1
|
Bueno MLP, Foglio MA, Baréa P, de Oliveira AR, Sarragiotto MH, Saad STO, Roversi FM. β-Carboline derivatives are potent against Acute Myeloid Leukemia in vitro and in vivo. Pharmacol Rep 2024; 76:838-850. [PMID: 38902478 DOI: 10.1007/s43440-024-00614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND β-carboline alkaloids exert a distinguished ability to impair cell growth and induce cell death in a variety of cancers and the evaluation of such new therapeutic candidates may denote new possibilities for leukemia treatment. In this present study, we screened 12 β-carboline derivatives containing different substituents at 1- and 3-positions of β-carboline nucleus for their antineoplastic activities in a panel of leukemia cell lines. METHODS The cytotoxic effects of the β-carboline derivatives were evaluated in different leukemia cell lines as well as reactive oxygen species (ROS) generation, autophagy, and important signaling pathways. RESULTS Treatment with the β-carboline derivatives resulted in a potent antineoplastic activity leading to a reduced cell viability that was associated with increased cell death in a concentration-dependent manner. Interestingly, the treatment of primary mononuclear cells isolated from the peripheral blood of healthy donors with the β-carboline derivatives showed a minor change in cell survival. The antineoplastic activity occurs by blocking ROS production causing consequent interruption of the PI3K/AKT and MAPK/ERK signaling and modulating autophagy processes. Notably, in vivo, AML burden was diminished in peripheral blood and bone marrow of a xenograft mouse model. CONCLUSIONS Our results indicated that β-carboline derivatives have an on-target malignant cell-killing activity and may be promising candidates for treating leukemia cells by disrupting crucial events that promote leukemia expansion and chemotherapy resistance.
Collapse
Affiliation(s)
- Maura Lima Pereira Bueno
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil
| | - Mary Ann Foglio
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Paula Baréa
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | | | | | - Sara T Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil
| | - Fernanda Marconi Roversi
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil.
- Division of Transplantation, Department of Surgery, Emory University, 101 Woodruff Circle, Atlanta, GA, 300322, USA.
| |
Collapse
|
2
|
He B, Ding L, Tan HZ, Liu CB, He LQ. Synthesis and antitumor activity evaluation of coumarin Mannich base derivatives. Chem Biol Drug Des 2024; 103:e14389. [PMID: 37955286 DOI: 10.1111/cbdd.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Twenty-one new coumarin Mannich base derivatives (11a-u) were synthesized, which exhibited antiproliferation activities in HepG2 (liver cancer), A549 (lung cancer), MCF-7 (breast cancer), and HT-29 (colon cancer). Most of the target compounds showed the most potent activity against HepG2 cells compared with other cancer cells, compound 11g showed the strongest antiproliferative activity (2.10 μM) against HepG2, even superior to the positive control drug 5-FU(5.49 μM). The nitric oxide (NO) release of all compounds in HepG2 cells was determined, of which compound 11g showed high levels of NO release (10.8 μM). Notably, the solubility of compound 11g increased 13-fold compared with the lead 8. The preliminary cytotoxicity studies suggest that 11g had little effect on LO2 cells(normal liver cells, >50 μM). The effect of compound 11g on the apoptosis of HepG2 cells was also studied, and the results showed that the induction effect of compound 11g on apoptosis is a concentration-dependent manner. Our results indicate that compound 11g might be a promising lead for further studies.
Collapse
Affiliation(s)
- Bing He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Le Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hong-Zhou Tan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Cheng-Bo Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Li-Qin He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Palmeira-Mello MV, Caballero AB, Herrera-Ramírez P, Costa AR, Santana SS, Guedes GP, Caubet A, Batista AA, Gamez P, Lanznaster M. Cobalt(III)-py 2en systems as potential carriers of β-ketoester-based ligands. J Inorg Biochem 2023; 248:112345. [PMID: 37562318 DOI: 10.1016/j.jinorgbio.2023.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Two cobalt(III) complexes containing different β-ketoesters, namely [CoIII(L1)(py2en)](ClO4)2·H2O (1) and [CoIII(L2)(py2en)](ClO4)2 (2) (py2en = N,N'-bis(pyridin-2-ylmethyl)ethylenediamine; L1- = methylacetoacetate; L2- = ethyl 4-chloroacetoacetate) have been prepared and investigated as prototypes of bioreductive prodrugs. The presence of β-ketoester and py2en ligands in 1 and 2, as well as the perchlorate counterions, was supported by IR spectroscopy and CHN elemental analysis. The composition molecular structure of both complexes was confirmed by NMR spectroscopy and ESI mass spectrometry. Structural information was also obtained for 2via X-ray diffraction analysis. The redox properties indicate that 1 and 2 are suitable for reduction under biological conditions. Investigation of DNA-interacting suggest that 1 and 2 bind DNA via electrostatic forces. Both complexes may be employed as possible platforms for the delivery of biologically active compounds, since their reaction with ascorbic acid in PBS at pH 6.2 and 7.4 at 37°C results in the release of the β-ketoester ligands upon Co(III)/Co(II) reduction.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil; Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil.; nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Piedad Herrera-Ramírez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Analu R Costa
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil
| | - Savyo S Santana
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil
| | - Amparo Caubet
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Alzir Azevedo Batista
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil..
