The bisamidines strongly inhibited DNA, RNA and cell wall biosynthesis in C. albicans in macromolecular synthesis assays. However, the half-maximal inhibitory concentration for DNA synthesis was approximately 30-fold lower than those for RNA and cell wall biosynthesis. Fluorescence microscopy of intact cells of C. albicans treated with a bisamidine exhibited enhanced fluorescence in the presence of DNA, demonstrating that the bisamidine was localized to the nucleus. The results of this study show that bisamidines are potent antifungal agents with rapid fungicidal activity, which is likely to be the result of their DNA-binding activity. Although it was difficult to obtain a broad-spectrum antifungal compound with low cytotoxicity, some of the compounds (e.g., P9, P14 and P43) exhibited favorable CC50 values against HeLa cells and maintained considerable antifungal activity.
Collapse
Affiliation(s)
- Son T Nguyen
- Microbiotix, Inc., One Innovation Dr., Worcester, MA 01605, United States
| | - Steven M Kwasny
- Microbiotix, Inc., One Innovation Dr., Worcester, MA 01605, United States
| | - Xiaoyuan Ding
- Microbiotix, Inc., One Innovation Dr., Worcester, MA 01605, United States
| | - John D Williams
- Microbiotix, Inc., One Innovation Dr., Worcester, MA 01605, United States
| | - Norton P Peet
- Microbiotix, Inc., One Innovation Dr., Worcester, MA 01605, United States
| | - Terry L Bowlin
- Microbiotix, Inc., One Innovation Dr., Worcester, MA 01605, United States
| | - Timothy J Opperman
- Microbiotix, Inc., One Innovation Dr., Worcester, MA 01605, United States.
| |
Collapse
|
23
|
Synthesis of mono and bis-[3,3-di(indolyl)indolin-2-ones] and evaluation of their antimicrobial activity. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2007-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Zhu W, Wang Y, Li K, Gao J, Huang CH, Chen CC, Ko TP, Zhang Y, Guo RT, Oldfield E. Antibacterial drug leads: DNA and enzyme multitargeting. J Med Chem 2015; 58:1215-27. [PMID: 25574764 DOI: 10.1021/jm501449u] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report the results of an investigation of the activity of a series of amidine and bisamidine compounds against Staphylococcus aureus and Escherichia coli. The most active compounds bound to an AT-rich DNA dodecamer (CGCGAATTCGCG)2 and using DSC were found to increase the melting transition by up to 24 °C. Several compounds also inhibited undecaprenyl diphosphate synthase (UPPS) with IC50 values of 100-500 nM, and we found good correlations (R(2) = 0.89, S. aureus; R(2) = 0.79, E. coli) between experimental and predicted cell growth inhibition by using DNA ΔTm and UPPS IC50 experimental results together with one computed descriptor. We also solved the structures of three bisamidines binding to DNA as well as three UPPS structures. Overall, the results are of general interest in the context of the development of resistance-resistant antibiotics that involve multitargeting.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mahdavi M, Hassanzadeh-Soureshjan R, Saeedi M, Ariafard A, BabaAhmadi R, Ranjbar PR, Shafiee A. Experimental and computational evidence for KOt-Bu-promoted synthesis of oxopyrazino[1,2-a]indoles. RSC Adv 2015. [DOI: 10.1039/c5ra17056g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metal-free intramolecular hydroamination of some Ugi adducts in the presence of KOt-Bu in DMF at room temperature led to the formation of novel oxopyrazino[1,2-a]indole derivatives.
Collapse
Affiliation(s)
- Mohammad Mahdavi
- Department of Medicinal Chemistry
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center
- Tehran University of Medical Sciences
- Tehran
- Iran
| | | | - Mina Saeedi
- Medicinal Plants Research Center
- Faculty of Pharmacy
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Alireza Ariafard
- School of Physical Sciences (Chemistry)
- University of Tasmania
- Private Bag 75
- Hobart TAS 7001
- Australia
| | - Rasool BabaAhmadi
- Department of Chemistry
- Faculty of Science
- Central Tehran Branch
- Islamic Azad University
- Shahrak Gharb
| | | | - Abbas Shafiee
- Department of Medicinal Chemistry
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center
- Tehran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
26
|
Nguyen ST, Williams JD, Butler MM, Ding X, Mills DM, Tashjian TF, Panchal RG, Weir SK, Moon C, Kim HO, Marsden JA, Peet NP, Bowlin TL. Synthesis and antibacterial evaluation of new, unsymmetrical triaryl bisamidine compounds. Bioorg Med Chem Lett 2014; 24:3366-72. [PMID: 24969013 PMCID: PMC4096051 DOI: 10.1016/j.bmcl.2014.05.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 01/30/2023]
Abstract
Herein we describe the synthesis and antibacterial evaluation of a new, unsymmetrical triaryl bisamidine compound series, [Am]-[indole]-[linker]-[HetAr/Ar]-[Am], in which [Am] is an amidine or amino group, [linker] is a benzene, thiophene or pyridine ring, and [HetAr/Ar] is a benzimidazole, imidazopyridine, benzofuran, benzothiophene, pyrimidine or benzene ring. When the [HetAr/Ar] unit is a 5,6-bicyclic heterocycle, it is oriented such that the 5-membered ring portion is connected to the [linker] unit and the 6-membered ring portion is connected to the [Am] unit. Among the 34 compounds in this series, compounds with benzofuran as the [HetAr/Ar] unit showed the highest potencies. Introduction of a fluorine atom or a methyl group to the triaryl core led to the more potent analogs. Bisamidines are more active toward bacteria while the monoamidines are more active toward mammalian cells (as indicated by low CC50 values). Importantly, we identified compound P12a (MBX 1887) with a relatively narrow spectrum against bacteria and a very high CC50 value. Compound P12a has been scaled up and is currently undergoing further evaluations for therapeutic applications.
Collapse
Affiliation(s)
- Son T Nguyen
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA.
| | - John D Williams
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA
| | | | - Xiaoyuan Ding
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA
| | - Debra M Mills
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA
| | | | - Rekha G Panchal
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Susan K Weir
- Department of Medicine, Boston University School of Medicine, 88 E. Newton Street, Boston, MA 02118, USA
| | - Chaeho Moon
- CreaGen Biosciences, Inc., 23 Rainin Road, Woburn, MA 01801, USA
| | - Hwa-Ok Kim
- CreaGen Biosciences, Inc., 23 Rainin Road, Woburn, MA 01801, USA
| | - Jeremiah A Marsden
- Organic Consultants, Inc., 132 E. Broadway, Suite 107, Eugene, OR 97401, USA
| | - Norton P Peet
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA
| | - Terry L Bowlin
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA
| |
Collapse
|