1
|
Szymanowska A, Radomska D, Czarnomysy R, Mojzych M, Kotwica-Mojzych K, Bielawski K, Bielawska A. The activity of pyrazolo[4,3- e][1,2,4]triazine and pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine sulphonamide derivatives in monolayer and spheroid breast cancer cell cultures. J Enzyme Inhib Med Chem 2024; 39:2343352. [PMID: 38700244 PMCID: PMC11073428 DOI: 10.1080/14756366.2024.2343352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
In the last decade, an increasing interest in compounds containing pyrazolo[4,3-e][1,2,4]triazine moiety is observed. Therefore, the aim of the research was to synthesise a novel sulphonyl pyrazolo[4,3-e][1,2,4]triazines (2a, 2b) and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide derivatives (3a, 3b) to assess their anticancer activity. The MTT assay showed that 2a, 2b, 3a, 3b have stronger cytotoxic activity than cisplatin in both breast cancer cells (MCF-7 and MDA-MB-231) and exhibited weaker effect on normal breast cells (MCF-10A). The obtained results showed that the most active compound 3b increased apoptosis via caspase 9, caspase 8, and caspase 3/7. It is worth to note that compound 3b suppressed NF-κB expression and promoted p53, Bax, and ROS which play important role in activation of apoptosis. Moreover, our results confirmed that compound 3b triggers autophagy through increased formation of autophagosomes, expression of beclin-1 and mTOR inhibition. Thus, our study defines a possible mechanism underlying 3b-induced anti-cancer activity against breast cancer cell lines.
Collapse
Affiliation(s)
- Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | | | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
He M, Fan M, Yang W, Peng Z, Wang G. Novel kojic acid-1,2,4-triazine hybrids as anti-tyrosinase agents: Synthesis, biological evaluation, mode of action, and anti-browning studies. Food Chem 2023; 419:136047. [PMID: 37018861 DOI: 10.1016/j.foodchem.2023.136047] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023]
Abstract
A class of new kojic acid hybrids (7a-7o) bearing a 1,2,4-triazine moiety were prepared, and their inhibitory activities and mechanism on tyrosinase were investigated. All derivatives showed good to excellent anti-tyrosinase activity with IC50 values ranging from 0.34 ± 0.06 μM to 8.44 ± 0.73 μM. In kinetic study, compound 7m was a mixed-type inhibitor with Ki and Kis of 0.73 and 1.27 μM, respectively. The interaction mechanism toward tyrosinase of compound 7m was further elaborated in combination with molecular docking and various spectral techniques. The results showed that compound 7m could change the secondary structure of tyrosinase to reduce its catalytic activity. Anti-browning assays demonstrated that 7m inhibited the browning of bananas effectively during storage. What's more, 7m was found to have low cytotoxicity in vitro. In conclusion, compound 7m has the potential to be applied as an anti-browning agent.
Collapse
|
3
|
Baber MA, Crist CM, Devolve NL, Patrone JD. Tyrosinase Inhibitors: A Perspective. Molecules 2023; 28:5762. [PMID: 37570734 PMCID: PMC10420840 DOI: 10.3390/molecules28155762] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to its integral role in the biosynthesis of melanin in all kingdoms of life, tyrosinase has become an extremely important target for inhibition in several sectors of research including agricultural and cosmetic research. Inhibitors of tyrosinase have made it to the market in the cosmetics industry, but their use has been limited due to conflicting efficacy and potential toxicity, which has led to several small molecules being removed from the market. Undaunted, researchers have continued to pursue tyrosinase inhibitors with varying degrees of success. These pursuits have built an impressive and rich library of research. This review is intended to provide a perspective of the past twenty years (2003-2023) of research on tyrosinase inhibitors by highlighting exemplar molecules and developments.