| |
Collapse
|
4
|
Synthesis, Anticancer Activity and Molecular Docking Studies of Novel N-Mannich Bases of 1,3,4-Oxadiazole Based on 4,6-Dimethylpyridine Scaffold. Int J Mol Sci 2022; 23:ijms231911173. [PMID: 36232475 PMCID: PMC9570134 DOI: 10.3390/ijms231911173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is one of the greatest challenges in modern medicine today. Difficult and long-term treatment, the many side effects of the drugs used and the growing resistance to treatment of neoplastic cells necessitate new approaches to therapy. A very promising targeted therapy is based on direct impact only on cancer cells. As a continuation of our research on new biologically active molecules, we report herein the design, synthesis and anticancer evaluation of a new series of N-Mannich-base-type hybrid compounds containing morfoline or different substituted piperazines moieties, a 1,3,4-oxadiazole ring and a 4,6-dimethylpyridine core. All compounds were tested for their potential cytotoxicity against five human cancer cell lines, A375, C32, SNB-19, MCF-7/WT and MCF-7/DX. Two of the active N-Mannich bases (compounds 5 and 6) were further evaluated for growth inhibition effects in melanoma (A375 and C32), and normal (HaCaT) cell lines using clonogenic assay and a population doubling time test. The apoptosis was determined with the neutral version of comet assay. The confocal microscopy method enabled the visualization of F-actin reorganization. The obtained results demonstrated that compounds 5 and 6 have cytotoxic and proapoptotic effects on melanoma cells and are capable of inducing F-actin depolarization in a dose-dependent manner. Moreover, computational chemistry approaches, molecular docking and electrostatic potential were employed to study non-covalent interactions of the investigated compounds with four receptors. It was found that all the examined molecules exhibit a similar binding affinity with respect to the chosen reference drugs.
Collapse
|
5
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Roman G. Anticancer activity of Mannich bases: a review of recent literature. ChemMedChem 2022; 17:e202200258. [PMID: 35678192 DOI: 10.1002/cmdc.202200258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Indexed: 11/05/2022]
Abstract
This report summarizes the latest published data on the antiproliferative action and cytotoxic activity of Mannich bases, a structurally heterogeneous category of chemical entities that includes compounds which are synthesized via the grafting of an aminomethyl function onto diverse substrates by means of the Mannich reaction. The present overview of the topic is an update to the information assembled in a previously published review that covered the literature up to 2014.
Collapse
Affiliation(s)
- Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic polymers, 41A Aleea Gr. Ghica Voda, 700487, Iasi, ROMANIA
| |
Collapse
|
7
|
Desai N, Monapara J, Jethawa A, Khedkar V, Shingate B. Oxadiazole: A highly versatile scaffold in drug discovery. Arch Pharm (Weinheim) 2022; 355:e2200123. [PMID: 35575467 DOI: 10.1002/ardp.202200123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/26/2022]
Abstract
As a pharmacologically important heterocycle, oxadiazole paved the way to combat the problem associated with the confluence of many commercially available drugs with different pharmacological profiles. The present review focuses on the potential applications of five-membered heterocyclic oxadiazole derivatives, especially 1,2,4-oxadiazole, 1,2,5-oxadiazole, and 1,3,4-oxadiazole, as therapeutic agents. Designing new hybrid molecules containing the oxadiazole moiety is a better solution for the development of new drug molecules. The designed molecules may accumulate a biological profile better than those of the drugs currently available on the market. The present review will guide the way for researchers in the field of medicinal chemistry to design new biologically active molecules based on the oxadiazole nucleus. Antitubercular, antimalarial, anti-inflammatory, anti-HIV, antibacterial, and anticancer activities of various oxadiazoles have been reviewed extensively here.
Collapse
Affiliation(s)
- Nisheeth Desai
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Jahnvi Monapara
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Aratiba Jethawa
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Vijay Khedkar
- School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Bapurao Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
8
|
de Barros WA, Nunes CDS, Souza JADCR, Nascimento IJDS, Figueiredo IM, de Aquino TM, Vieira L, Farias D, Santos JCC, de Fátima Â. The new psychoactive substances 25H-NBOMe and 25H-NBOH induce abnormal development in the zebrafish embryo and interact in the DNA major groove. Curr Res Toxicol 2021; 2:386-398. [PMID: 34888530 PMCID: PMC8637007 DOI: 10.1016/j.crtox.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
25H-NBOMe and 25H-NBOH recreational drugs induces abnormal formation in zebrafish embryos. Biophysical and theoretical studies indicate that these drugs have affinity for the DNA major groove. The toxicity observed in the zebrafish embryos and DNA interaction may be correlated.
