1
|
Haider MB, Saeed A, Azeem M, Ullah SA, Ejaz SA, Attaullah HM. Putting forward novel sulfonamide-thiazole-pyrazoline hybrids as potential central core structure for the development of non-specific b-TNAP and c-IAP inhibitors. Int J Biol Macromol 2024; 283:137699. [PMID: 39551301 DOI: 10.1016/j.ijbiomac.2024.137699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Alkaline phosphatases (ALPs) play crucial role in various functions of human body, such as bone formation, metabolism in liver and intestines, and transfer of nutrients from mother to fetus during pregnancy. However, their overexpression is associated with severe consequences in different patients, such as deposition of minerals in dialysis patients also called coronary calcification and increased bone turnover in patients facing cancer metastization. Due to their involvement in crucial functions of human body and association with such harsh consequences, there is need of newer efficient ALP inhibitors that can tackle ALP excess without derailing the progress of normal functions. In this study, we reported synthesis and biological evaluation of novel series of sulfonamide-thiazole-pyrazoline hybrids (8a-j). The substitutions on the terminal phenyl groups of pyrazoline ring were designed as the basis for the SAR; however, all compounds showed efficient ALP (b-TNAP and c-IAP) inhibition activity, with 8c (IC50 = 0.87±0.11 μM) being the most potent against b-TNAP and 8f (IC50 = 2.11±0.34 μM) being the most potent against c-IAP. In addition, in silico studies were also conducted to provide insights into the binding interactions, drug-likeness and charge density of structures. The IC50 results for all of the compounds were better compared to both references irrespective of the substitutions attached, therefore the sulphonamide-thiazole-pyrazoline hybrid core can be put forward as the central core for designing new drugs for non-specific ALP inhibition.
Collapse
Affiliation(s)
- Mian Bilal Haider
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Azeem
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Sayyed Aqib Ullah
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hafiz Muhammad Attaullah
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
2
|
Gallardo M, Arancibia R, Supuran CT, Nocentini A, Villaman D, Toro PM, Muñoz-Osses M, Mascayano C. Development of novel organometallic sulfonamides with N-ethyl or N-methyl benzenesulfonamide units as potential human carbonic anhydrase I, II, IX and XII isoforms' inhibitors: Synthesis, biological evaluation and docking studies. J Inorg Biochem 2024; 260:112689. [PMID: 39121601 DOI: 10.1016/j.jinorgbio.2024.112689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
In the search of new cymantrenyl- and ferrocenyl-sulfonamides as potencial inhibitors of human carbonic anhydrases (hCAs), four compounds based on N-ethyl or N-methyl benzenesulfonamide units have been obtained. These cymantrenyl (1a-b) and ferrocenyl (2a-b) derivatives were prepared by the reaction between aminobenzene sulfonamides ([NH2-(CH2)n-(C6H4)-SO2-NH2)], where n = 1, 2) with cymantrenyl sulfonyl chloride (P1) or ferrocenyl sulfonyl chloride (P2), respectively. All compounds were characterized by conventional spectroscopic techniques and cyclic voltammetry. In the solid state, the molecular structures of compounds 1a, 1b, and 2b were determined by single-crystal X-ray diffraction. Biological evaluation as carbonic anhydrases inhibitors were carried out and showed derivatives 1b y 2b present a higher inhibition than the drug control for the Human Carbonic Anhydrase (hCA) II and IX isoforms (KI = 7.3 nM and 5.8 nM, respectively) and behave as selective inhibition for hCA II isoform. Finally, the docking studies confirmed they share the same binding site and interactions as the known inhibitors acetazolamide (AAZ) and agree with biological studies.
Collapse
Affiliation(s)
- Miguel Gallardo
- Departamento Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Rodrigo Arancibia
- Departamento Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile.
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, 50019 Sesto Fiorentino, FL, Italy
| | - Alessio Nocentini
- Neurofarba Department, University of Florence, 50019 Sesto Fiorentino, FL, Italy
| | - David Villaman
- Departamento Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Patricia M Toro
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca, Chile. 5 Poniente 1670, Talca, 3467987, Chile
| | - Michelle Muñoz-Osses
- Departamento Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Carolina Mascayano
- Departamento Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| |
Collapse
|
3
|
Sharafat RH, Saeed A. Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review. Purinergic Signal 2024:10.1007/s11302-024-10031-0. [PMID: 38958821 DOI: 10.1007/s11302-024-10031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.
Collapse
Affiliation(s)
- R Huzaifa Sharafat
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan.
| |
Collapse
|
4
|
Wang P, Li S, Wen H, Lei Y, Huang S, Wang Z, Su J, Guan W, Lei J. Thiosuccinimide enabled S-N bond formation to access N-sulfenylated sulfonamide derivatives with synthetic diversity. Org Biomol Chem 2024; 22:990-997. [PMID: 38180390 DOI: 10.1039/d3ob01848b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A thiosuccinimide enabled S-N cross-coupling strategy has been established for the intermolecular N-sulfenylation of clinically approved sulfa drugs under additive-free conditions. This approach features simple operation, high chemoselectivity for sulfenylating the phenylamino group of sulfonamides, wide substrate scope, and easy scale production, affording N-sulfenylated products in moderate to excellent yields (up to 90%). In addition, we also found that this transformation can be realized in a one-pot manner by employing readily available thiols as starting materials, and the obtained sulfonamide derivatives are capable of various late-stage functionalizations, including oxidation, arylation, benzylation, and methylation.
Collapse
Affiliation(s)
- Peifeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Huiling Wen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yin Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Shujuan Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Jialong Su
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Wenxiang Guan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Jian Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
5
|
Alrokayan S, Hussain T, Alamery S, Mohammed AA, Mahmood A, Ejaz SA, Langer P, Iqbal J. [1, 8]-Naphthyridine derivatives as dual inhibitor of alkaline phosphatase and carbonic anhydrase. BMC Chem 2023; 17:142. [PMID: 37880684 PMCID: PMC10599030 DOI: 10.1186/s13065-023-01052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
[1,8]-Naphthyridine derivatives have been reported to possess important biological activities and may serve as attractive pharmacophores in the drug discovery process. [1,8]-Naphthyridine derivatives (1a-1l) were evaluated for inhibitory potential for isozymes of carbonic anhydrase (CA) and alkaline phosphatase (ALP). CAs have been reported to carry out reversible hydration of CO2 into HCO3-, secretion of electrolytes, acid-base regulation, bone resorption, calcification, and biosynthetic reactions. Whereas ALPs hydrolyze monophosphate esters with the release of inorganic phosphate and play an important role in bone mineralization. Both enzymes have been found to be over-expressed and raised functional activities in patients suffering from rheumatoid arthritis. The discovery of dual inhibitors of these enzymes may provide a synergistic effect to cure bone disorders such as rheumatoid arthritis and ankylosing spondylitis. Among the test compounds, the most potent inhibitors for CA-II, CA-IX, and CA-XII were 1e, 1g, and 1a with IC50 values of 0.44 ± 0.19, 0.11 ± 0.03 and 0.32 ± 0.07 µM, respectively. [1,8]-Naphthyridine derivatives (1a-1l) were approximately 4 folds more potent than standard CA inhibitor acetazolamide. While in the case of ALPs, the most potent compounds for b-TNAP and c-IAP were 1b and 1e with IC50 values of 0.122 ± 0.06 and 0.107 ± 0.02 µM, respectively. Thus, synthesized derivatives proved to be 100 to 800 times more potent as compared to standard inhibitors of b-TNAP and c-IAP (Levamisole and L-phenyl alanine, respectively). In addition, selectivity and dual inhibition of [1,8]-Naphthyridine derivatives confer precedence over known inhibitors. Molecular docking and molecular simulation studies were also conducted in the present studies to define the type of interactions between potential inhibitors and enzyme active sites.
