1
|
Yaqoob S, Khan FA, Tanveer N, Ali S, Hameed A, El-Seedi H, Jiang ZH, Wang Y. Exploring the Potential of Pyridine Carboxylic Acid Isomers to Discover New Enzyme Inhibitors. Drug Des Devel Ther 2025; 19:4039-4091. [PMID: 40420948 PMCID: PMC12104547 DOI: 10.2147/dddt.s513461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025] Open
Abstract
Pyridine carboxylic acid isomers - picolinic acid, nicotinic acid, and isonicotinic acid - have historically resulted in a plethora of drugs against tuberculosis, cancer, diabetes, Alzheimer's, angina, dementia, depression, allergy, respiratory acidosis, psoriasis, acne, hypertension, hyperlipidemia, HIV/AIDS (specifically HIV-1), among others. Despite the large number of therapeutic agents derived from these isomers, the research involving these scaffolds is still exceptionally active. The current surge in enzyme inhibitory activities by the compounds derived from them has further created space for the discovery of new drug candidates. This review focuses on the medicinal relevance of these isomers by analyzing structure-activity relationships (SARs) and highlighting emerging trends from patents filed over the last decade. Notably, pharmaceutical giants like Bayer, Bristol-Myers Squibb, Novartis, Curis, and Aurigene have developed enzyme inhibitors based on these scaffolds with nanomolar potency. The role of these isomers in the development of antiviral agents, including protease inhibitors, is also discussed. Overall, this review brings to the readers, a pragmatic opportunity to comprehend the recent literature, highlighting the scaffolds' importance in the design of new enzyme inhibitors. Furthermore, it discusses the structure-activity relationship of pyridine carboxylic acid-derived compounds and highlights the current patenting trends in medicinal chemistry.
Collapse
Affiliation(s)
- Sana Yaqoob
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Farooq-Ahmad Khan
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Nimra Tanveer
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Shujaat Ali
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Abdul Hameed
- Department of Chemistry, University of Sahiwal, Sahiwal, Punjab, Pakistan
| | - Hesham El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Yan Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| |
Collapse
|
2
|
Haque A, Alenezi KM, Rasheed MSMA, Rahman MA, Anwar S, Ahamad S, Gupta D. 4,6-Disubstituted pyrimidine-based microtubule affinity-regulating kinase 4 (MARK4) inhibitors: synthesis, characterization, in-vitro activity and in-silico studies. Front Pharmacol 2025; 15:1517504. [PMID: 39902071 PMCID: PMC11788324 DOI: 10.3389/fphar.2024.1517504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impacts the cognitive function and memory of a person. Despite the significant research efforts, the ability to completely prevent or effectively treat AD and its related dementias remains limited. Protein kinases are integral to AD pathology and represent promising targets for therapeutic intervention. Methods A series of pyrimidine-based compounds 4-(4-(arylsulfonyl)piperazin-1-yl)-6-(thiophen-3-yl)pyrimidine derivatives (8-14) were synthesized and characterised. ATPase inhibition was carried out against the MARK4 enzyme. Molecular docking and molecular dynamics (MD) simulation at 500 ns was carried out against MARK4 (PDB: 5ES1). The drug-likeness feature and toxicity of the molecules were evaluated using QikProp and other tools. Results Compounds were synthesized following a multi-step approach and characterized using multi-nuclear magnetic resonance (1H/13C-NMR) and mass spectrometry. ATPase inhibition assay of the compounds against MARK4 showed an IC50 value in the micromolar (μM) range. The results of the docking studies were consistent with the in-vitro experiments and identified (9) and (14) as the candidates with the highest affinity towards MARK4. MD simulation further supported these results, showing that the binding of ligands stabilises the target protein. Conclusion Using experimental and theoretical approaches, we demonstrated that the reported class of pyrimidine derivatives are an excellent starting point for developing the next-generation anti-AD drugs.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Ha’il, Saudi Arabia
