1
|
Roy S, Azhar MK, Gupta V. Structural and Functional Insights into UDGs. Protein Pept Lett 2025; 32:85-96. [PMID: 39757627 DOI: 10.2174/0109298665318621241128041145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 01/07/2025]
Abstract
Endogenous or exogenous DNA damage needs to be repaired, therefore, cells in all the three domains have repair pathways to maintain the integrity of their genetic material. Uracil DNA glycosylases (UDGs), also known as UNGs (uracil-DNA N-glycosylases), are part of the base-excision repair (BER) pathway. These enzymes specifically remove uracil from DNA molecules by cleaving the glycosidic bond between the uracil base and the deoxyribose sugar. UDGs can be broadly classified into six families, and each of them share conserved motifs that are critical for substrate recognition and catalysis. Recently, an unconventional UDG known as UDGX has been identified from the species Mycobacterium smegmatis, which is different from other UDG members in forming an irreversible and extremely stable complex with DNA that is resistant to even harsh denaturants such as SDS, NaOH, and heat. This suicide inactivation mechanism prevents uracil excision and might play a protective role in maintaining genome integrity, as bacterial survival under hypoxic conditions is reduced due to the overexpression of MsmUDGX. Additionally, due to the importance of UDGs, the number of structures has been resolved. Moreover, high-resolution 3D structures of apo MsmUDGX, as well as uracil and DNAbound forms, are available in PDB. This review aims to provide insights into the specific structural- functional aspects of each UDG family member for theragnostic applications.
Collapse
Affiliation(s)
- Shreya Roy
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sec 62, Noida, 201309, India
| | - Md Khabeer Azhar
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sec 62, Noida, 201309, India
- Current Affiliation- Center of Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Vibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sec 62, Noida, 201309, India
| |
Collapse
|
2
|
Kumar R, Kumar V, Gurusubramanian G, Rathore SS, Roy VK. Morin hydrate ameliorates heat-induced testicular impairment in a mouse model. Mol Biol Rep 2024; 51:103. [PMID: 38219219 DOI: 10.1007/s11033-023-09157-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Heat stress is known to adversely affect testicular activity and manifest the pathogenesis of spermatogenesis. Morin hydrate is a plant-derived compound, which contains a wide range of biological activities. Thus, it is hypothesized that morin hydrate might have an ameliorative effect on heat-induced testicular impairment. There has not been any research on the impact of morin hydrate on heat-induced testicular damage. METHODS The experimental mice were divided into four groups, groups1 as the normal control group (CN), and the second which underwent heat stress (HS) by immersing the lower body for 15 min in a thermostatically controlled water bath kept at 43 °C (HS), and third and fourth heat-stressed followed by two different dosages of morin hydrate 10 mg/kg (HSM10) and 100 mg/kg (HSM100) for 14 days. RESULTS Morin hydrate treatment at 10 mg/kg improved, circulating testosterone levels (increases 3βHSD), and oxidative stress along with improvement in the testis and caput and corpus epididymis histoarchitecture, however, both doses of morin hydrate improved sperm parameters. Morin hydrate treatment significantly increases germ cell proliferation, (GCNA, BrdU staining), expression of Bcl2 and decreases expression of active caspase 3. Heat stress also decreased the expression of AR, ER- α, and ER-β, and Morin hydrate treatment increased the expression of these markers in the 10 mg/kg treatment group. CONCLUSION Morin hydrate ameliorates heat-induced testicular impairment modulating testosterone synthesis, germ cell proliferation, and oxidative stress. These effects could be manifested by regulating androgen and estrogen receptors. However, the two doses showed differential effects of some parameters, which requires further investigations.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar, 845401, India
| | - Vikash Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar, 845401, India
| | | | - Saurabh Singh Rathore
- Department of Biotechnology, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar, 845401, India.
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India.
| |
Collapse
|
3
|
Gohil D, Sarker AH, Roy R. Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine. Int J Mol Sci 2023; 24:14186. [PMID: 37762489 PMCID: PMC10531636 DOI: 10.3390/ijms241814186] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Base excision repair (BER) corrects forms of oxidative, deamination, alkylation, and abasic single-base damage that appear to have minimal effects on the helix. Since its discovery in 1974, the field has grown in several facets: mechanisms, biology and physiology, understanding deficiencies and human disease, and using BER genes as potential inhibitory targets to develop therapeutics. Within its segregation of short nucleotide (SN-) and long patch (LP-), there are currently six known global mechanisms, with emerging work in transcription- and replication-associated BER. Knockouts (KOs) of BER genes in mouse models showed that single glycosylase knockout had minimal phenotypic impact, but the effects were clearly seen in double knockouts. However, KOs of downstream enzymes showed critical impact on the health and survival of mice. BER gene deficiency contributes to cancer, inflammation, aging, and neurodegenerative disorders. Medicinal targets are being developed for single or combinatorial therapies, but only PARP and APE1 have yet to reach the clinical stage.