Collapse
Affiliation(s)
- Salman Alrokayan
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tajamul Hussain
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
- Centre of Excellence in Biotechnology Research, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Salman Alamery
- Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Arif Ahmed Mohammed
- Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Peter Langer
- Institut Für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
6
|
Jassas RS, Naeem N, Sadiq A, Mehmood R, Alenazi NA, Al-Rooqi MM, Mughal EU, Alsantali RI, Ahmed SA. Current status of N-, O-, S-heterocycles as potential alkaline phosphatase inhibitors: a medicinal chemistry overview. RSC Adv 2023; 13:16413-16452. [PMID: 37274413 PMCID: PMC10233329 DOI: 10.1039/d3ra01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Heterocycles are a class of compounds that have been found to be potent inhibitors of alkaline phosphatase (AP), an enzyme that plays a critical role in various physiological processes such as bone metabolism, cell growth and differentiation, and has been linked to several diseases such as cancer and osteoporosis. AP is a widely distributed enzyme, and its inhibition has been considered as a therapeutic strategy for the treatment of these diseases. Heterocyclic compounds have been found to inhibit AP by binding to the active site of the enzyme, thereby inhibiting its activity. Heterocyclic compounds such as imidazoles, pyrazoles, and pyridines have been found to be potent AP inhibitors and have been studied as potential therapeutics for the treatment of cancer, osteoporosis, and other diseases. However, the development of more potent and selective inhibitors that can be used as therapeutics for the treatment of various diseases is an ongoing area of research. Additionally, the study of the mechanism of action of heterocyclic AP inhibitors is an ongoing area of research, which could lead to the identification of new targets and new therapeutic strategies. The enzyme known as AP has various physiological functions and is present in multiple tissues and organs throughout the body. This article presents an overview of the different types of AP isoforms, their distribution, and physiological roles. It also discusses the structure and mechanism of AP, including the hydrolysis of phosphate groups. Furthermore, the importance of AP as a clinical marker for liver disease, bone disorders, and cancer is emphasized, as well as its use in the diagnosis of rare inherited disorders such as hypophosphatasia. The potential therapeutic applications of AP inhibitors for different diseases are also explored. The objective of this literature review is to examine the function of alkaline phosphatase in various physiological conditions and diseases, as well as analyze the structure-activity relationships of recently reported inhibitors. The present review summarizes the structure-activity relationship (SAR) of various heterocyclic compounds as AP inhibitors. The SAR studies of these compounds have revealed that the presence of a heterocyclic ring, particularly a pyridine, pyrimidine, or pyrazole ring, in the molecule is essential for inhibitory activity. Additionally, the substitution pattern and stereochemistry of the heterocyclic ring also play a crucial role in determining the potency of the inhibitor.
Collapse
Affiliation(s)
- Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Rabia Mehmood
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| |
Collapse
|
7
|
Saeed A, Ashraf S, Aziz M, Channar PA, Ejaz SA, Fayyaz A, Abbas Q, Alasmary FA, Karami AM, Tehzeeb A, Mumtaz A, El-Seedi HR. Design, synthesis, biochemical and in silico characterization of novel naphthalene-thiourea conjugates as potential and selective inhibitors of alkaline phosphatase. Med Chem Res 2023; 32:1077-1086. [PMID: 37305207 PMCID: PMC10088808 DOI: 10.1007/s00044-023-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/14/2023] [Indexed: 06/13/2023]
Abstract
Naphthalene ring is present in a number of FDA-approved, commercially available medications, including naphyrone, terbinafine, propranolol, naproxen, duloxetine, lasofoxetine, and bedaquiline. By reacting newly obtained 1-naphthoyl isothiocyanate with properly modified anilines, a library of ten novel naphthalene-thiourea conjugates (5a-5j) were produced with good to exceptional yields and high purity. The newly synthesized compounds were observed for their potential to inhibit alkaline phosphatase (ALP) and scavenge free radicals. All of the investigated compounds displayed a more powerful inhibitory profile than the reference agent, KH2PO4 particularly compound 5h and 5a exhibited strong inhibitory potential against ALP with IC50 value of 0.365 ± 0.011 and 0.436 ± 0.057 µM respectively. In addition, Lineweaver-Burk plots revealed the non-competitive inhibition mode of the most powerful derivative i.e., 5h (ki value 0.5 µM). To investigate the putative binding mode of selective inhibitor interactions, molecular docking was performed. It is recommended that future research will focus on developing selective alkaline phosphatase inhibitors by modifying the structure of the 5h derivative.
Collapse
Affiliation(s)
- Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Saba Ashraf
- Department of Chemistry, Rawalpindi Women University 6th Road, Satellite Town, Rawalpindi, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Pervaiz Ali Channar
- Department of Basic sciences and Humanities, Faculty of Information Sciences and Humanities, Dawood University of Engineering and Technology, Karachi, 74800 Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| | - Fatmah Ali Alasmary
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | | | - Arfa Tehzeeb
- Department of Pharmacy, Quaid-I-Azam University, 45320 Islamabad, Pakistan
| | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060 Pakistan
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013 China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512 Egypt
- Division of Pharmacognosy, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 574, 751 23 Uppsala, Sweden
| |
Collapse
|
8
|
Younus HA, Saeed M, Mahmood A, Jadoon MSK, Hameed A, Asari A, Mohamad H, Pelletier J, Sévigny J, Iqbal J, Al-Rashida M. Exploring chromone sulfonamides and sulfonylhydrazones as highly selective ectonucleotidase inhibitors: Synthesis, biological evaluation and in silico study. Bioorg Chem 2023; 134:106450. [PMID: 36924652 DOI: 10.1016/j.bioorg.2023.106450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023]
Abstract
Ectonucleotidases, a well-known superfamily of plasma membrane located metalloenzymes plays a central role in mediating the process of purinergic cell signaling. Major functions performed by these enzymes include the hydrolysis of extracellular nucleosides and nucleotides which are considered as important cell-signaling molecules. Any (patho)-physiologically induced disruption in this purinergic cell signaling leads to several disorders, hence these enzymes are important drug targets for therapeutic purposes. Among the major challenges faced in the design of inhibitors of ectonucleotidases, an important one is the lack of selective inhibitors. Access to highly selective inhibitors via a facile synthetic route will not only be beneficial therapeutically, but will also lead to an increase in our understanding of intricate interplay between members of ectonucleotidase enzymes in relation to their selective activation and/or inhibition in different cells and tissues. Herein we describe synthesis of highly selective inhibitors of human intestinal alkaline phosphatase (h-IAP) and human tissue non-specific alkaline phosphatase (h-TNAP), containing chromone sulfonamide and sulfonylhydrazone scaffolds. Compound 1c exhibited highest (and most selective) h-IAP inhibition activity (h-IAP IC50 = 0.51 ± 0.20 µM; h-TNAP = 36.5%) and compound 3k showed highest activity and selective inhibition against h-TNAP (h-TNAP IC50 = 1.41 ± 0.10 µM; h-IAP = 43.1%). These compounds were also evaluated against another member of ectonucleotidase family, that is rat and human ecto-5'-nucleotidase (r-e5'NT and h-e5'NT). Some of the compounds exhibited excellent inhibitory activity against ecto-5'-nucleotidase. Compound 2 g exhibited highest inhibition against h-e5'NT (IC50 = 0.18 ± 0.02 µM). To rationalize the interactions with the binding site, molecular docking studies were carried out.