Toxicological effects of 25H-NBOMe and 25H-NBOH recreational drugs on zebrafish embryos and larvae at the end of 96 h exposure period were demonstrated. 25H-NBOH and 25H-NBOMe caused high embryo mortality at 80 and 100 µg mL−1, respectively. According to the decrease in the concentration tested, lethality decreased while non-lethal effects were predominant up to 10 and 50 µg mL−1 of 25H-NBOH and 25H-NBOMe, respectively, including spine malformation, egg hatching delay, body malformation, otolith malformation, pericardial edema, and blood clotting. We can disclose that these drugs have an affinity for DNA in vitro using biophysical spectroscopic assays and molecular modeling methods. The experiments demonstrated that 25H-NBOH and 25H-NBOMe bind to the unclassical major groove of ctDNA with a binding constant of 27.00 × 104 M−1 and 5.27 × 104 M−1, respectively. Furthermore, these interactions lead to conformational changes in the DNA structure. Therefore, the results observed in the zebrafish embryos and DNA may be correlated.
Collapse
Affiliation(s)
- Wellington Alves de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila da Silva Nunes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | | | | | | | | | - Leonardo Vieira
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Davi Farias
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | | | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
de Almeida PSVB, de Arruda HJ, Sousa GLS, Ribeiro FV, de Azevedo-França JA, Ferreira LA, Guedes GP, Silva H, Kummerle AE, Neves AP. Cytotoxicity evaluation and DNA interaction of Ru II-bipy complexes containing coumarin-based ligands. Dalton Trans 2021; 50:14908-14919. [PMID: 34609400 DOI: 10.1039/d1dt01567b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although there are various treatment options for cancer, this disease still has caused an increasing number of deaths, demanding more efficient, selective and less harmful drugs. Several classes of ruthenium compounds have been investigated as metallodrugs for cancer, mainly after the entry of imidazolH [trans-RuCl4-(DMSO-S)(imidazole)] (NAMI-A) and indazolH [trans-RuCl4-(Indazol)2] (KP1019) in clinical trials. In this sense, RuII complexes with general formula [Ru(L1-3)(bipy)2]PF6 (1-3) (L1 = ethyl 3-(6-methyl-2-oxo-2H-chromen-3-yl)-3-oxopropanoate, L2 = ethyl 3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-3-oxopropanoate, L3 = ethyl 3-(8-methoxy-2-oxo-2H-chromen-3-yl)-3-oxopropanoate and bipy = bipyridine) have been synthesized. The crystal structure of 2 revealed that the RuII atom lies on a distorted octahedral geometry with the deprotonated ligand (L2-) coordinated through β-ketoester group oxygen atoms. In vitro cytotoxic activity of the compounds was evaluated against 4T1 (murine mammary carcinoma) and B16-F10 (murine metastatic melanoma) tumor cells, and the non-tumor cell line BHK-21 (baby hamster kidney). Coordination with RuII resulted in expressive enhancement of cytotoxic activity. The precursors were inactive below 100 μM and the final RuII complexes (1-3) showed IC50 ranging from 2.0 to 12.8 μM; 2 being the most potent compound. DNA interaction studies revealed a greater capacity of the complexes to interact with DNA than the ligands, where, 2 exhibited the highest Kb constant of 2.2 × 104 M-1. Fluorescence investigation demonstrated that 1-3 are capable of quenching the fluorescence emission of the EtdBr-DNA complex up to 40%. Molecular docking showed that the interaction of 1-3 between the DNA base pairs from the coumarin portion was with scores of 67.28, 68.62 and 64.88, respectively, and 75.45 for ellipticine, suggesting an intercalative mode of binding. Our findings show that the RuII complexes are eligible for continuing to be investigated as potential antitumor compounds.