Collapse
Affiliation(s)
- Dhara Gohil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Altaf H. Sarker
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
4
|
Song YQ, Li GD, Niu D, Chen F, Jing S, Wai Wong VK, Wang W, Leung CH. A robust luminescent assay for screening alkyladenine DNA glycosylase inhibitors to overcome DNA repair and temozolomide drug resistance. J Pharm Anal 2023; 13:514-522. [PMID: 37305785 PMCID: PMC10257196 DOI: 10.1016/j.jpha.2023.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 04/15/2023] [Indexed: 06/13/2023] Open
Abstract
Temozolomide (TMZ) is an anticancer agent used to treat glioblastoma, typically following radiation therapy and/or surgical resection. However, despite its effectiveness, at least 50% of patients do not respond to TMZ, which is associated with repair and/or tolerance of TMZ-induced DNA lesions. Studies have demonstrated that alkyladenine DNA glycosylase (AAG), an enzyme that triggers the base excision repair (BER) pathway by excising TMZ-induced N3-methyladenine (3meA) and N7-methylguanine lesions, is overexpressed in glioblastoma tissues compared to normal tissues. Therefore, it is essential to develop a rapid and efficient screening method for AAG inhibitors to overcome TMZ resistance in glioblastomas. Herein, we report a robust time-resolved photoluminescence platform for identifying AAG inhibitors with improved sensitivity compared to conventional steady-state spectroscopic methods. As a proof-of-concept, this assay was used to screen 1440 food and drug administration-approved drugs against AAG, resulting in the repurposing of sunitinib as a potential AAG inhibitor. Sunitinib restored glioblastoma (GBM) cancer cell sensitivity to TMZ, inhibited GBM cell proliferation and stem cell characteristics, and induced GBM cell cycle arrest. Overall, this strategy offers a new method for the rapid identification of small-molecule inhibitors of BER enzyme activities that can prevent false negatives due to a fluorescent background.
Collapse
Affiliation(s)
- Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Guo-Dong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Shaozhen Jing
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, 999078, China
| |
Collapse
|
5
|
Roy R. Simultaneous Short- and Long-Patch Base Excision Repair (BER) Assay in Live Mammalian Cells. Methods Mol Biol 2023; 2701:3-19. [PMID: 37574472 PMCID: PMC11998044 DOI: 10.1007/978-1-0716-3373-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The base excision repair (BER) pathway repairs small, non-bulky DNA lesions, including oxidized, alkylated, and deaminated bases, and is responsible for the removal of at least 20,000 DNA lesions per cell per day. BER is initiated by DNA damage-specific DNA glycosylases that excise the damaged base and generates an abasic (AP) site or single-strand breaks, which are subsequently repaired in mammalian cells either by single-nucleotide (SN) or multiple-nucleotide incorporation via the SN-BER or long-patch BER (LP-BER) pathway, respectively. This chapter describes a plaque-based host cell reactivation (PL-HCR) assay system for measuring BER mechanisms in live mammalian cells using a plasmid-based assay. After transfection of a phagemid (M13mp18) containing a single modified base (representative BER DNA substrates) within a restriction site into human cells, restriction digestions detect the presence or absence (complete repair) of the adduct by the transformation of the digestion products into E. coli and counting the transformants as plaques. To monitor the patch size, different plasmids are constructed containing C:A mismatches within different restriction sites (inhibiting digestion) at various distances on both sides (5' or 3') of the modified base-containing restriction sites. Using this assay, the percentage of repair events that occur via 5' and 3' patch formation can be quantified.