Collapse
Affiliation(s)
- Hafiza Amna Younus
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Siraj Khan Jadoon
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Abdul Hameed
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Habsah Mohamad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Pakistan.
| |
Collapse
|
9
|
Reetu R, Gujjarappa R, Malakar CC. Recent Advances in Synthesis and Medicinal Evaluation of 1,2‐Benzothiazine Analogues. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reetu Reetu
- National Institute of Technology Manipur Chemistry INDIA
| | | | - Chandi C Malakar
- National Institute of Technology Manipur Department of Chemistry Langol, Imphal 795004 Imphal INDIA
| |
Collapse
|
10
|
Le‐Vinh B, Akkuş‐Dağdeviren ZB, Le NN, Nazir I, Bernkop‐Schnürch A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao Le‐Vinh
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Zeynep Burcu Akkuş‐Dağdeviren
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| | - Nguyet‐Minh Nguyen Le
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Imran Nazir
- Department of Pharmacy COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| |
Collapse
|
11
|
Ashraf J, Mughal EU, Alsantali RI, Sadiq A, Jassas RS, Naeem N, Ashraf Z, Nazir Y, Zafar MN, Mumtaz A, Mirzaei M, Saberi S, Ahmed SA. 2-Benzylidenebenzofuran-3(2 H)-ones as a new class of alkaline phosphatase inhibitors: synthesis, SAR analysis, enzyme inhibitory kinetics and computational studies. RSC Adv 2021; 11:35077-35092. [PMID: 35493176 PMCID: PMC9042899 DOI: 10.1039/d1ra07379f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
The excelling role of organic chemistry in the medicinal field continues to be one of the main leads in the drug development process. Particularly, this industry requires organic chemists to discover small molecular structures with powerful pharmacological potential. Herein, a diverse range of chalcone (1–11) and aurone (12–22) derivatives was designed and synthesized and for the first time, and both motifs were evaluated as potent inhibitors of alkaline phosphatases (APs). Structural identification of the target compounds (1–22) was accomplished using common spectroscopic techniques. The effect of the nature and position of the substituent was interestingly observed and justified based on the detailed structure–activity relationship (SAR) of the target compounds against AP. It was concluded from the obtained results that all the newly synthesized compounds exhibit high inhibitory potential against the AP enzyme. Among them, compounds 12 (IC50 = 2.163 ± 0.048 μM), 15 (IC50 = 2.146 ± 0.056 μM), 16 (IC50 = 2.132 ± 0.034 μM), 18 (IC50 = 1.154 ± 0.043 μM), 20 (IC50 = 1.055 ± 0.029 μM) and 21 (IC50 = 2.326 ± 0.059 μM) exhibited excellent inhibitory activity against AP, and even better/more active than KH2PO4 (standard) (IC50 = 2.80 ± 0.065 μM). Remarkably, compound 20 (IC50 = 1.055 ± 0.029 μM) may serve as a lead structure to design more potent inhibitors of alkaline phosphatase. To the best of our knowledge, these synthetic compounds are the most potent AP inhibitors with minimum IC50 values reported to date. Furthermore, a molecular modeling study was performed against the AP enzyme (1EW2) to check the binding interaction of the synthesized compounds 1–22 against the target protein. The Lineweaver–Burk plots demonstrated that most potential derivative 20 inhibited h-IAP via a non-competitive pathway. Finally, molecular dynamic (MD) simulations were performed to evaluate the dynamic behavior, stability of the protein–ligand complex, and binding affinity of the compounds, resulting in the identification of compound 20 as a potential inhibitor of AP. Accordingly, excellent correlation was observed between the experimental and theoretical results. The pharmacological studies revealed that the synthesized analogs 1–22 obey Lipinski's rule. The assessment of the ADMET parameters showed that these compounds possess considerable lead-like characteristics with low toxicity and can serve as templates in drug design. Aurones are the plant secondary metabolites belonging to the flavonoid’s family. The bioactivities of aurones are very promising, thus these heterocyclic compounds can be considered as an alluring scaffold for drug design and development.![]()
Collapse
Affiliation(s)
- Jamshaid Ashraf
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | | | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University Islamabad-44000 Pakistan
| | - Yasir Nazir
- Department of Chemistry, Allama Iqbal Open University Islamabad-44000 Pakistan.,Department of Chemistry, University of Sialkot Sialkot-51300 Pakistan
| | | | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad Abbottabad Pakistan
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad-9177948974 Iran
| | - Satar Saberi
- Department of Chemistry, Faculty of Science, Farhangian University Tehran Iran
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia .,Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
12
|
Abbasi MA, Nazir M, Aziz-ur-Rehman, Siddiqui SZ, Raza H, Zafar A, Shah SAA, Shahid M. Synthesis, In Vitro, and In Silico Studies of N-(Substituted-Phenyl)-3-(4-Phenyl-1-Piperazinyl)propanamides as Potent Alkaline Phosphatase Inhibitors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Iqbal J, Jacob C, Sévigny J. Editorial: Metalloenzymes: Potential Drug Targets. Front Pharmacol 2021; 12:746925. [PMID: 34630115 PMCID: PMC8497783 DOI: 10.3389/fphar.2021.746925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland, Saarbruecken, Germany
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
14
|