Collapse
Affiliation(s)
- Patrícia S V B de Almeida
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Henrique Jefferson de Arruda
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Gleyton Leonel S Sousa
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Felipe Vitório Ribeiro
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | | | - Larissa A Ferreira
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Heveline Silva
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, MG, Brazil
| | - Arthur E Kummerle
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Amanda P Neves
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| |
Collapse
|
10
|
1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101284] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Ahsan MJ. 1,3,4-Oxadiazole Containing Compounds As Therapeutic Targets For Cancer Therapy. Mini Rev Med Chem 2021; 22:164-197. [PMID: 33634756 DOI: 10.2174/1389557521666210226145837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is the first or second leading cause of premature death in 134 of 183 countries in the world. 1,3,4-Oxadiazoles are five memebered heterocyclic rings containing two nitrogen (two atoms) and oxygen (one atom). They show better thermal stability, metabolic stability, aqueous solubility and lower lipophilicity than the other isomeric oxadiazoles. They are important class of heterocycles present in many drug structures like Raltegravir, Furamizole Tidazosin, Nesapidil, Setileuton (MK-0633) and Zibotentan. Presence of this nucleus in the therapeutics has made them an indispensable anchor for drug design and development. Several 1,3,4-oxadiazoles are prepared and reported as anticancer agents by numerous scientists worldwide. OBJECTIVES The present review discusses the anticancer potentials together with the molecular targets of 1,3,4-oxadiazoles reported since 2010. The structure activity relationship (SAR) and molecular docking simulation on different targets have also been discussed herein. Some of the important cancer targets have also been explored. METHODS The most potent 1,3,4-oxadiazoles reported in literature was highlighted in the manuscript. The anticancer activity was reported in terms of growth percent (GP), percent growth inhibition (%GI), GI50, IC50, and LC50 and TGI. RESULTS 1,3,4-Oxadiazoles are an important heterocyclic scaffolds with broad spectrum biological activities. They may be either mono substituted or disubstituted and act as an indispensable anchor for drug design and discovery due to their thermal stability together with low lipophilicity. They exhibited anticancer potentials and showed the inhibitions of various cancer targets. CONCLUSION The discussion outlined herein will proved to be a helpful and vital tool for medicinal chemists investigating and working with 1,3,4-oxadiazoles and anticancer research programs.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan 302 039. India
| |
Collapse
|
12
|
Santos-Junior PFDS, Nascimento IJDS, da Silva ECD, Monteiro KLC, de Freitas JD, de Lima Lins S, Maciel TMS, Cavalcanti BC, V. Neto JDB, de Abreu FC, Figueiredo IM, Carinhanha C. Santos J, Pessoa CDÓ, da Silva-Júnior EF, de Araújo-Júnior JX, M. de Aquino T. Synthesis of hybrids thiazole–quinoline, thiazole–indole and their analogs: in vitro anti-proliferative effects on cancer cell lines, DNA binding properties and molecular modeling. NEW J CHEM 2021. [DOI: 10.1039/d1nj02105b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A quinoline–thiazole hybrid was synthesized, which showed cytotoxicity against the HL-60 cell line. Electrochemical and spectroscopic experiments suggested DNA as the biological target.
Collapse
|
13
|
Benassi A, Doria F, Pirota V. Groundbreaking Anticancer Activity of Highly Diversified Oxadiazole Scaffolds. Int J Mol Sci 2020; 21:ijms21228692. [PMID: 33217987 PMCID: PMC7698752 DOI: 10.3390/ijms21228692] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
Nowadays, an increasing number of heterocyclic-based drugs found application in medicinal chemistry and, in particular, as anticancer agents. In this context, oxadiazoles—five-membered aromatic rings—emerged for their interesting biological properties. Modification of oxadiazole scaffolds represents a valid strategy to increase their anticancer activity, especially on 1,2,4 and 1,3,4 regioisomers. In the last years, an increasing number of oxadiazole derivatives, with remarkable cytotoxicity for several tumor lines, were identified. Structural modifications, that ensure higher cytotoxicity towards malignant cells, represent a solid starting point in the development of novel oxadiazole-based drugs. To increase the specificity of this strategy, outstanding oxadiazole scaffolds have been designed to selectively interact with biological targets, including enzymes, globular proteins, and nucleic acids, showing more promising antitumor effects. In the present work, we aim to provide a comprehensive overview of the anticancer activity of these heterocycles, describing their effect on different targets and highlighting how their structural versatility has been exploited to modulate their biological properties.