Collapse
Affiliation(s)
- Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
6
|
Nguyen MT, Moiani D, Ahmed Z, Arvai AS, Namjoshi S, Shin DS, Fedorov Y, Selvik EJ, Jones DE, Pink J, Yan Y, Laverty DJ, Nagel ZD, Tainer JA, Gerson SL. An effective human uracil-DNA glycosylase inhibitor targets the open pre-catalytic active site conformation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:143-159. [PMID: 33675849 PMCID: PMC8722130 DOI: 10.1016/j.pbiomolbio.2021.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Human uracil DNA-glycosylase (UDG) is the prototypic and first identified DNA glycosylase with a vital role in removing deaminated cytosine and incorporated uracil and 5-fluorouracil (5-FU) from DNA. UDG depletion sensitizes cells to high APOBEC3B deaminase and to pemetrexed (PEM) and floxuridine (5-FdU), which are toxic to tumor cells through incorporation of uracil and 5-FU into DNA. To identify small-molecule UDG inhibitors for pre-clinical evaluation, we optimized biochemical screening of a selected diversity collection of >3,000 small-molecules. We found aurintricarboxylic acid (ATA) as an inhibitor of purified UDG at an initial calculated IC50 < 100 nM. Subsequent enzymatic assays confirmed effective ATA inhibition but with an IC50 of 700 nM and showed direct binding to the human UDG with a KD of <700 nM. ATA displays preferential, dose-dependent binding to purified human UDG compared to human 8-oxoguanine DNA glycosylase. ATA did not bind uracil-containing DNA at these concentrations. Yet, combined crystal structure and in silico docking results unveil ATA interactions with the DNA binding channel and uracil-binding pocket in an open, destabilized UDG conformation. Biologically relevant ATA inhibition of UDG was measured in cell lysates from human DLD1 colon cancer cells and in MCF-7 breast cancer cells using a host cell reactivation assay. Collective findings provide proof-of-principle for development of an ATA-based chemotype and “door stopper” strategy targeting inhibitor binding to a destabilized, open pre-catalytic glycosylase conformation that prevents active site closing for functional DNA binding and nucleotide flipping needed to excise altered bases in DNA.
Collapse
Affiliation(s)
- My T Nguyen
- Case Western Reserve University, Department of Biochemistry, Cleveland, OH, 44106, USA
| | - Davide Moiani
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA
| | - Andrew S Arvai
- Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sarita Namjoshi
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA
| | - Dave S Shin
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuriy Fedorov
- Case Small-Molecule Screening Core, School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Edward J Selvik
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Darin E Jones
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - John Pink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yan Yan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniel J Laverty
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - John A Tainer
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Stanton L Gerson
- Case Western Reserve University, Department of Biochemistry, Cleveland, OH, 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Faria AVS, Fonseca EMB, Cordeiro HG, Clerici SP, Ferreira-Halder CV. Low molecular weight protein tyrosine phosphatase as signaling hub of cancer hallmarks. Cell Mol Life Sci 2021; 78:1263-1273. [PMID: 33052434 PMCID: PMC11073135 DOI: 10.1007/s00018-020-03657-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
In the past decade, significant progress has been made in understanding the role of protein tyrosine phosphatase as a positive regulator of tumor progression. In this scenario, our group was one of the first to report the involvement of the low molecular weight protein tyrosine phosphatase (LMWPTP or ACP1) in the process of resistance and migration of tumor cells. Later, we and others demonstrated a positive correlation between the amount of this enzyme in human tumors and the poor prognosis. With this information in mind, we asked if LMWPTP contribution to metastasis, would it have an action beyond the primary tumor site. We know that the amount of this enzyme in the tumor cell correlates positively with the ability of cancer cells to interact with platelets, an indication that this enzyme is also important for the survival of these cells in the bloodstream. Here, we discuss several molecular aspects that support the idea of LMWPTP as a signaling hub of cancer hallmarks. Chemical and genetic modulation of LMWPTP proved to shut down signaling pathways associated with cancer aggressiveness. Therefore, advances in the development of LMWPTP inhibitors have great applicability in human diseases such as cancer.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emanuella Maria Barreto Fonseca
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
- Federal Institute of São Paulo, São Roque, São Paulo, Brazil
| | - Helon Guimarães Cordeiro
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Stefano Piatto Clerici
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
8
|
Zhang AL, Tang SF, Yang Y, Li CZ, Ding XJ, Zhao H, Wang JH, Yang GH, Li J. Histone demethylase JHDM2A regulates H3K9 dimethylation in response to arsenic-induced DNA damage and repair in normal human liver cells. J Appl Toxicol 2020; 40:1661-1672. [PMID: 32608101 DOI: 10.1002/jat.4026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Long-term arsenic exposure is a worldwide public health problem that causes serious harm to human health. The liver is the main target organ of arsenic toxicity; arsenic induces disruption of the DNA damage repair pathway, but its mechanisms remain unclear. In recent years, studies have found that epigenetic mechanisms play an important role in arsenic-induced lesions. In this study, we conducted experiments in vitro using normal human liver cells (L-02) to explore the mechanism by which the histone demethylase JHDM2A regulates H3K9 dimethylation (me2) in response to arsenic-induced DNA damage. Our results indicated that arsenic exposure upregulated the expression of JHDM2A, downregulated global H3K9me2 modification levels, increased the H3K9me2 levels at the promoters of base excision repair (BER) genes (N-methylpurine-DNA glycosylase [MPG], XRCC1 and poly(ADP-ribose)polymerase 1) and inhibited their expression levels, causing DNA damage in cells. In addition, we studied the effects of overexpression and inhibition of JHDM2A and found that JHDM2A can participate in the molecular mechanism of arsenic-induced DNA damage via the BER pathway, which may not be involved in the BER process because H3K9me2 levels at the promoter region of the BER genes were unchanged following JHDM2A interference. These results suggest a potential mechanism by which JHDM2A can regulate the MPG and XRCC1 genes in the process of responding to DNA damage induced by arsenic exposure and can participate in the process of DNA damage repair, which provides a scientific basis for understanding the epigenetic mechanisms and treatments for endemic arsenic poisoning.