Ur Rehman N, al-Rashida M, Tokhi A, Ahmed Z, Subhan F, Abbas M, Arshid MA, Rauf K. Analgesic and Antiallodynic Effects of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide in a Murine Model of Pain. Drug Des Devel Ther 2020; 14:4511-4518. [PMID: 33149549 PMCID: PMC7602919 DOI: 10.2147/dddt.s269777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Physical, chemical, thermal injuries along with infectious diseases lead to acute pain with associated inflammation, being the primary cause of hospital visits. Moreover, neuropathic pain associated with diabetes is a serious chronic disease leading to high morbidity and poor quality of life. OBJECTIVE Earlier multiple sulphonamides have been reported to have an antinociceptive and antiallodynic profile. 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS), a synthetic sulfonamide with reported carbonic anhydrase inhibitory activity, was investigated for its potential effects in mice model of acute and diabetic neuropathic pain. METHODS AND RESULTS 4-FBS was given orally (p.o.) one hour before the test and then mice were screened for antinociceptive activity by using the tail immersion test, which showed significant antinociceptive effect at both 20 and 40 mg/kg doses. To explore the possible mechanisms, thermal analgesia of 4-FBS was reversed by the 5HT3 antagonist ondansetron 1mg/kg intraperitoneally (i.p.) and by the µ receptor antagonist naloxone (1 mg/kg i.p.), implying possible involvement of serotonergic and opioidergic pathways in the analgesic effect of 4-FBS. Diabetes was induced in mice by a single dose of streptozotocin (STZ) 200 mg/kg i.p. After two weeks, animals first became hyperalgesic and progressively allodynic in the fourth week, which was evaluated through behavioral parameters like thermal and mechanical tests. 4-FBS at 20 and 40 mg/kg p.o. significantly reversed diabetes-induced hyperalgesia and allodynia at 30, 60, 90, and 120 minutes. CONCLUSION These findings are significant and promising while further studies are warranted to explore the exact molecular mechanism and the potential of 4-FBS in diabetic neuropathic pain.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mariya al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore54600, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | | | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
15
|
Ur Rehman N, Abbas M, Al-Rashida M, Tokhi A, Arshid MA, Khan MS, Ahmad I, Rauf K. Effect of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide on Acquisition and Expression of Nicotine-Induced Behavioral Sensitization and Striatal Adenosine Levels. Drug Des Devel Ther 2020; 14:3777-3786. [PMID: 32982182 PMCID: PMC7505708 DOI: 10.2147/dddt.s270025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Behavioral sensitization is a phenomenon that develops from intermittent exposure to nicotine and other psychostimulants, which often leads to heightened locomotor activity and then relapse. Sulfonamides that act as carbonic anhydrase inhibitors have a documented role in enhancing dopaminergic tone and normalizing neuroplasticity by stabilizing glutamate release. Objective The aim of the current study was to explore synthetic sulfonamides derivative 4-fluoro-N-(4-sulfamoylbenzyl) benzene-sulfonamide (4-FBS) (with documented carbonic anhydrase inhibitory activity) on acquisition and expression of nicotine-induced behavioral sensitization. Methods In the acquisition phase, selected 5 groups of mice were exposed to saline or nicotine 0.5mg/kg intraperitoneal (i.p) for 7 consecutive days. Selected 3 groups were administered with 4-FBS 20, 40, and 60 mg/kg p.o. along with nicotine. After 3 days of the drug-free period, ie, day 11, a challenge dose of nicotine was injected to all groups except saline and locomotor activity was recorded for 30 minutes. In the expression phase, mice were exposed to saline and nicotine only 0.5 mg/kg i.p for 7 consecutive days. After 3 days of the drug-free period, ie, day 11, 4-FBS at 20, 40, and 60 mg/kg were administered to the selected groups, one hour after drug a nicotine challenge dose was administered, and locomotion was recorded. At the end of behavioral experiments, all animals were decapitated and the striatum was excised and screened for changes in adenosine levels, using HPLC-UV. Results Taken together, our findings showed that 4-FBS in all 3 doses, in both sets of experiments significantly attenuated nicotine-induced behavioral sensitization in mice. Additionally, 4-FBS at 60mg/kg significantly lowered the adenosine level in the striatum. Conclusion The behavioral and adenosine modulation is promising, and more receptors level studies are warranted to explore the exact mechanism of action of 4-FBS.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | | | - Muhammad Sona Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Izhar Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| |
Collapse
|
16
|
Rehman NU, Esmaeilpour K, Joushi S, Abbas M, Al-Rashida M, Rauf K, Masoumi-Ardakani Y. Effect of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide on cognitive deficits and hippocampal plasticity during nicotine withdrawal in rats. Biomed Pharmacother 2020; 131:110783. [PMID: 33152941 DOI: 10.1016/j.biopha.2020.110783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Withdrawal from chronic nicotine has damaging effects on a variety of learning and memory tasks. Various Sulfonamides that act as carbonic anhydrase inhibitors have documented role in modulation of various cognitive, learning, and memory processing. We investigated the effects of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS) on nicotine withdrawal impairments in rats using Morris water maze (MWM), Novel object recognition, Passive avoidance, and open field tasks. Also, Brain-derived neurotrophic factor (BDNF) profiling and in vivo field potential recording were assessed. Rats were exposed to saline or chronic nicotine 3.8 mg/kg subcutaneously for 14 days in four divided doses, spontaneous nicotine withdrawal was induced by quitting nicotine for 72 h (hrs). Animals received 4-FBS at 20, 40, and 60 mg/kg after 72 h of withdrawal in various behavioral and electrophysiological paradigms. Nicotine withdrawal causes a deficit in learning and long-term memory in the MWM task. No significant difference was found in novel object recognition tasks among all groups while in passive avoidance task nicotine withdrawal resulted in a deficit of hippocampus-dependent fear learning. Anxiety like behavior was observed during nicotine withdrawal. Plasma BDNF level was reduced during nicotine withdrawal as compared to the saline group reflecting mild cognitive impairment, stress, and depression. Withdrawal from chronic nicotine altered hippocampal plasticity, caused suppression of long-term potentiation (LTP) in the CA1 area of the hippocampus. Our results showed that 4-FBS at 40 and 60 mg/kg significantly prevented nicotine withdrawal-induced cognitive deficits in behavioral as well as electrophysiological studies. 4-FBS at 60 mg/kg upsurge nicotine withdrawal-induced decrease in plasma BDNF. We conclude that 4-FBS at 40 and 60 mg /kg effectively prevented chronic nicotine withdrawal-induced impairment in long term potentiation and cognitive performance.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan.