Collapse
|
14
|
Santhanam S, Ramu A, Baburaj B, Kalpatu Kuppusamy B. Application of metal free aromatization to total synthesis of perlolyrin, flazin, eudistomin U and harmane. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Srinath Santhanam
- Laboratory of Sustainable Chemistry, Department of Chemistry SRM Institute of Science and Technology Kancheepuram India
| | - Abinaya Ramu
- Laboratory of Sustainable Chemistry, Department of Chemistry SRM Institute of Science and Technology Kancheepuram India
| | - Baskar Baburaj
- Laboratory of Sustainable Chemistry, Department of Chemistry SRM Institute of Science and Technology Kancheepuram India
| | | |
Collapse
|
15
|
Roque Marques KM, do Desterro MR, de Arruda SM, de Araújo Neto LN, do Carmo Alves de Lima M, de Almeida SMV, da Silva ECD, de Aquino TM, da Silva-Júnior EF, de Araújo-Júnior JX, de M Silva M, de A Dantas MD, Santos JCC, Figueiredo IM, Bazin MA, Marchand P, da Silva TG, Mendonça Junior FJB. 5-Nitro-Thiophene-Thiosemicarbazone Derivatives Present Antitumor Activity Mediated by Apoptosis and DNA Intercalation. Curr Top Med Chem 2019; 19:1075-1091. [PMID: 31223089 DOI: 10.2174/1568026619666190621120304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Considering the need for the development of new antitumor drugs, associated with the great antitumor potential of thiophene and thiosemicarbazonic derivatives, in this work we promote molecular hybridization approach to synthesize new compounds with increased anticancer activity. OBJECTIVE Investigate the antitumor activity and their likely mechanisms of action of a series of N-substituted 2-(5-nitro-thiophene)-thiosemicarbazone derivatives. METHODS Methods were performed in vitro (cytotoxicity, cell cycle progression, morphological analysis, mitochondrial membrane potential evaluation and topoisomerase assay), spectroscopic (DNA interaction studies), and in silico studies (docking and molecular modelling). RESULTS Most of the compounds presented significant inhibitory activity; the NCIH-292 cell line was the most resistant, and the HL-60 cell line was the most sensitive. The most promising compound was LNN-05 with IC50 values ranging from 0.5 to 1.9 µg.mL-1. The in vitro studies revealed that LNN-05 was able to depolarize (dose-dependently) the mitochondrial membrane, induceG1 phase cell cycle arrest noticeably, promote morphological cell changes associated with apoptosis in chronic human myelocytic leukaemia (K-562) cells, and presented no topoisomerase II inhibition. Spectroscopic UV-vis and molecular fluorescence studies showed that LNN compounds interact with ctDNA forming supramolecular complexes. Intercalation between nitrogenous bases was revealed through KI quenching and competitive ethidium bromide assays. Docking and Molecular Dynamics suggested that 5-nitro-thiophene-thiosemicarbazone compounds interact against the larger DNA groove, and corroborating the spectroscopic results, may assume an intercalating interaction mode. CONCLUSION Our findings highlight 5-nitro-thiophene-thiosemicarbazone derivatives, especially LNN-05, as a promising new class of compounds for further studies to provide new anticancer therapies.
Collapse
Affiliation(s)
- Karla Mirella Roque Marques
- Bioactive Products Prospecting Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | - Maria Rodrigues do Desterro
- Bioactive Products Prospecting Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | - Sandrine Maria de Arruda
- Bioactive Products Prospecting Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | - Luiz Nascimento de Araújo Neto
- Laboratory of Chemistry and Therapeutic Innovation, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratory of Chemistry and Therapeutic Innovation, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | | | - Edjan Carlos Dantas da Silva
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | | | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marina de M Silva
- Laboratory of Development and Instrumentation in Analytical Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio-AL, Brazil
| | - Maria Dayanne de A Dantas
- Laboratory of Development and Instrumentation in Analytical Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio-AL, Brazil
| | - Josué Carinhanha C Santos
- Laboratory of Development and Instrumentation in Analytical Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio-AL, Brazil
| | - Isis M Figueiredo
- Laboratory of Development and Instrumentation in Analytical Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marc-Antoine Bazin
- Universite de Nantes, Cibles et medicaments des infections et du cancer, IICiMed, EA1155, F-44000 Nantes, France
| | - Pascal Marchand
- Universite de Nantes, Cibles et medicaments des infections et du cancer, IICiMed, EA1155, F-44000 Nantes, France
| | - Teresinha Gonçalves da Silva
- Bioactive Products Prospecting Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | | |
Collapse
|
16
|
New 3-tetrazolyl-β-carbolines and β-carboline-3-carboxylates with anti-cancer activity. Eur J Med Chem 2019; 179:123-132. [DOI: 10.1016/j.ejmech.2019.05.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022]
|
17
|
Verma G, Khan MF, Akhtar W, Alam MM, Akhter M, Shaquiquzzaman M. A Review Exploring Therapeutic Worth of 1,3,4-Oxadiazole Tailored Compounds. Mini Rev Med Chem 2019; 19:477-509. [PMID: 30324877 DOI: 10.2174/1389557518666181015152433] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/27/2017] [Accepted: 09/30/2018] [Indexed: 02/01/2023]
Abstract
1,3,4-Oxadiazole, a five-membered aromatic ring can be seen in a number of synthetic molecules. The peculiar structural feature of 1,3,4-oxadiazole ring with pyridine type of nitrogen atom is beneficial for 1,3,4-oxadiazole derivatives to have effective binding with different enzymes and receptors in biological systems through numerous weak interactions, thereby eliciting an array of bioactivities. Research in the area of development of 1,3,4-oxadiazole-based derivatives has become an interesting topic for the scientists. A number of 1,3,4-oxadiazole based compounds with high therapeutic potency are being extensively used for the treatment of different ailments, contributing to enormous development value. This work provides a systematic and comprehensive review highlighting current developments of 1,3,4-oxadiazole based compounds in the entire range of medicinal chemistry such as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents. It is believed that this review will be of great help for new thoughts in the pursuit for rational designs for the development of more active and less toxic 1,3,4-oxadiazole based medicinal agents.