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Science, University of Hail, Ha’il, Saudi Arabia
| | | | - Md. Ataur Rahman
- Chemistry Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
3
|
Salarinejad S, Seyfi S, Hayashi S, Moghimi S, Toolabi M, Taslimi P, Firoozpour L, Usui T, Foroumadi A. Design, synthesis, and biological evaluation of new biaryl derivatives of cycloalkyl diacetamide bearing chalcone moiety as type II c-MET kinase inhibitors. Mol Divers 2024; 28:4167-4180. [PMID: 38466553 DOI: 10.1007/s11030-024-10807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/05/2024] [Indexed: 03/13/2024]
Abstract
Many human cancers have been associated with the deregulation of the mesenchymal-epithelial transition factor tyrosine kinase (MET) receptor, a promising drug target for anticancer drug discovery. Herein, we report the discovery of a novel structure of potent chalcone-based derivatives type II c-Met inhibitors which are comparable to Foretinib (IC50 = 14 nM) as a potent reference drug. Based on our design strategy, we also expected an anti-tubulin activity for the compounds. However, the weak inhibitory effects on microtubules were confirmed by cell cycle analyses implicated that the observed cytotoxicity against HeLa cells probably was not derived from tubulin inhibition. Compounds 14q and 14k with IC50 values of 24 nM and 45 nM, respectively, demonstrated favorable inhibition of MET kinase activity, and desirable bonding interactions in the ligand-MET enzyme complex stability in molecular docking studies.
Collapse
Affiliation(s)
- Somayeh Salarinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Seyfi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Seiko Hayashi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Takeo Usui
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Long L, Zhang H, Zhou Z, Duan L, Fan D, Wang R, Xu S, Qiao D, Zhu W. Pyrrole-containing hybrids as potential anticancer agents: An insight into current developments and structure-activity relationships. Eur J Med Chem 2024; 273:116470. [PMID: 38762915 DOI: 10.1016/j.ejmech.2024.116470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Cancer poses a significant threat to human health. Therefore, it is urgent to develop potent anti-cancer drugs with excellent inhibitory activity and no toxic side effects. Pyrrole and its derivatives are privileged heterocyclic compounds with significant diverse pharmacological effects. These compounds can target various aspects of cancer cells and have been applied in clinical settings or are undergoing clinical trials. As a result, pyrrole has emerged as a promising drug scaffold and has been further probed to get novel entities for the treatment of cancer. This article reviews recent research progress on anti-cancer drugs containing pyrrole. It focuses on the mechanism of action, biological activity, and structure-activity relationships of pyrrole derivatives, aiming to assist in designing and synthesizing innovative pyrrole-based anti-cancer compounds.
Collapse
Affiliation(s)
- Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - ZhiHui Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
5
|
Mohareb RM, Mukhtar S, Parveen H, Abdelaziz MA, Alwan ES. Anti-proliferative, Morphological and Molecular Docking Studies of New Thiophene Derivatives and their Strategy in Ionic Liquids Immobilized Reactions. Anticancer Agents Med Chem 2024; 24:691-708. [PMID: 38321904 DOI: 10.2174/0118715206262307231122104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND A number of research were conducted on the pyran and thiophene derivatives, which were attributed to have a wide range of biological activities, including anti-plasmodial, as well as acting as caspase, hepatitis C and cancer inhibitors. OBJECTIVE The multicomponent reactions of the 5-acetyl-2-amino-4-(phenylamino)-thiophene-3-carbonitrile produced biologically active target molecules like pyran and their fused derivatives. Comparison between regular catalytic multi-component reactions and solvent-free