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Synthesis, characterization, in vitro tissue-nonspecific alkaline phosphatase (TNAP) and intestinal alkaline phosphatase (IAP) inhibition studies and computational evaluation of novel thiazole derivatives. Bioorg Chem 2020; 102:104088. [DOI: 10.1016/j.bioorg.2020.104088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
|
18
|
Sona Khan M, Trenet W, Xing N, Sibley B, Abbas M, al-Rashida M, Rauf K, Mandyam CD. A Novel Sulfonamide, 4-FS, Reduces Ethanol Drinking and Physical Withdrawal Associated With Ethanol Dependence. Int J Mol Sci 2020; 21:E4411. [PMID: 32575871 PMCID: PMC7352747 DOI: 10.3390/ijms21124411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 01/11/2023] Open
Abstract
Carbonic anhydrase (CA) is abundant in glial cells in the brain and CA type II isoform (CA II) activity in the hippocampus plays an important role in buffering extracellular pH transients produced by neural activity. Chronic ethanol exposure results in respiratory and metabolic acidosis, producing shifts in extracellular pH in the brain and body. These neurophysiological changes by ethanol are hypothesized to contribute to the continued drinking behavior and physical withdrawal behavior in subjects consuming ethanol chronically. We explored whether chronic ethanol self-administration (ethanol drinking, 10% v/v; ED) without or under the influence of chronic intermittent ethanol vapor (CIE-ED) experience alters the expression of CA II in the hippocampus. Postmortem hippocampal tissue analyses demonstrated that CA II levels were enhanced in the hilus region of the hippocampus in ED and CIE-ED rats. We used a novel molecule-4-fluoro-N-(4-sulfamoylphenyl) benzenesulfonamide (4-FS)-a selective CA II inhibitor, to determine whether CA II plays a role in ethanol self-administration in ED and CIE-ED rats and physical withdrawal behavior in CIE-ED rats. 4-FS (20 mg/kg, i.p.) reduced ethanol self-administration in ED rats and physical withdrawal behavior in CIE-ED rats. Postmortem hippocampal tissue analyses demonstrated that 4-FS reduced CA II expression in ED and CIE-ED rats to control levels. In parallel, 4-FS enhanced GABAA receptor expression, reduced ratio of glutamatergic GluN2A/2B receptors and enhanced the expression of Fos, a marker of neuronal activation in the ventral hippocampus in ED rats. These findings suggest that 4-FS enhanced GABAergic transmission and increased activity of neurons of inhibitory phenotypes. Taken together, these findings support the role of CA II in assisting with negative affective behaviors associated with moderate to severe alcohol use disorders (AUD) and that CA II inhibitors are a potential therapeutic target to reduce continued drinking and somatic withdrawal symptoms associated with moderate to severe AUD.
Collapse
Affiliation(s)
- Muhammad Sona Khan
- Abbottabad Campus, COMSATS University Islamabad, Abbottabad, Khyber Pakhtunkhawa 22060, Pakistan;
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Wulfran Trenet
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
| | - Nancy Xing
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
| | - Britta Sibley
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science & Technology, Islamabad 44000, Pakistan;
| | - Mariya al-Rashida
- Department of Chemistry, Forman Christian College, A Chartered University, Ferozepur Road, Lahore 54600, Pakistan;
| | - Khalid Rauf
- Abbottabad Campus, COMSATS University Islamabad, Abbottabad, Khyber Pakhtunkhawa 22060, Pakistan;
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
19
|
Younus HA, Hameed A, Mahmood A, Khan MS, Saeed M, Batool F, Asari A, Mohamad H, Pelletier J, Sévigny J, Iqbal J, Al-Rashida M. Sulfonylhydrazones: Design, synthesis and investigation of ectonucleotidase (ALP & e5'NT) inhibition activities. Bioorg Chem 2020; 100:103827. [PMID: 32402802 DOI: 10.1016/j.bioorg.2020.103827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 01/06/2023]
Abstract
Medicinal importance of the sulfonylhydrazones is well-evident owing to their binding ability with zinc containing metalloenzymes. In the present study, we have synthesized different series of sulfonylhydrazones by using facile synthetic methods in good to excellent yield. All the successfully prepared sulfonylhydrazones were screened for ectonucleotidase (ALP & e5'NT) inhibitory activity. Among the chromen-2-one scaffold based sulfonylhydrazones, the compounds 7 was found to be most potent inhibitor for h-TNAP (human tissue non-specific alkaline phosphatase) and h-IAP (human intestinal alkaline phosphatase) with IC50 values of 1.02 ± 0.13 and 0.32 ± 0.0 3 µM respectively, compared with levamisole (IC50 = 25.2 ± 1.90 µM for h-TNAP) and l-phenylalanine (IC50 = 100 ± 3.00 µM for h-IAP) as standards. Further, the chromen-2-one based molecule 5a showed excellent activity against h-ecto 5'-NT (human ecto-5'-nucleotidase) with IC50 value of 0.29 ± 0.004 µM compared to standard, sulfamic acid (IC50 = 42.1 ± 7.8 µM). However, among the series of phenyl ring based sulfonylhydrazones, compound 9d was found to be most potent against h-TNAP and h-IAP with IC50 values of 0.85 ± 0.08 and 0.52 ± 0.03 µM, respectively. Moreover, in silico studies were also carried to demonstrate their putative binding with the target enzymes. The potent compounds 5a, 7, and 9d against different ectonucleotidases (h-ecto 5'-NT, h-TNAP, h-IAP) could potentially serve as lead for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Hafiza Amna Younus
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Pakistan
| | - Abdul Hameed
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Pakistan; Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Siraj Khan
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Farwa Batool
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Habsah Mohamad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Pakistan.
| |
Collapse
|
20
|
Lallès JP. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev 2020; 77:710-724. [PMID: 31086953 DOI: 10.1093/nutrit/nuz015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, much new data on intestinal alkaline phosphatase (IAP) have been published, and major breakthroughs have been disclosed. The aim of the present review is to critically analyze the publications released over the last 5 years. These breakthroughs include, for example, the direct implication of IAP in intestinal tight junction integrity and barrier function maintenance; chronic intestinal challenge with low concentrations of Salmonella generating long-lasting depletion of IAP and increased susceptibility to inflammation; the suggestion that genetic mutations in the IAP gene in humans contribute to some forms of chronic inflammatory diseases and loss of functional IAP along the gut and in stools; stool IAP as an early biomarker of incipient diabetes in humans; and omega-3 fatty acids as direct inducers of IAP in intestinal tissue. Many recent papers have also explored the prophylactic and therapeutic potential of IAP and other alkaline phosphatase (AP) isoforms in various experimental settings and diseases. Remarkably, nearly all data confirm the potent anti-inflammatory properties of (I)AP and the negative consequences of its inhibition on health. A simplified model of the body AP system integrating the IAP compartment is provided. Finally, the list of nutrients and food components stimulating IAP has continued to grow, thus emphasizing nutrition as a potent lever for limiting inflammation.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France, and the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| |
Collapse
|
21
|