Collapse
Affiliation(s)
- Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohemmed F Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
18
|
de M. Silva M, Macedo TS, Teixeira HMP, Moreira DRM, Soares MB, da C. Pereira AL, de L. Serafim V, Mendonça-Júnior FJ, do Carmo A. de Lima M, de Moura RO, da Silva-Júnior EF, de Araújo-Júnior JX, de A. Dantas MD, de O. O. Nascimento E, Maciel TMS, de Aquino TM, Figueiredo IM, Santos JC. Correlation between DNA/HSA-interactions and antimalarial activity of acridine derivatives: Proposing a possible mechanism of action. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:165-175. [DOI: 10.1016/j.jphotobiol.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022]
|
19
|
Marques RA, Gomes AO, de Brito MV, dos Santos AL, da Silva GS, de Lima LB, Nunes FM, de Mattos MC, de Oliveira FC, do Ó Pessoa C, de Moraes MO, de Fátima Â, Franco LL, Silva MDM, Dantas MDDA, Santos JC, Figueiredo IM, da Silva-Júnior EF, de Aquino TM, de Araújo-Júnior JX, de Oliveira MC, Leslie Gunatilaka A. Annonalide and derivatives: Semisynthesis, cytotoxic activities and studies on interaction of annonalide with DNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:156-166. [DOI: 10.1016/j.jphotobiol.2018.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/23/2022]
|
20
|
Zheng B, Trieu TH, Meng TZ, Lu X, Dong J, Zhang Q, Shi XX. Cu-catalyzed mild and efficient oxidation of THβCs using air: application in practical total syntheses of perlolyrine and flazin. RSC Adv 2018; 8:6834-6839. [PMID: 35540313 PMCID: PMC9078326 DOI: 10.1039/c7ra13434g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
A mild, efficient and environmentally benign method for synthesis of aromatic β-carbolines via Cu(ii)-catalyzed oxidation of 1,2,3,4-tetrahydro-β-carbolines (THβCs) was developed, in which air (O2) was used as the clean oxidant. This method has advantages such as environmentally friendliness, mildness, very good tolerance of functional groups, high yielding and easy experiment operation. In addition, this new methodology was successfully applied in the efficient and practical total syntheses of β-carboline alkaloids perlolyrine and flazin. A mild, efficient and ecofriendly method for synthesis of β-carbolines via Cu-catalyzed aerobic oxidation of 1,2,3,4-tetrahydro-β-carbolines (THβCs) was developed. In addition, this method was successfully applied in the practical total syntheses of perlolyrine and flazin.![]()
Collapse
Affiliation(s)
- Bo Zheng
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Tien Ha Trieu
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Tian-Zhuo Meng
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xia Lu
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jing Dong
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Qiang Zhang
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xiao-Xin Shi
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
21
|
Design, synthesis and biological evaluation of new β-carboline-bisindole compounds as DNA binding, photocleavage agents and topoisomerase I inhibitors. Eur J Med Chem 2018; 143:1563-1577. [DOI: 10.1016/j.ejmech.2017.10.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/11/2023]
|
22
|
Das S, da Silva CJ, Silva MDM, Dantas MDDA, de Fátima Â, Góis Ruiz ALT, da Silva CM, de Carvalho JE, Santos JCC, Figueiredo IM, da Silva-Júnior EF, de Aquino TM, de Araújo-Júnior JX, Brahmachari G, Modolo LV. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity. J Adv Res 2017; 9:51-61. [PMID: 30046486 PMCID: PMC6057241 DOI: 10.1016/j.jare.2017.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the anion radical superoxide (•O2−). The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to •O2− scavenger was piperidine 10. In general, U251, MCF7, NCI/ADR-RES, NCI-H460 and HT29 cells were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HaCaT. The binding mode of the compounds and ctDNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies. Finally, a linear and exponential correlation between interaction constant (Kb) and GI50 for several human cancer cell was observed.