Collapse
Affiliation(s)
- Mason A. Baber
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48209, USA;
| | - Cole M. Crist
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
| | - Noah L. Devolve
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| | - James D. Patrone
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| |
Collapse
|
4
|
Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Luis Munoz-Munoz J, Akbar Saboury A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem Pharmacol 2023; 212:115574. [PMID: 37127249 DOI: 10.1016/j.bcp.2023.115574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Mahdi Alijanianzadeh
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pablo Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Luis Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne, UK
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Kciuk M, Mujwar S, Marciniak B, Gielecińska A, Bukowski K, Mojzych M, Kontek R. Genotoxicity of Novel Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides in Normal and Cancer Cells In Vitro. Int J Mol Sci 2023; 24:ijms24044053. [PMID: 36835469 PMCID: PMC9966268 DOI: 10.3390/ijms24044053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides constitute a novel group of heterocyclic compounds with broad biological activities including anticancer properties. The compounds investigated in this study (MM134, -6, -7, and 9) were found to have antiproliferative activity against BxPC-3 and PC-3 cancer cell lines in micromolar concentrations (IC50 0.11-0.33 µM). Here, we studied the genotoxic potential of the tested compounds with alkaline and neutral comet assays, accompanied by immunocytochemical detection of phosphorylated γH2AX. We found that pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides induce significant levels of DNA damage in BxPC-3 and PC-3 cells without causing genotoxic effects in normal human lung fibroblasts (WI-38) when used in their respective IC50 concentrations (except for MM134) and showed a dose-dependent increase in DNA damage following 24 h incubation of tested cancer cells with these agents. Furthermore, the influence of MM compounds on DNA damage response (DDR) factors was assessed using molecular docking and molecular dynamics simulation.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Correspondence:
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
6
|
Preparation of Novel Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides and Their Experimental and Computational Biological Studies. Int J Mol Sci 2022; 23:ijms23115892. [PMID: 35682571 PMCID: PMC9180621 DOI: 10.3390/ijms23115892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides constitute a novel class of heterocyclic compounds with broad biological activity, including anticancer properties. Investigated in this study, MM-compounds (MM134, MM136, MM137, and MM139) exhibited cytotoxic and proapoptotic activity against cancer cell lines (BxPC-3, PC-3, and HCT-116) in nanomolar concentrations without causing cytotoxicity in normal cells (L929 and WI38). In silico predictions indicate that tested compounds exhibit favorable pharmacokinetic profiles and may exert anticancer activity through the inhibition of BTK kinase, the AKT-mTOR pathway and PD1-PD-L1 interaction. Our findings point out that these sulfonamide derivatives may constitute a source of new anticancer drugs after optimization.
Collapse
|
7
|
Alizadeh SR, Ebrahimzadeh MA. Pyrazolotriazines: Biological activities, synthetic strategies and recent developments. Eur J Med Chem 2021; 223:113537. [PMID: 34147747 DOI: 10.1016/j.ejmech.2021.113537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Heterocyclic compounds create an important class of molecules that demonstrates various chemical spaces for the definition of effective medicines. Many N-heterocycles display numerous biological activities. Among condensed heterocycles, pyrazolotriazine derivatives have received the attention of researchers owing to the extensive spectrum of biological activities. The reactivity of identified compounds was similar to the free azoles and triazines. The pyrazolotriazine scaffold exhibited antiasthma, antiinflammatory, anticancer, antithrombogenic activity and showed activity for major depression and pathological anxiety. Pyrazolotriazine derivatives also exhibited antibacterial, anticancer, antimetabolites, antidiabetic, antiamoebic, anticonvulsant, antiproliferative activity, human carbonic anhydrase inhibition, cyclin-dependent kinase 2 inhibition, tyrosinase and urease inhibition, MAO-B inhibition, TTK inhibition, thymidine phosphorylase inhibition, tubulin polymerization inhibition, protoporphyrinogen oxidase inhibition, GABAA agonistic activity, hCRF1 receptor antagonistic activity, and CGRP receptor antagonistic activity. This paper structurally categorized various pyrazolotriazines to isomeric classes into six groups that containing pyrazolo [1,5-d] [1,2,4] triazine, pyrazolo [5,1-c] [1,2,4] triazine, pyrazolo [3,4-e] [1,2,4] triazine, pyrazolo [4,3-e] [1,2,4] triazines, pyrazolo [1,5-a] [1,3,5] triazine, and pyrazolo [3,4-d] [1,2,3] triazine and expressed biological activity, the synthetic procedures for each class of pyrazolotriazines, structure-activity relationship and their mechanism of action. Generally, this review summarily indicated the past and present studies about the discovery of new lead compounds with good biological activity.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
