Abstract
A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.
Malaria leads to the loss of over 440,000 lives annually; accelerating research to discover new candidate drugs is a priority. Medicines for Malaria Venture (MMV) has distilled over 25,000 compounds that kill malaria parasites in vitro into a group of 400 representative compounds, called the "Malaria Box". These Malaria Box sets were distributed free-of-charge to research laboratories in 30 different countries that work on a wide variety of pathogens. Fifty-five groups compiled >290 assay results for this paper describing the many activities of the Malaria Box compounds. The collective results suggest a potential mechanism of action for over 130 compounds against malaria and illuminate the most promising compounds for further malaria drug development research. Excitingly some of these compounds also showed outstanding activity against other disease agents including fungi, bacteria, other single-cellular parasites, worms, and even human cancer cells. The results have ignited over 30 drug development programs for a variety of diseases. This open access effort was so successful that MMV has begun to distribute another set of compounds with initial activity against a wider range of infectious agents that are of public health concern, called the Pathogen Box, available now to scientific labs all over the world (www.PathogenBox.org).
Collapse