Collapse
Affiliation(s)
- An-Liu Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Shun-Fang Tang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yue Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Chang-Zhe Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xue-Jiao Ding
- First Affiliated Hospital of Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Hua Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun-Hua Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Guang-Hong Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Solairaja S, Andrabi MQ, Dunna NR, Venkatabalasubramanian S. Overview of Morin and Its Complementary Role as an Adjuvant for Anticancer Agents. Nutr Cancer 2020; 73:927-942. [PMID: 32530303 DOI: 10.1080/01635581.2020.1778747] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Global cancer incidence and mortality data released by the World Health Organization proposes that out of 18.1 million new cancer cases diagnosed, 9.8 million deaths occurred globally in 2018. Cancer is one of the major health burdens among non-communicable diseases globally responsible for impeding life expectancy in the present century. Disrupting hallmarks of cancer (such as prolonged inflammation, increased growth signal, tissue invasion and metastasis, unlimited proliferation and evasion of apoptosis) with dietary agents is of considerable focus for cancer prevention and therapy. In the last decade, a significant contribution has been provided in finding many plant-derived natural agents that can be identified as promising molecular cancer therapeutics. Our focus in this review is on one such natural dietary agent, Morin (3,5,7,2',4'-pentahydroxyflavone): a bioflavonoid. Morin exerts strong pharmacological properties against a multitude of cancer (liver cancer, cervical cancer, melanoma, breast cancer, prostate, and colon cancer). Recent progress has also been made in examining the potential of morin as a natural dietary agent for fostering the pharmacological effects of other well-known anticancer agents. This review provides an overview of morin and its derivatives in combination with anticancer agents for cancer prevention and therapy.
Collapse
Affiliation(s)
- Solaipriya Solairaja
- Department of Biotechnology, School of Biomedical Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Mohammad Qasim Andrabi
- Department of Genetic Engineering, School of Biomedical Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Nageswara Rao Dunna
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | | |
Collapse
|
10
|
An aza-nucleoside, fragment-like inhibitor of the DNA repair enzyme alkyladenine glycosylase (AAG). Bioorg Med Chem 2020; 28:115507. [PMID: 32327352 DOI: 10.1016/j.bmc.2020.115507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 11/21/2022]
Abstract
The DNA repair enzyme AAG has been shown in mice to promote tissue necrosis in response to ischaemic reperfusion or treatment with alkylating agents. A chemical probe inhibitor is required for investigations of the biological mechanism causing this phenomenon and as a lead for drugs that are potentially protective against tissue damage from organ failure and transplantation, and alkylative chemotherapy. Herein, we describe the rationale behind the choice of arylmethylpyrrolidines as appropriate aza-nucleoside mimics for an inhibitor followed by their synthesis and the first use of a microplate-based assay for quantification of their inhibition of AAG. We finally report the discovery of an imidazol-4-ylmethylpyrrolidine as a fragment-sized, weak inhibitor of AAG.
Collapse
|
11
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
12
|
Al-Tannak NF, Al-Hasawi NA, Novotny L. UHPLC-UV Analysis of Morin and Structurally Related Flavonoids with Potential Anticancer Activity. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666171220154224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Flavonoids as secondary metabolites of plants fulfill various functions in cell
protection. They are of a considerable scientific interest because of their potentially medical use due to
their anticancer, chemoprotective, antimicrobial, antiallergic, anti-inflammatory and antiviral activities.
</P><P>
Objective: The study aimed to develop a new UHPLC-UV method for morin and 2 other structurally
related flavonoids - naringenin and kaempferol as the structural similarity of huge numbers of flavonoids
does not limit their various biological functions and activities.