8
|
Gornowicz A, Szymanowska A, Mojzych M, Czarnomysy R, Bielawski K, Bielawska A. The Anticancer Action of a Novel 1,2,4-Triazine Sulfonamide Derivative in Colon Cancer Cells. Molecules 2021; 26:molecules26072045. [PMID: 33918514 PMCID: PMC8038278 DOI: 10.3390/molecules26072045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer therapy is one of the most important challenges of modern medical and chemical sciences. Among the many methods of combating cancer, chemotherapy plays a special role. Imperfect modern chemotherapy justifies continuing the search for new, more effective, and safe drugs. Sulfonamides are the classic group of chemotherapeutic drugs with a broad spectrum of pharmacological activity. Recent literature reports show that sulfonamide derivatives have anti-tumor activity in vitro and in vivo. The aim of the study was to synthesize a novel 1,2,4-triazine sulfonamide derivative and check its anticancer potential in DLD-1 and HT-29 colon cancer cells. The biological studies included MTT assay, DNA biosynthesis, cell cycle analysis, Annexin V binding assay, ethidium bromide/acridine orange staining, and caspase-8, -9, and -3/7 activity. The concentrations of important molecules (sICAM-1, mTOR, Beclin-1, cathepsin B) involved in the pathogenesis and poor prognosis of colorectal cancer were also evaluated by ELISA. We demonstrated that the novel compound was able to induce apoptosis through intrinsic and extrinsic pathways and was capable of decreasing sICAM-1, mTOR, cathepsin B concentrations, whereas increased Beclin-1 concentration was detected in both colon cancer cell lines. The novel compound represents promising multi-targeted potential in colorectal cancer, but further in vivo examinations are needed to confirm the claim.
Collapse
Affiliation(s)
- Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.S.); (A.B.)
- Correspondence:
| | - Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.S.); (A.B.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland;
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (A.S.); (A.B.)
| |
Collapse
|
9
|
Mor S, Khatri M, Punia R, Sindhu S. Recent Progress on Anticancer Agents Incorporating Pyrazole Scaffold. Mini Rev Med Chem 2021; 22:115-163. [PMID: 33823764 DOI: 10.2174/1389557521666210325115218] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
The search of new anticancer agents is considered as a dynamic field of medicinal chemistry. In recent years, the synthesis of compounds with anticancer potential has increased and a large number of structurally varied compounds displaying potent anticancer activities have been published. Pyrazole is an important biologically active scaffold that possessed nearly all types of biological activities. The aim of this review is to collate literature work reported by researchers to provide an overview on in vivo and in vitro anticancer activities of pyrazole based derivatives among the diverse biological activities displayed by them and also presents recent efforts made on this heterocyclic moiety regarding anticancer activities. This review has been driven from the increasing number of publications, on this issue, which have been reported in the literature since the ending of the 20th century (from 1995-to date).
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| |
Collapse
|
10
|
Peng Z, Wang G, Zeng QH, Li Y, Liu H, Wang JJ, Zhao Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit Rev Food Sci Nutr 2021; 62:4053-4094. [PMID: 33459057 DOI: 10.1080/10408398.2021.1871724] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tyrosinase is a copper-containing oxidation enzyme, which is responsible for the production of melanin. This enzyme is widely distributed in microorganisms, animals and plants, and plays an essential role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Hence, it has been recognized as a therapeutic target for the development of antibrowning agents, antibacterial agents, skin-whitening agents, insecticides, and other therapeutic agents. With great potential application in food, agricultural, cosmetic and pharmaceutical industries, a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. In this review, we systematically summarized the advances of synthetic tyrosinase inhibitors in the literatures, including their inhibitory activity, cytotoxicity, structure-activity relationship (SAR), inhibition kinetics, and interaction mechanisms with the enzyme. The collected information is expected to provide a rational guidance and effective strategy to develop novel, potent and safe tyrosinase inhibitors for better practical applications in the future.
Collapse
Affiliation(s)
- Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Department of Food Science, Foshan University, Foshan, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
11
|
Chatterjee A, Murmu C, Peruncheralathan S. Copper-catalysed N-arylation of 5-aminopyrazoles: a simple route to pyrazolo[3,4- b]indoles. Org Biomol Chem 2020; 18:6571-6581. [PMID: 32797128 DOI: 10.1039/d0ob00812e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalysed intramolecular N-arylation of 5-aminopyrazoles is demonstrated for the first time. Highly substituted pyrazolo[3,4-b]indoles are synthesized. In particular, the indole core is decorated with halogens and alkyl and methoxy groups. Furthermore, a selective N-arylation of unsymmetrical diaryl bromide containing pyrazoles is exemplified, resulting in valuable pyrazolo[1,5-a]benzimidazoles.