Collapse
Affiliation(s)
- Suvankar Das
- Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Cristiane J da Silva
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina de M Silva
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | | | - Ângelo de Fátima
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Lúcia T Góis Ruiz
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Cleiton M da Silva
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Ernesto de Carvalho
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Josué C C Santos
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Isis M Figueiredo
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Edeildo F da Silva-Júnior
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil.,Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Thiago M de Aquino
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil.,Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - João X de Araújo-Júnior
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil.,Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Goutam Brahmachari
- Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | | |
Collapse
|
23
|
Design, Synthesis and Bioactivity Evaluation of Novel β-carboline 1,3,4-oxadiazole Derivatives. Molecules 2017; 22:molecules22111811. [PMID: 29109386 PMCID: PMC6150204 DOI: 10.3390/molecules22111811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
A series of novel β-carboline 1,3,4-oxadiazole derivatives were designed and synthesized, and the in vitro cytotoxic activity against Sf9 cells and growth inhibitory activity against Spodoptera litura were evaluated. Bioassay results showed that most of these compounds exhibited excellent in vitro cytotoxic activity. Especially, compound 37 displayed the best efficacy in vitro (IC50 = 3.93 μM), and was five-fold more potent than camptothecin (CPT) (IC50 = 18.95 μM). Moreover, compounds 5 and 37 could induce cell apoptosis and cell cycle arrest and stimulate Sf-caspase-1 activation in Sf9 cells. In vivo bioassay also demonstrated that compounds 5 and 37 could significantly inhibit larvae growth of S. litura with decreasing the weight of larvae and pupae. Based on these bioassay results, compounds 5 and 37 emerged as lead compounds for the development of potential insect growth inhibitions.
Collapse
|
24
|
da Silva CM, Silva MM, Reis FS, Ruiz ALTG, de Carvalho JE, Santos JCC, Figueiredo IM, Alves RB, Modolo LV, de Fátima Â. Studies on free radical scavenging, cancer cell antiproliferation, and calf thymus DNA interaction of Schiff bases. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:129-138. [PMID: 28549321 DOI: 10.1016/j.jphotobiol.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
Thirty-nine Schiff bases were synthesized by performing microwave-assisted condensation of the corresponding aldehydes and aromatic amines. Their reactive nitrogen species (RNS) scavenging activity and inhibitory effects against cancer cell growth were then subsequently investigated. Additionally, the interaction between the calf thymus DNA (ctDNA) and selected Schiff bases was evaluated using fluorescence spectroscopy, and their binding parameters were determined. The yields of the various compounds ranged from moderate to excellent (43-99%) after only a 2-min reaction. The hydroxylated Schiff bases 2, 8, 15, 16, 18, 20, 29, 32, 34, and 37 were found to be potent scavengers of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals with half-maximal scavenging concentration (SC50) values lower than that of the positive control, resveratrol. The presence of hydroxyl substituents on the aromatic rings also proved essential to the cytotoxicity of the compounds. The binding constants (Kb) obtained using fluorescence spectroscopy ranged from 0.37 to 3.07×105Lmol-1, and were strongly influenced by the structure and hydroxylation degree. Schiff bases 3 and 8 showed promising cytotoxic activity, with half-maximal growth inhibitory (GI50) values in the same order of magnitude as those exhibited by the reference drug, doxorubicin against various cell lines. Interestingly, these compounds also showed the highest Kb, suggesting that the cytotoxic activity could be related to their interaction with the DNA of the tumor cells. The results of this study highlighted some Schiff bases as potential lead compounds for the design of new free radical scavengers and anticancer agents.
Collapse
Affiliation(s)
- Cleiton M da Silva
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina M Silva
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Fabiano S Reis
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ana Lúcia T G Ruiz
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - João E de Carvalho
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, Paulínia, SP, Brazil; Grupo de Estudos em Bioquímica de Plantas (GEBioPlan), Departamento de Botânica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Josué C C Santos
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Isis M Figueiredo
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Rosemeire B Alves
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luzia V Modolo
- Grupo de Estudos em Bioquímica de Plantas (GEBioPlan), Departamento de Botânica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
25
|
Interaction between bioactive compound 11a-N-tosyl-5-deoxi-pterocarpan (LQB-223) and Calf thymus DNA: Spectroscopic approach, electrophoresis and theoretical studies. Int J Biol Macromol 2017; 96:223-233. [DOI: 10.1016/j.ijbiomac.2016.12.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022]
|
26
|
One-pot reaction of pyranoindolones with phenylisocyanates: a simple and regioselective approach to β-carbolines. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Barbosa VA, Baréa P, Mazia RS, Ueda-Nakamura T, Costa WFD, Foglio MA, Goes Ruiz ALT, Carvalho JED, Vendramini-Costa DB, Nakamura CV, Sarragiotto MH. Synthesis and evaluation of novel hybrids β-carboline-4-thiazolidinones as potential antitumor and antiviral agents. Eur J Med Chem 2016; 124:1093-1104. [PMID: 27792980 DOI: 10.1016/j.ejmech.2016.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 01/14/2023]
Abstract
A series of novel hybrids β-carboline-4-thiazolidinones were synthesized and evaluated for their in vitro antitumor activity against human cancer cell lines and for antiviral activity towards Herpes simplex virus type-1 (HSV-1). From the N'-(2-ylidene-4-thiazolidinone)-β-carboline-3-carbohydrazide series (9-11), compounds 9c and 11d were the most active, showing growth inhibition 50% (GI50) values less than 5 μM for all cell lines tested. Compound 9c, bearing the 4-dimethylaminophenyl group at C-1 of β-carboline was selected for further investigation concerning cell death and cell cycle profile, focusing on the human renal adenocarcinoma cell line 786-0. Treatments with 25 μM of compound 9c induced cell death after 15 h of treatment, characterized by phosphatidylserine exposure and loss of membrane integrity. Moreover, treatment with 12.5 μM promoted a sub-G1 arrest, which indicates cell death. Derivatives of the N-(2-substituted-aryl-4-thiazolidinone)-β-carboline-3-carboxamide series (18-23) showed a potent activity and high selectivity for glioma (U251) and ovarian (OVCAR-3) cancer cell lines. Also, some β-carboline-4-thiazolidinone hybrids showed potent antiviral activity against Herpes simplex virus type-1. The N-(2-substituted-aryl-4-thiazolidinone)-carboxamide moiety in 18, 19 and 22 confer a potent anti-HSV-1 activity for these derivatives, which presented EC50 values of 0.80, 2.15 and 2.02 μM, respectively. The assay results showed that the nature of 4-thiazolidinone moiety and of the substituent attached at the 3- and 1- position of β-carboline nucleus influenced the antitumor and antiviral activities.