Methods:
Separation of morin and 2 other structurally related flavonoids - naringenin and kaempferol -
was achieved by using BEH C18 (1.7 µm, 2.1 x 50 mm) analytical column (Waters® Acquity UPLC)
and a mobile phase composed of 0.05%v/v Formic acid in water and acetonitrile in proportion of 77:23
v/v and pumped at a flow rate of 0.4 ml/min. Column temperature was set at 25 ºC and samples were
analyzed (3 µl injection volume) at a wavelength of 340 nm. Waters® Xevo G2-S QToF coupled with
Waters® Acquity UPLC system with binary Solvent Manager (I-Class) via electrospray ionization (ESI)
interface was used to confirm the identity of the peaks in biological samples.
Results:
A rapid and simple UHPLC-UV separation of morin, kaempferol and naringenin is documented
including methods validation. The developed method was applied to measuring morin,
kaempferol and naringenin in human plasma after a solid phase extraction. Additionally, stability of
morin in tissue culture medium was verified. The extraction method and UHPLC-UV elution conditions
described provide a practical means to analyze morin, kaempferol and naringenin in biological matrices.
Conclusion:
The developed method is fast and highly sensitive. Moreover, the flavonoids used were
stable in human plasma for more than 10 days.
Collapse
Affiliation(s)
- Naser F. Al-Tannak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923 Safat, Kuwait
| | - Nada A. Al-Hasawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923 Safat, Kuwait
| | - Ladislav Novotny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923 Safat, Kuwait
| |
Collapse
|
13
|
Zhao LJ, Yang SL, Jin W, Yang HW, Li FY, Chi SM, Zhu HY, Lei Z, Zhao Y. Host-Guest Inclusion Systems of Morin Hydrate and Quercetin with Two Bis(β-cyclodextrin)s: Preparation, Characterization, and Antioxidant Activity. Aust J Chem 2019. [DOI: 10.1071/ch18580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The inclusion complexation behaviour of morin hydrate (MH) and quercetin (QCT) with the two amide-bridged bis(β-cyclodextrin (β-CD))s, 1 and 2, was investigated in both solution and the solid state. The inclusion complexations were characterised by proton nuclear magnetic resonance, 2D rotating-frame Overhauser effect spectroscopy, X-ray powder diffraction, infrared spectroscopy and scanning electron microscopy. Ultraviolet titration analysis indicated that 1 and 2 form 1:1 molar stoichiometry inclusion complexes with MH and QCT, and the data obtained showed that 2 with two guests has a higher complex stability constant (KS) when compared with that of 1. Moreover, 1 and 2 were able to solubilize MH and QCT to high levels, up to ~200-fold. Furthermore, the antioxidant activity of MH, QCT and their inclusion compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. Together, these results showed that the inclusion complexes exhibited a more effective antioxidant activity when compared with free MH. The satisfactory antioxidant activity and high water solubility of the bis(β-CD)s/flavonoid complexes may have potential use as healthcare products and herbal medicine.
Collapse
|
14
|
Heckler MM, Zeleke TZ, Divekar SD, Fernandez AI, Tiek DM, Woodrick J, Farzanegan A, Roy R, Üren A, Mueller SC, Riggins RB. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget 2018; 7:47201-47220. [PMID: 27363015 PMCID: PMC5216935 DOI: 10.18632/oncotarget.9719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/19/2016] [Indexed: 01/09/2023] Open
Abstract
Breast cancer remains a leading cause of cancer-related death in women, and triple negative breast cancer (TNBC) lacks clinically actionable therapeutic targets. Death in mitosis is a tumor suppressive mechanism that occurs in cancer cells experiencing a defective M phase. The orphan estrogen-related receptor beta (ERRβ) is a key reprogramming factor in murine embryonic and induced pluripotent stem cells. In primates, ERRβ is alternatively spliced to produce several receptor isoforms. In cellular models of glioblastoma, short form (ERRβsf) and beta2 (ERRβ2) splice variants differentially regulate cell cycle progression in response to the synthetic agonist DY131, with ERRβ2 driving arrest in G2/M.The goals of the present study are to determine the cellular function(s) of ligand-activated ERRβ splice variants in breast cancer and evaluate the potential of DY131 to serve as an antimitotic agent, particularly in TNBC. DY131 inhibits growth in a diverse panel of breast cancer cell lines, causing cell death that involves the p38 stress kinase pathway and a bimodal cell cycle arrest. ERRβ2 facilitates the block in G2/M, and DY131 delays progression from prophase to anaphase. Finally, ERRβ2 localizes to centrosomes and DY131 causes mitotic spindle defects. Targeting ERRβ2 may therefore be a promising therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Mary M Heckler
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Tizita Zewde Zeleke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shailaja D Divekar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aileen I Fernandez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Deanna M Tiek
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Alexander Farzanegan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Susette C Mueller
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|