ionic liquids immobilized multicomponent was studied. METHODS The multicomponent reactions in this work were carried out not only under the reflux conditions using triethylamine as a catalyst but also in solvent-free ionic liquids immobilized magnetic nanoparticles (MNPs) catalysts. RESULTS Through this work, thirty-one new compounds were synthesized and characterized and were evaluated toward the six cancer cell lines, namely A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460. The most active compounds were further screened toward seventeen cancer cell lines classified according to the disease. In addition, the effect of compound 11e on the A549 cell line was selected to make further morphological changes in the cell line. The Molecular docking studies of 11e and 11f were carried and promising results were obtained. CONCLUSION The synthesis of heterocyclic compounds derived from thiophene derivatives has been receiving significant attention. After a detailed optimizing study, it has been found that the solvent-free ionic liquids immobilized multi-component syntheses afforded a high yield of compounds, opening a greener procedure for this synthetically relevant transformation. Many of the synthesized compounds can be considered anticancer agents, enhancing further studies.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, A.R. Egypt
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Ensaf S Alwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
6
|
Fang F, Xia J, Quan S, Chen S, Deng GJ. Metal- and Solvent-Free Synthesis of Substituted Pyrimidines via an NH 4I-Promoted Three-Component Tandem Reaction. J Org Chem 2023; 88:14697-14707. [PMID: 37773063 DOI: 10.1021/acs.joc.3c01700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A facile and practical approach for the preparation of substituted pyrimidines from ketones, NH4OAc, and N,N-dimethylformamide dimethyl acetal has been described. This NH4I-promoted three-component tandem reaction affords a broad range of substituted pyrimidines in acceptable yields under metal- and solvent-free conditions. The present methodology features the advantages of simple and easily available starting materials, metal- and solvent-free conditions, a broad substrate scope with good functional group tolerance, and gram-scale synthesis.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, P. R. China
| | - Jie Xia
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Siying Quan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
7
|
Alzain AA, Elbadwi FA, Mohamed SGA, Kushk KSA, Bafarhan RI, Alswiri SA, Khushaim SN, Hussein HGA, Abuhajras MYA, Mohamed GA, Ibrahim SRM. Exploring marine-derived compounds for MET signalling pathway inhibition in cancer: integrating virtual screening, ADME profiling and molecular dynamics investigations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:1003-1021. [PMID: 38014514 DOI: 10.1080/1062936x.2023.2284917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
The MET signalling pathway regulates fundamental cellular processes such as growth, division, and survival. While essential for normal cell function, dysregulation of this pathway can contribute to cancer by triggering uncontrolled proliferation and metastasis. Targeting MET activity holds promise as an effective strategy for cancer therapy. Among potential sources of anti-cancer agents, marine organisms have gained attention. In this study, we screened 47,450 natural compounds derived from marine sources within the CMNPD database against the Met crystal structure. By employing HTVS, SP, and XP docking modes, we identified three compounds (CMNPD17595, CMNPD14026, and CMNPD19696) that outperformed a reference molecule in binding affinity to the Met structure. These compounds demonstrated desirable ADME properties. Molecular Dynamics (MD) simulations for 200 ns confirmed the stability of their interactions with Met. Our findings highlight CMNPD17595, CMNPD14026, and CMNPD19696 as potential inhibitors against Met-dependent cancers. Additionally, these compounds offer new avenues for drug development, leveraging their inhibitory effects on Met to combat carcinogenesis.