Collapse
Affiliation(s)
- Arpita Chatterjee
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni, Khurda - 752050, Odisha, India.
| | - Chudamani Murmu
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni, Khurda - 752050, Odisha, India.
| | - S Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni, Khurda - 752050, Odisha, India.
| |
Collapse
|
12
|
The Effect of Novel 7-methyl-5-phenyl-pyrazolo[4,3- e]tetrazolo[4,5- b][1,2,4]triazine Sulfonamide Derivatives on Apoptosis and Autophagy in DLD-1 and HT-29 Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21155221. [PMID: 32717981 PMCID: PMC7432848 DOI: 10.3390/ijms21155221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of cytotoxic drugs is focused on designing a compound structure that directly affects cancer cells without an impact on normal cells. The mechanism of anticancer activity is mainly related with activation of apoptosis. However, recent scientific reports show that autophagy also plays a crucial role in cancer cell progression. Thus, the objective of this study was to synthesize 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine utilizing nucleophilic substitution reaction at the position N1. The biological activity of tested compounds was assessed in DLD-1 and HT-29 cell lines. The induction of apoptosis was confirmed by Annexin V binding assay and acridine orange/ethidium bromide staining. The loss of mitochondrial membrane potential and caspase-8 activity was estimated using cytometer flow analysis. The concentration of p53, LC3A, LC3B and beclin-1 was measured using the ELISA technique. Our study revealed that anticancer activity of 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine derivatives is related with initiation of apoptosis occur on the intrinsic pathway with mitochondrial membrane decrease and extrinsic with increase of activity of caspase-8. Moreover, a decrease in beclin-1, LC3A, and LC3B were observed in two cell lines after treatment with novel compounds. This study showed that novel 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine derivatives might be a potential strategy in colon cancer treatment.
Collapse
|
13
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 569] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Chortani S, Nimbarte VD, Horchani M, Ben Jannet H, Romdhane A. Synthesis, biological evaluation and molecular docking analysis of novel benzopyrimidinone derivatives as potential anti-tyrosinase agents. Bioorg Chem 2019; 92:103270. [DOI: 10.1016/j.bioorg.2019.103270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/13/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
|
15
|
Sahoo CR, Paidesetty SK, Padhy RN. Nornostocine congeners as potential anticancer drugs: An overview. Drug Dev Res 2019. [DOI: 10.1002/ddr.21577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Chita R. Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum HospitalSiksha ‘O’ Anusandhan (Deemed to be University) Bhubaneswar Odisha India
- Department of Medicinal Chemistry, School of Pharmaceutical SciencesSiksha ‘O’ Anusandhan (Deemed to be University) Bhubaneswar Odisha India
| | - Sudhir K. Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical SciencesSiksha ‘O’ Anusandhan (Deemed to be University) Bhubaneswar Odisha India
| | - Rabindra N. Padhy
- Central Research Laboratory, Institute of Medical Sciences & Sum HospitalSiksha ‘O’ Anusandhan (Deemed to be University) Bhubaneswar Odisha India
| |
Collapse
|
16
|
Debbabi M, Nimbarte VD, Chekir S, Chortani S, Romdhane A, Ben jannet H. Design and synthesis of novel potent anticoagulant and anti-tyrosinase pyranopyrimidines and pyranotriazolopyrimidines: Insights from molecular docking and SAR analysis. Bioorg Chem 2019; 82:129-138. [DOI: 10.1016/j.bioorg.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 01/17/2023]
|
17
|
Pillaiyar T, Namasivayam V, Manickam M, Jung SH. Inhibitors of Melanogenesis: An Updated Review. J Med Chem 2018; 61:7395-7418. [PMID: 29763564 DOI: 10.1021/acs.jmedchem.7b00967] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Melanins are pigment molecules that determine the skin, eye, and hair color of the human subject to its amount, quality, and distribution. Melanocytes synthesize melanin and provide epidermal protection from various stimuli, such as harmful ultraviolet radiation, through the complex process called melanogenesis. However, serious dermatological problems occur when there is excessive production of melanin in different parts of the human body. These include freckles, melasma, senile lentigo, pigmented acne scars, and cancer. Therefore, controlling the production of melanin is an important approach for the treatment of pigmentation related disorderes. In this Perspective, we focus on the inhibitors of melanogenesis that directly/indirectly target a key enzyme tyrosinase as well as its associated signaling pathways.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| |