Collapse
Affiliation(s)
- Valéria Aquilino Barbosa
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Paula Baréa
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Renata Sespede Mazia
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Tania Ueda-Nakamura
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Willian Ferreira da Costa
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Mary Ann Foglio
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | - Ana Lucia T Goes Ruiz
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | - João Ernesto de Carvalho
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | - Débora Barbosa Vendramini-Costa
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Maria Helena Sarragiotto
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
28
|
Li P, Wang X, Li J, Meng ZY, Li SC, Li ZJ, Lu YY, Ren H, Lou YQ, Lu C, Dou GF, Zhang GL. Quantitative and qualitative analysis of the novel antitumor 1,3,4-oxadiazole derivative (GLB) and its metabolites using HPLC-UV and UPLC-QTOF-MS. Sci Rep 2015; 5:11906. [PMID: 26148672 PMCID: PMC4493701 DOI: 10.1038/srep11906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 12/30/2022] Open
Abstract
Fructose-based 3-acetyl-2,3-dihydro-1,3,4-oxadiazole (GLB) is a novel antitumor agent and belongs to glycosylated spiro-heterocyclic oxadiazole scaffold derivative. This research first reported a simple, specific, sensitive and stable high performance liquid chromatography-ultraviolet detector (HPLC-UV) method for the quantitative determination of GLB in plasma. In this method, the chromatographic separation was achieved with a reversed phase C18 column. The calibration curve for GLB was linear at 300 nm. The lower limit of quantification was 10 ng/mL. The precision, accuracy and stability of the method were validated adequately. This method was successfully applied to the pharmacokinetic study in rats for detection of GLB after oral administration. Moreover, the structures of parent compound GLB and its two major metabolites M1 and M2 were identified in plasma using an ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight- mass spectrometry (UPLC-ESI-QTOF-MS) method. Our results indicated that the di-hydroxylation (M1) and hydroxylation (M2) of GLB are the major metabolites. In conclusion, the present study provided valuable information on an analytical method for the determination of GLB and its metabolites in rats, can be used to support further developing of this antitumor agent.
Collapse
Affiliation(s)
- Pu Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR. China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR. China
| | - Jian Li
- Laboratory of Hematological Pharmacology, Beijing Institute of Transfusion Medicine, Beijing 100850, PR China
| | - Zhi-Yun Meng
- Laboratory of Hematological Pharmacology, Beijing Institute of Transfusion Medicine, Beijing 100850, PR China
| | - Shu-Chun Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR. China
| | - Zhong-Jun Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR. China
| | - Ying-Yuan Lu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR. China
| | - Hong Ren
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR. China
| | - Ya-Qing Lou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR. China
| | - Chuang Lu
- Millennium Pharmaceuticals-Takeda, Cambridge, Massachusetts, USA
| | - Gui-Fang Dou
- Laboratory of Hematological Pharmacology, Beijing Institute of Transfusion Medicine, Beijing 100850, PR China
| | - Guo-Liang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR. China
| |
Collapse
|
29
|
Al-Ghorbani M, Vigneshwaran V, Ranganatha VL, Prabhakar B, Khanum SA. Synthesis of oxadiazole–morpholine derivatives and manifestation of the repressed CD31 Microvessel Density (MVD) as tumoral angiogenic parameters in Dalton’s Lymphoma. Bioorg Chem 2015; 60:136-46. [DOI: 10.1016/j.bioorg.2015.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/02/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022]
|