Collapse
Affiliation(s)
- A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - F A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - S G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Egypt
| | - K S A Kushk
- Operations Sales Department, United Pharmaceuticals & Medical Supply Co. Ltd, Al Madinah Al-Munawwarah, Saudi Arabia
| | - R I Bafarhan
- Pharmaceutical Care Services, Medical Department, Private Sector, Tabuk, Saudi Arabia
| | - S A Alswiri
- Pharmaceutical Company, Medical Department, Private Sector, Al Madinah Al-Munawwarah, Saudi Arabia
| | - S N Khushaim
- College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - H G A Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - M Y A Abuhajras
- Medical Claims Department, Bupa Arabia, Prince Saud AlFaisal, Jeddah, Saudi Arabia
| | - G A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J Hematol Oncol 2022; 15:89. [PMID: 35799213 PMCID: PMC9263050 DOI: 10.1186/s13045-022-01310-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are a family of receptor protein tyrosine kinases that play an important role in the regulation of tumor-induced angiogenesis. Currently, VEGFR inhibitors have been widely used in the treatment of various tumors. However, current VEGFR inhibitors are limited to a certain extent due to limited clinical efficacy and potential toxicity, which hinder their clinical application. Thus, the development of new strategies to improve the clinical outcomes and minimize the toxic effects of VEGFR inhibitors is required. Given the synergistic effect of VEGFR and other therapies in tumor development and progression, VEGFR dual-target inhibitors are becoming an attractive approach due to their favorable pharmacodynamics, low toxicity, and anti-resistant effects. This perspective provides an overview of the development of VEGFR dual-target inhibitors from multiple aspects, including rational target combinations, drug discovery strategies, structure–activity relationships and future directions.
Collapse
|
9
|
Geetha R, Meera MR, Vijayakumar C, Premkumar R, Arul Prakash P, Mohamed Jaabir MS. Synthesis, Spectroscopic Characterization, Molecular Docking and in Vitro Cytotoxicity Evaluation Studies on 6-Methoxy-8-Nitroquinoline Hydrogen Sulphate: A Novel Cervical Cancer Drug. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2091619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- R. Geetha
- Department of Physics, St. Jude’s College, Thoothoor, Tamil Nadu, India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India)
| | - M. R. Meera
- Department of Physics, Sree Ayyappa College for Women, Nagercoil, Tamil Nadu, India
| | - C. Vijayakumar
- Department of Physics, St. Jude’s College, Kanyakumari, Tamil Nadu, India
| | - R. Premkumar
- PG and Research Department of Physics, N.M.S.S.V.N. College, Madurai, Tamil Nadu, India
| | - P. Arul Prakash
- Department of Biotechnology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - M. S. Mohamed Jaabir
- Department of Biotechnology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
10
|
Amariucai-Mantu D, Antoci V, Sardaru MC, Al Matarneh CM, Mangalagiu I, Danac R. Fused pyrrolo-pyridines and pyrrolo-(iso)quinoline as anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This work emphasizes the synthesis strategies and antiproliferative related properties of fused pyrrolo-pyridine (including indolizine and azaindoles) and pyrrolo-(iso)quinoline derivatives recently reported in literature.
Collapse
Affiliation(s)
| | - Vasilichia Antoci
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| | | | | | - Ionel Mangalagiu
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| | - Ramona Danac
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| |
Collapse
|
11
|
Li J, Chen S, Zhao Y, Gong H, Wang T, Ge X, Wang Y, Zhu C, Chen L, Dai F, Xie S, Wang C, Luo W. Design, Synthesis, and Biological Evaluation of Benzo[cd]indol-2(1H)-ones Derivatives as a Lysosome-Targeted Anti-metastatic Agent. Front Oncol 2021; 11:733589. [PMID: 34540699 PMCID: PMC8446683 DOI: 10.3389/fonc.2021.733589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023] Open
Abstract
Lysosomes have become a hot topic in tumor therapy; targeting the lysosome is therefore a promising strategy in cancer therapy. Based on our previous lysosome-targeted bio-imaging agent, homospermine-benzo[cd]indol-2(1H)-one conjugate (HBC), we further developed three novel series of polyamine- benzo[cd]indol-2(1H)-one conjugates. Among them, compound 15f showed potent inhibitory activity in hepatocellular carcinoma migration both in vitro and in vivo. Our study results showed that compound 15f entered the cancer cells via the polyamine transporter localized in the lysosomes and caused autophagy and apoptosis. The mechanism of action revealed that the crosstalk between autophagy and apoptosis induced by 15f was mutually reinforcing patterns. Besides, 15f also targeted lysosomes and exhibited stronger green fluorescence than HBC, which indicated its potential as an imaging agent. To summarize, compound 15f could be used as a valuable dual-functional lead compound for future development against liver-cancer metastasis and lysosome imaging.