Collapse
|
18
|
Ivanov SM, Mironovich LM, Rodinovskaya LA, Shestopalov AM. Synthesis of new halo-substituted pyrazolo[5,1-c][1,2,4]triazines. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1801-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Affiliation(s)
- Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Taibah University, Ulla, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Wafaa S. Hamama
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Ivanov SM, Mironovich LM, Rodinovskaya LA, Shestopalov AM. The first stable examples of compounds containing both diazonium and acyl azide, and synthesis of a new pyrazino[2′,3′:3,4]pyrazolo[5,1- c ][1,2,4]triazin-4(6 H )-one heterocyclic system. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Dahal RH, Shim DS, Kim J. Development of actinobacterial resources for functional cosmetics. J Cosmet Dermatol 2017; 16:243-252. [PMID: 28097821 DOI: 10.1111/jocd.12304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Ram Hari Dahal
- Department of Life Science; College of Natural Sciences; Kyonggi University; Suwon Gyeonggi-Do South Korea
| | | | - Jaisoo Kim
- Department of Life Science; College of Natural Sciences; Kyonggi University; Suwon Gyeonggi-Do South Korea
| |
Collapse
|
22
|
Mojzych M, Tarasiuk P, Kotwica-Mojzych K, Rafiq M, Seo SY, Nicewicz M, Fornal E. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity. J Enzyme Inhib Med Chem 2016; 32:99-105. [PMID: 27778522 PMCID: PMC6010123 DOI: 10.1080/14756366.2016.1238362] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC50 0.037, 0.044 and 0.042 μM, respectively, while IC50 of thiourea is 20.9 μM.
Collapse
Affiliation(s)
- Mariusz Mojzych
- a Department of Physico-Chemical Hazards of Health and Ecology , Institute of Rural Health , Lublin , Poland.,b Department of Chemistry , Siedlce University of Natural Sciences and Humanities , Siedlce , Poland
| | - Paweł Tarasiuk
- a Department of Physico-Chemical Hazards of Health and Ecology , Institute of Rural Health , Lublin , Poland
| | - Katarzyna Kotwica-Mojzych
- c Department of Hematooncology and Bone Marrow Transplantation Unit , Medical University of Lublin , Lublin , Poland
| | - Muhammad Rafiq
- d Department of Biology , Kongju National University , Gongju , Republic of Korea.,e Department of Biochemistry and Biotechnology (Baghdad-ul-Jadeed Campus) , The Islamia University of Bahawalpur , Pakistan
| | - Sung-Yum Seo
- d Department of Biology , Kongju National University , Gongju , Republic of Korea
| | - Michał Nicewicz
- b Department of Chemistry , Siedlce University of Natural Sciences and Humanities , Siedlce , Poland
| | | |
Collapse
|
23
|
Ferro S, Certo G, De Luca L, Germanò MP, Rapisarda A, Gitto R. Searching for indole derivatives as potential mushroom tyrosinase inhibitors. J Enzyme Inhib Med Chem 2015; 31:398-403. [DOI: 10.3109/14756366.2015.1029470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Mojzych M, Kubacka M, Mogilski S, Filipek B, Fornal E. Relaxant effects of selected sildenafil analogues in the rat aorta. J Enzyme Inhib Med Chem 2015; 31:381-8. [PMID: 25798686 DOI: 10.3109/14756366.2015.1024674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their relaxant effects in the rat aorta. Evaluation of prepared derivatives demonstrated that compound (8a) is probably a non-selective phosphodiesterase (PDE) inhibitor, as it induced aortic relaxation through endothelium-independent mechanism.
Collapse
Affiliation(s)
- Mariusz Mojzych
- a Department of Chemistry , Siedlce University of Natural Sciences and Humanities , Siedlce , Poland
| | - Monika Kubacka
- b Department of Pharmacodynamics , Jagiellonian University Medical College , Kraków , Poland , and
| | - Szczepan Mogilski
- b Department of Pharmacodynamics , Jagiellonian University Medical College , Kraków , Poland , and
| | - Barbara Filipek
- b Department of Pharmacodynamics , Jagiellonian University Medical College , Kraków , Poland , and
| | - Emilia Fornal
- c Department of Chemistry , Laboratory of Separation and Spectroscopic Method Applications, Center for Interdisciplinary Research, The John Paul II Catholic University of Lublin , Lublin , Poland
| |
Collapse
|