Zaher DM, El‐Gamal MI, Omar HA, Aljareh SN, Al‐Shamma SA, Ali AJ, Zaib S, Iqbal J. Recent advances with alkaline phosphatase isoenzymes and their inhibitors. Arch Pharm (Weinheim) 2020; 353:e2000011. [DOI: 10.1002/ardp.202000011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Dana M. Zaher
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
| | - Mohammed I. El‐Gamal
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
- College of PharmacySharjah United Arab Emirates
- Department of Medicinal ChemistryFaculty of PharmacyMansoura Egypt
| | - Hany A. Omar
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
- College of PharmacySharjah United Arab Emirates
- Department of PharmacologyFaculty of PharmacyBeni‐Suef Egypt
| | | | | | - Aya J. Ali
- College of PharmacySharjah United Arab Emirates
| | - Sumera Zaib
- Centre for Advanced Drug ResearchCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug ResearchCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
| |
Collapse
|
22
|
Substituted phenyl[(5-benzyl-1,3,4-oxadiazol-2-yl)sulfanyl]acetates/acetamides as alkaline phosphatase inhibitors: Synthesis, computational studies, enzyme inhibitory kinetics and DNA binding studies. Bioorg Chem 2019; 90:103108. [PMID: 31284102 DOI: 10.1016/j.bioorg.2019.103108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/23/2022]
Abstract
Substituted phenyl[(5-benzyl-1,3,4-oxadiazol-2-yl)sulfanyl]acetates/acetamides 9a-j were synthesized as alkaline phosphatase inhibitors. Phenyl acetic acid 1 through a series of reactions was converted into 5-benzyl-1,3,4-oxadiazole-2-thione 4. The intermediate oxadiazole 4 was then reacted with chloroacetyl derivatives of phenols 6a-f and anilines derivatives 8a-d to afford the title oxadiazole derivatives 9a-j. All of the title compounds 9a-j were evaluated for their inhibitory activity against human alkaline phosphatise (ALP). It was found that compounds 9a-j exhibited good to excellent alkaline phosphatase inhibitory activity especially 9h displayed potent activity with IC50 value 0.420 ± 0.012 µM while IC50 value of standard (KH2PO4) was 2.80 µM. The enzyme inhibitory kinetics of most potent inhibitor 9h was determined by Line-weaever Burk plots showing non-competitive mode of binding with enzyme. Molecular docking studies were performed against alkaline phosphatase enzyme (1EW2) to check the binding affinity of the synthesized compounds 9a-j against target protein. The compound 9h exhibited excellent binding affinity having binding energy value (-7.90 kcal/mol) compared to other derivatives. The brine shrimp viability assay results proved that derivative 9h was non-toxic at concentration used for enzyme assay. The lead compound 9h showed LD50 106.71 µM while the standard potassium dichromate showed LD50 0.891 µM. The DNA binding interactions of the synthesized compound 9h was also determined experimentally by spectrophotometric and electrochemical methods. The compound 9h was found to bind with grooves of DNA as depicted by both UV-Vis spectroscopy and cyclic voltammetry with binding constant values 7.83 × 103 and 7.95 × 103 M-1 respectively revealing significant strength of 9h-DNA complex. As dry lab and wet lab results concise each other it was concluded that synthesized compounds, especially compound 9h may serve as lead compound to design most potent inhibitors of human ALP.
Collapse
|
23
|
Ashraf A, Ejaz SA, Rahman SU, Siddiqui WA, Arshad MN, Lecka J, Sévigny J, Zayed MEM, Asiri AM, Iqbal J, Hartinger CG, Hanif M. Hybrid compounds from chalcone and 1,2-benzothiazine pharmacophores as selective inhibitors of alkaline phosphatase isozymes. Eur J Med Chem 2018; 159:282-291. [DOI: 10.1016/j.ejmech.2018.09.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
|
24
|
Iqbal J, Ejaz SA, Saeed A, Al-Rashida M. Detailed investigation of anticancer activity of sulfamoyl benz(sulfon)amides and 1H-pyrazol-4-yl benzamides: An experimental and computational study. Eur J Pharmacol 2018; 832:11-24. [PMID: 29763580 DOI: 10.1016/j.ejphar.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
Abstract
Cancer is the second leading cause of mortality worldwide. Therapeutic approach to cancer is a multi-faceted one, whereby many cellular/enzymatic pathways have been discovered as important drug targets for the treatment of cancer. A major disadvantage of most of the currently available anticancer drugs is their non-selective cytotoxicity towards cancerous as well as healthy cells. Another major hurdle in cancer therapy is the development of resistance to anticancer drugs. This necessitates the discovery of new molecules with potent and selective cytotoxic activity towards only cancerous cells, with minimum or no damage to the normal/healthy cells. Herein we report detailed investigation into the anticancer activity of sulfamoyl benz(sulfon)amides (1a-1g, 2a-2k) and 1H-pyrazol-4-yl benzamides (3a-3j) against three cancer cell lines, breast cancer cells (MCF-7), bone-marrow cancer cells (K-562) and cervical cancer cells (HeLa). For comparison, screening against healthy baby hamster kidney cells (BHK-21) was carried out. All compounds exhibited selective cytotoxicity towards cancerous cells. Cell cycle analysis was carried out using flow cytometry, followed by fluorescence microscopic analysis. DNA interaction and docking studies were also carried out.
Collapse
Affiliation(s)
- Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
| | - Syeda Abida Ejaz
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
25
|
Channar PA, Afzal S, Ejaz SA, Saeed A, Larik FA, Mahesar PA, Lecka J, Sévigny J, Erben MF, Iqbal J. Exploration of carboxy pyrazole derivatives: Synthesis, alkaline phosphatase, nucleotide pyrophosphatase/phosphodiesterase and nucleoside triphosphate diphosphohydrolase inhibition studies with potential anticancer profile. Eur J Med Chem 2018; 156:461-478. [DOI: 10.1016/j.ejmech.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022]
|
26
|
Sajid-Ur-Rehman, Saeed A, Saddique G, Ali Channar P, Ali Larik F, Abbas Q, Hassan M, Raza H, Fattah TA, Seo SY. Synthesis of sulfadiazinyl acyl/aryl thiourea derivatives as calf intestinal alkaline phosphatase inhibitors, pharmacokinetic properties, lead optimization, Lineweaver-Burk plot evaluation and binding analysis. Bioorg Med Chem 2018; 26:3707-3715. [PMID: 29884581 DOI: 10.1016/j.bmc.2018.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023]
Abstract
To seek the new medicinal potential of sulfadiazine drug, the free amino group of sulfadiazine was exploited to obtain acyl/aryl thioureas using simple and straightforward protocol. Acyl/aryl thioureas are well recognized bioactive pharmacophore containing moieties. A new series (4a-4j) of sulfadiazine derived acyl/aryl thioureas was synthesized and characterized through spectroscopic and elemental analysis. The synthesized derivatives 4a-4j were subjected to calf intestinal alkaline phosphatase (CIAP) activity. The derivative 4a-4j showed better inhibition potential compared to standard monopotassium phosphate (MKP). The compound 4c exhibited higher potential in the series with IC50 0.251 ± 0.012 µM (standard KH2PO4 4.317 ± 0.201 µM). Lineweaver-Burk plots revealed that most potent derivative 4c inhibition CIAP via mixed type pathway. Pharmacological investigations showed that synthesized compounds 4a-4j obey Lipinsk's rule. ADMET parameters evaluation predicted that these molecule show significant lead like properties with minimum possible toxicity and can serve as templates in drug designing. The synthetic compounds show none mutagenic and irritant behavior. Molecular docking analysis showed that compound 4c interacts with Asp273, His317 and Arg166 amino acid residues.