Collapse
Affiliation(s)
- Jinghua Li
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Shuai Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Yancong Zhao
- The First Affiliated Hospital, Henan University, Kaifeng, China
| | - Huiyuan Gong
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Tong Wang
- Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiaoling Ge
- College of Chemistry and Chemical Engineering Henan University, Kaifeng, China
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering Henan University, Kaifeng, China
| | - Chenguang Zhu
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Liang Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Songqiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Valarmathi T, Premkumar R, Meera MR, Milton Franklin Benial A. Spectroscopic, quantum chemical and molecular docking studies on 1-amino-5-chloroanthraquinone: A targeted drug therapy for thyroid cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119659. [PMID: 33751957 DOI: 10.1016/j.saa.2021.119659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/07/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The DFT studies of the 1-Amino-5-chloro-anthraquinone (ACAQ) molecule have been carried out with extensive and accurate investigations of detailed vibrational and spectroscopic investigations and validated by experimentally. The optimized molecular structure and harmonic resonance frequencies were computed based on DFT/B3LYP method with 6-311G++(d,p) basis set using the Gaussian 09 program. The experimental and calculated vibrational wavenumbers were assigned on the basis of PED calculations using VEDA 4.0 program. The 13C NMR isotropic chemical shifts of the molecule were calculated using Gauge-Invariant-Atomic Orbital (GIAO) method in DMSO solution and compared with the experimental data. The absorption spectrum of the molecule was computed in liquid phase (ethanol), which exhibits л to л* electronic transition and compared with observed UV-Vis spectrum. Frontier molecular orbitals analysis shows the molecular reactivity and kinetic stability of the molecule. The Mulliken atomic charge distribution and molecular electrostatic potential surface analysis of the molecule validate the reactive site of the molecule. The natural bond orbital analysis proves the bioactivity of the molecule. Molecular docking analysis indicate that ACAQ molecule inhibits the action of c-Met Kinase protein, which is associated with the thyroid cancer. Hence, the present study pave the way for the development of novel drugs in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- T Valarmathi
- P.G. and Research Department of Physics, N.M.S.S.V.N. College, Madurai 625019, Tamil Nadu, India
| | - R Premkumar
- P.G. and Research Department of Physics, N.M.S.S.V.N. College, Madurai 625019, Tamil Nadu, India
| | - M R Meera
- Department of Physics, Sree Ayyappa College for Women, Chunkankadai, Kanyakumari 629003, Tamil Nadu, India
| | - A Milton Franklin Benial
- P.G. and Research Department of Physics, N.M.S.S.V.N. College, Madurai 625019, Tamil Nadu, India.
| |
Collapse
|
13
|
Mahmoud MAA, Alsharif MA, Mohareb RM. Synthesis and Anti-Proliferative Evaluations of New Heterocyclic Derivatives Using 5,6,8,9-Tetrahydropyrazolo[5,1-b]quinazolin-7(3H)-one Derivatives Derived from Cyclohexa-1,4-dione. Anticancer Agents Med Chem 2021; 21:468-486. [PMID: 32445457 DOI: 10.2174/1871520620666200523162549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recentlty, pyrazoloquinazoline derivatives acquired a special attention due to their wide range of pharmacological activities, especially therapeutic. Through the market, it was found that many pharmacological drugs containing the quinazoline nucleus were known. OBJECTIVE The aim of this work is to synthesize target molecules possessing not only anti-tumor activities but also kinase inhibitors. The target molecules were obtained through the synthesis of a series of 5,6,8,9- tetrahydropyrazolo[5,1-b]quinazolin-7(3H)-one derivatives 4a-i using the multi-component reactions of cyclohexane- 1,4-dione (1), the 5-amino-4-(2-arylhydrazono)-4H-pyrazol-3-ol derivatives 2a-c, the aromatic aldehydes 3a-c, respectively. The synthesized compounds were evaluated against c-Met kinase, PC-3 cell line, and different kinds of cancer cell lines together with normal cell line, tyrosine kinases, and Pim-1 kinase. METHODS Multi-component reactions were adopted using compound 1 to get different 5,6,8,9- tetrahydropyrazolo[5,1-b]quinazolin-7(3H)-one derivatives which underwent further heterocyclization reactions. The c-Met kinase activity of all compounds was evaluated using Homogeneous Time-Resolved Fluorescence (HTRF) assay, taking foretinib as the positive control. The anti-proliferative activity of all target compounds against the human prostatic cancer PC-3 cell line was measured using MTT assay using SGI-1776 as the reference drug. All the synthesized compounds were assessed for inhibitory activities against A549 (non-small cell lung cancer), H460 (human lung cancer), HT-29 (human colon cancer), and MKN-45 (human gastric cancer) cancer cell lines together with foretinib as the positive control by an MTT assay. RESULTS Antiproliferative evaluations and c-Met kinase, Pim-1 kinase inhibitions were performed for the synthesized compounds, where the varieties of substituents through the aryl ring and the thiophene moiety afforded compounds with high activities. CONCLUSION The compounds with high antiproliferative activity were tested towards c-Met and the results showed that compounds 4e, 4f, 4g, 4i, 6i, 6k, 6l, 8f, 8i, 10d, 10e, 10f, 10h, 12e, 12f, 12g, 12h, 12i, 14f, 14g, 14h, and 14i were the most potent compounds. A further selection of compounds for the Pim-1 kinase inhibition activity showed that compounds 4f, 6i, 6l, 8h, 8i, 8g, 10d, 12i, and 14f were the most active compounds to inhibit Pim-1.
Collapse
Affiliation(s)
- Mahmoud A A Mahmoud
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Mohareb RM, Milad YR, Mostafa BM, El-Ansary RA. New Approaches for the Synthesis of Heterocyclic Compounds Corporating Benzo[d]imidazole as Anticancer Agents, Tyrosine, Pim-1 Kinases Inhibitions and their PAINS Evaluations. Anticancer Agents Med Chem 2021; 21:327-342. [PMID: 32698742 DOI: 10.2174/1871520620666200721111230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzo[d]imidazoles are highly biologically active, in addition, they are considered as a class of heterocyclic compounds with many pharmaceutical applications. OBJECTIVE We are aiming in this work to synthesize target molecules that possess not only anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the benzo[d]imidazole derivatives followed by their heterocyclization reactions to produce anticancer target molecules. METHODS The 1-(1H-benzo[d]imidazol-2-yl)propan-2-one (3) and the ethyl 2-(1H-benzo[d]imidazol-2- yl)acetate (16) were used as the key starting material which reacted with salicylaldehyde to give the corresponding benzo[4,5]imidazo[1,2-a]quinoline derivatives. On the other hand, both of them were reacted with different reagents to give thiophene, pyran and benzo[4,5]imidazo[1,2-c]pyrimidine derivatives. The synthesized compounds were evaluated against the six cancer cell lines A549, HT-29, MKN-45, U87MG, SMMC-7721, and H460 together with inhibitions toward tyrosine kinases, c-Met kinase and prostate cancer cell line PC-3 using the standard MTT assay in vitro, with foretinib as the positive control. RESULTS Most of the synthesized compounds exhibited high inhibitions toward the tested cancer cell lines. In addition, tyrosine and Pim-1 kinases inhibitions were performed for the most