Collapse
Affiliation(s)
- Sajid-Ur-Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Gufran Saddique
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | | | - Fayaz Ali Larik
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Qamar Abbas
- Department of Physiology, University of Sindh, Jamshoro, Pakistan
| | - Mubashir Hassan
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 314-701, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 314-701, Republic of Korea
| | | | - Sung-Yum Seo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 314-701, Republic of Korea
| |
Collapse
|
27
|
Abstract
AIM The similarity in the biological function of the bioisosteric pair, carboxyl and sulfonamide functional groups, is studied using the quantitative tool, average electron density of the bioisosteric moiety in drug molecules and the qualitative tool, electrostatic potential. Results/methodology: Five different capping groups (methyl, phenyl, chlorine, hydrogen and amine) were considered to investigate the effect of the environment on the properties of the bioisosteres. The molecules were considered in their neutral and anionic forms to account for the change in pH depending on the medium of the drug-receptor interactions. CONCLUSION The new developed approach, average electron density, is not only advantageous as a qualitative descriptor, it is also more consistent compared with the conventionally accepted method, electrostatic potential, especially for the anions.
Collapse
|
28
|
Petrosyan A, Ghochikyan TV, Ejaz SA, Mardiyan ZZ, Khan SU, Grigoryan T, Gevorgyan A, Samvelyan MA, Galstyan AS, Parpart S, Rahman Q, Iqbal J, Langer P. Synthesis of Alkynylated Dihydrofuran-2(3 H)-ones as Potent and Selective Inhibitors of Tissue Non-Specific Alkaline Phosphatase. ChemistrySelect 2017. [DOI: 10.1002/slct.201700339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andranik Petrosyan
- Institut für Chemie; Universität Rostock; Albert Einstein Str. 3a 18059 Rostock Germany
- Faculty of Pharmacology and Chemistry; Yerevan State University; Alex Manoogian 1 0025 Yerevan Armenia
- Leibniz-Institut für Katalyse; Universität Rostock e.V.; Albert Einstein Str. 29a 18059 Rostock Germany
| | - Tariel V. Ghochikyan
- Faculty of Pharmacology and Chemistry; Yerevan State University; Alex Manoogian 1 0025 Yerevan Armenia
| | - Syeda Abida Ejaz
- Centre for Advanced Drug Research; COMSATS Institute of Information Technology; 22060 Abbottabad Pakistan
| | - Zorayr Z. Mardiyan
- Institut für Chemie; Universität Rostock; Albert Einstein Str. 3a 18059 Rostock Germany
- Faculty of Pharmacology and Chemistry; Yerevan State University; Alex Manoogian 1 0025 Yerevan Armenia
| | - Shafi Ullah Khan
- Centre for Advanced Drug Research; COMSATS Institute of Information Technology; 22060 Abbottabad Pakistan
| | - Tatevik Grigoryan
- Institut für Chemie; Universität Rostock; Albert Einstein Str. 3a 18059 Rostock Germany
- Faculty of Pharmacology and Chemistry; Yerevan State University; Alex Manoogian 1 0025 Yerevan Armenia
| | - Ashot Gevorgyan
- Institut für Chemie; Universität Rostock; Albert Einstein Str. 3a 18059 Rostock Germany
| | - Melanya A. Samvelyan
- Faculty of Pharmacology and Chemistry; Yerevan State University; Alex Manoogian 1 0025 Yerevan Armenia
| | - Armen S. Galstyan
- Faculty of Pharmacology and Chemistry; Yerevan State University; Alex Manoogian 1 0025 Yerevan Armenia
| | - Silvio Parpart
- Institut für Chemie; Universität Rostock; Albert Einstein Str. 3a 18059 Rostock Germany
| | - Qamar Rahman
- Amity University, Lucknow Campus; Viraj Khand-5, Gomti Nagar Lucknow - 226010 India
| | - Jamshed Iqbal
- Centre for Advanced Drug Research; COMSATS Institute of Information Technology; 22060 Abbottabad Pakistan
| | - Peter Langer
- Institut für Chemie; Universität Rostock; Albert Einstein Str. 3a 18059 Rostock Germany
- Leibniz-Institut für Katalyse; Universität Rostock e.V.; Albert Einstein Str. 29a 18059 Rostock Germany
| |
Collapse
|
29
|
Characterization and inhibition studies of tissue nonspecific alkaline phosphatase by aminoalkanol derivatives of 1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.0 2,6]dec-8-ene-3,5,10-trione, new competitive and non-competitive inhibitors, by capillary electrophoresis. J Pharm Biomed Anal 2017. [PMID: 28628862 DOI: 10.1016/j.jpba.2017.05.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The article describes the inhibitory effect of two new aminoalkanol derivatives on the enzymatic kinetic of tissue non-specific alkaline phosphatase with use of capillary zone electrophoresis to evaluate the inhibitory effect. This technique allows to investigate of the enzymatic kinetic by the measure of the amounts of the substrate and product in the presence of compound (I) or (II) in the reaction mixture. The separation process was conducted using an eCAP fused-silica capillary. The detector was set at 200nm. The best parameters for the analysis were: 25mM sodium dihydrogen phosphate adjusted to pH=2.5, temperature 25°C, and voltage -15kV. Lineweaver-Burk plots were constructed and determined by comparison of the Km, of alkaline phosphatase in the presence of inhibitor (I) or (II) with the Km in a solution without inhibitor. The influence of replacement the propylamine group by the dimethylamine group on tissue non-specific alkaline phosphatase inhibition activity of new derivatives (I) and (II) was investigated. The tested compounds (I) and (II) were found to be tissue non-specific alkaline phosphatase inhibitors. Detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase for compound (I) and non-competitive mode of inhibition for compound (II).
Collapse
|
30
|
Salar U, Khan KM, Iqbal J, Ejaz SA, Hameed A, al-Rashida M, Perveen S, Tahir MN. Coumarin sulfonates: New alkaline phosphatase inhibitors; in vitro and in silico studies. Eur J Med Chem 2017; 131:29-47. [DOI: 10.1016/j.ejmech.2017.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
|
31
|
Facile dimethyl amino group triggered cyclic sulfonamides synthesis and evaluation as alkaline phosphatase inhibitors. Bioorg Chem 2017; 71:10-18. [DOI: 10.1016/j.bioorg.2017.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/10/2016] [Accepted: 01/15/2017] [Indexed: 11/22/2022]
|
32
|
Synthesis, alkaline phosphatase inhibition studies and molecular docking of novel derivatives of 4-quinolones. Eur J Med Chem 2017; 126:408-420. [DOI: 10.1016/j.ejmech.2016.11.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 11/17/2022]
|
33
|
Channar PA, Shah SJA, Hassan S, Nisa ZU, Lecka J, Sévigny J, Bajorath J, Saeed A, Iqbal J. Isonicotinohydrazones as inhibitors of alkaline phosphatase and ecto-5'-nucleotidase. Chem Biol Drug Des 2016; 89:365-370. [PMID: 27589035 DOI: 10.1111/cbdd.12861] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/16/2016] [Accepted: 08/13/2016] [Indexed: 12/16/2022]
Abstract
A series of isonicotinohydrazide derivatives was synthesized and tested against recombinant human and rat ecto-5'-nucleotidases (h-e5'NT and r-e5'NT) and alkaline phosphatase isozymes including both bovine tissue-non-specific alkaline phosphatase (b-TNAP) and tissue-specific calf intestinal alkaline phosphatase (c-IAP). These enzymes are implicated in vascular calcifications, hypophosphatasia, solid tumors, and cancers, such as colon, lung, breast, pancreas, and ovary. All tested compounds were active against both enzymes. The most potent inhibitor of h-e5'NT was derivative (E)-N'-(1-(3-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethylidene)isonicotinohydrazide (3j), whereas derivative (E)-N'-(4-hydroxy-3-methoxybenzylidene)isonicotinohydrazide (3g) exhibited significant inhibitory activity against r-e5'NT. In addition, the derivative (E)-N'-(4'-chlorobenzylidene)isonicotinohydrazide (3a) was most potent inhibitor against calf intestinal alkaline phosphatase and the derivative (E)-N'-(4-hydroxy-3-methoxybenzylidene)isonicotinohydrazide (3g) was found to be most potent inhibitor of bovine tissue-non-specific alkaline phosphatase. Furthermore, putative binding modes of potent compounds against e5'NT (human and rat e5'NT) and AP (including b-TNAP and c-IAP) were determined computationally.
Collapse
Affiliation(s)
| | - Syed Jawad Ali Shah
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Sidra Hassan
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Zaib Un Nisa
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| |
Collapse
|
34
|
Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, Khan NA. Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana). Appl Microbiol Biotechnol 2016; 101:253-286. [PMID: 27743045 DOI: 10.1007/s00253-016-7872-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/21/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022]
Abstract
Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential sources of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic Escherichia coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analysed. Among hundreds of compounds, only a few homologous compounds were identified that contained the isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole-containing analogs, sulfonamides, furanones, and flavanones and known to possess broad-spectrum antimicrobial properties and anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization, and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs.
Collapse
Affiliation(s)
- Salwa Mansur Ali
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Ayaz Anwar
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Peter J Heard
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
35
|
al-Rashida M, Batool G, Sattar A, Ejaz SA, Khan S, Lecka J, Sévigny J, Hameed A, Iqbal J. 2-Alkoxy-3-(sulfonylarylaminomethylene)-chroman-4-ones as potent and selective inhibitors of ectonucleotidases. Eur J Med Chem 2016; 115:484-94. [DOI: 10.1016/j.ejmech.2016.02.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
36
|
Electrostatic potentials and average electron densities of bioisosteres in methylsquarate and acetic acid. Future Med Chem 2016; 8:361-71. [DOI: 10.4155/fmc.16.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The bioisosterism in −CO2H and −C4HO3 is exploited using the quantum theory of atoms in molecules and molecular electrostatic potentials (ESP). Results & discussion: Bioisosteres in methylsquarate and acetic acid, in the neutral/anionic forms, have average electron densities that differ by less than 2% (i.e., ∼0.01 atomic units) while irrespective of the capping group. The topography of the ESP reveals similarities in the case of the neutral species but not in the anionic forms. Conclusion: The nonclassical bioisosteres in methylsquarate and acetic acid have average electron densities that are similar and relatively insensitive to the ionization state (neutral or anionic) or its studied capping group (H, CH3, Cl or phenyl). The ESP reveals similarities in the topography of neutral molecules.
Collapse
|
37
|
Ivanov A, Boldt S, Nisa ZU, Ali Shah SJ, Ehlers P, Villinger A, Schneider G, Wölfling J, Rahman Q, Iqbal J, Langer P. Synthesis and phosphatase inhibitory activity of 3-alkynylestrones and their derivatives. RSC Adv 2016. [DOI: 10.1039/c5ra25558a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A range of 3-alkynylated 3-deoxy-estrones were prepared by Sonogashira reactions and transformed into estrone derived diones and quinoxalines.
Collapse
Affiliation(s)
- Anton Ivanov
- Institut für Chemie
- Universität Rostock
- 18059 Rostock
- Germany
| | | | - Zaib un Nisa
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad
- Pakistan
| | - Syed Jawad Ali Shah
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad
- Pakistan
| | - Peter Ehlers
- Institut für Chemie
- Universität Rostock
- 18059 Rostock
- Germany
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
| | | | - Gyula Schneider
- Department of Organic Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| | - János Wölfling
- Department of Organic Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| | - Qamar Rahman
- Institut für Chemie
- Universität Rostock
- 18059 Rostock
- Germany
- Amity University
| | - Jamshed Iqbal
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad
- Pakistan
| | - Peter Langer
- Institut für Chemie
- Universität Rostock
- 18059 Rostock
- Germany
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
| |
Collapse
|
38
|
Khan I, Shah SJA, Ejaz SA, Ibrar A, Hameed S, Lecka J, Millán JL, Sévigny J, Iqbal J. Investigation of quinoline-4-carboxylic acid as a highly potent scaffold for the development of alkaline phosphatase inhibitors: synthesis, SAR analysis and molecular modelling studies. RSC Adv 2015. [DOI: 10.1039/c5ra12455g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study is directed towards the development of quinoline-4-carboxylic acid derivatives as potential alkaline phosphatase inhibitors.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Syed Jawad Ali Shah
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Syeda Abida Ejaz
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Aliya Ibrar
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Shahid Hameed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologie
- Faculté de Médecine
- Université Laval
- Québec
- Canada
| | - Jose Luis Millán
- Sanford Children's Health Research Center
- Sanford-Burnham Medical Research Institute
- La Jolla
- USA
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie
- Faculté de Médecine
- Université Laval
- Québec
- Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| |
Collapse
|
39
|
Khan I, Ibrar A, Ejaz SA, Khan SU, Shah SJA, Hameed S, Simpson J, Lecka J, Sévigny J, Iqbal J. Influence of the diversified structural variations at the imine functionality of 4-bromophenylacetic acid derived hydrazones on alkaline phosphatase inhibition: synthesis and molecular modelling studies. RSC Adv 2015. [DOI: 10.1039/c5ra14836g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Putative binding mode of 4g inside the active pocket of h-PLAP.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Aliya Ibrar
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Syeda Abida Ejaz
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Shafi Ullah Khan
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Syed Jawad Ali Shah
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Shahid Hameed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Jim Simpson
- Department of Chemistry
- University of Otago
- Dunedin
- New Zealand
| | - Joanna Lecka
- Department of Microbiology-Infectiology and Immunology
- Faculty of Medicine
- Centre de Recherche du CHU de Québec – Université Laval
- Québec
- Canada
| | - Jean Sévigny
- Department of Microbiology-Infectiology and Immunology
- Faculty of Medicine
- Centre de Recherche du CHU de Québec – Université Laval
- Québec
- Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| |
Collapse
|