active compounds where the variation of substituent through the aryl ring and heterocyclic ring afforded compounds with high activities. Our analysis showed that there is a strong correlation between the structure of the compound and the substituents of target molecules. CONCLUSION Our present research proved that the synthesized heterocyclic compounds with varieties of substituents have a strong impact on the activity of compounds. The evaluations through different cell lines and tyrosine kinases indicated that the compounds were the excellent candidates as anticancer agents. This could encourage doing further research within this field for the building of compounds with high inhibitions.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Yara R Milad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Bahaa M Mostafa
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Reem A El-Ansary
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Rhodamine-Based Arylpropenone Azo Dyes as Dual Chemosensor for Cu2+/Fe3+ Detection. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Shirvani P, Fassihi A. Molecular modelling study on pyrrolo[2,3-b]pyridine derivatives as c-Met kinase inhibitors: a combined approach using molecular docking, 3D-QSAR modelling and molecular dynamics simulation. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1810853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Pouria Shirvani
- Department of medicinal Chemistry, Isfahan University of Medical Science, Isfahan, Iran
| | - Afshin Fassihi
- Department of medicinal Chemistry, Isfahan University of Medical Science, Isfahan, Iran
- Bioinformatic Research Centre, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
17
|
Mohareb RM, Wardakhan WW, Abbas NS. Synthesis of Tetrahydrobenzo[ b]thiophene-3-carbohydrazide Derivatives as Potential Anti-cancer Agents and Pim-1 Kinase Inhibitors. Anticancer Agents Med Chem 2020; 19:1737-1753. [PMID: 30947678 DOI: 10.2174/1871520619666190402153429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/22/2018] [Accepted: 03/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tetrahydrobenzo[b]thiophene derivatives are well known to be biologically active compounds and many of them occupy a wide range of anticancer agent drugs. OBJECTIVE One of the main aim of this work was to synthesize target molecules not only possessing anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of 4,5,6,7- tetrahydrobenzo[b]thiophene-3-carbohydrazide derivatives using cyclohexan-1,4-dione and cyanoacetylhydrazine to give the 2-amino-6-oxo-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbohydrazide (3) as the key starting material for many heterocyclization reactions. METHODS Compound 3 was reacted with some aryldiazonium salts and the products were cyclised when reacted with either malononitrile or ethyl cyanoacetate. Thiazole derivatives were also obtained through the reaction of compound 3 with phenylisothiocyanate followed by heterocyclization with α-halocarbonyl derivatives. Pyrazole, triazole and pyran derivatives were also obtained. RESULTS The compounds obtained in this work were evaluated for their in-vitro cytotoxic activity against c-Met kinase, and the six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721). The results of anti-proliferative evaluations and c-Met kinase, Pim-1 kinse inhibitions revealed that some compounds showed high activities. CONCLUSION The most promising compounds 5b, 5c, 7c, 7d, 11b, 14a, 16b, 18b, 19, 21a, 23c, 23d and 23i against c-Met kinase were further investigated against the five tyrosin kinases (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Compounds 5b, 5c, 7d, 7e, 11b, 11c, 16c, 16d, 18c, 19, 23e, 23k and 23m were selected to examine their Pim-1 kinase inhibitions activity where compounds 7d, 7e, 11b, 11c, 16d, 18c and 23e showed high activities. All of the synthesized compounds have no impaired effect toward the VERO normal cell line.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Chemistry Department, Faculty of Science Cairo University, New Cairo, A.R, Egypt
| | - Wagnat W Wardakhan
- National Organization for Drug Control & Research, P.O. Box 29, Cairo, A.R, Egypt
| | - Nermeen S Abbas
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, A.R, Egypt.,Department of Chemistry, Faculty of Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
18
|
Zhang Q, Liu X, Gan W, Wu J, Zhou H, Yang Z, Zhang Y, Liao M, Yuan P, Xu S, Zheng P, Zhu W. Discovery of Triazolo-pyridazine/-pyrimidine Derivatives Bearing Aromatic (Heterocycle)-Coupled Azole Units as Class II c-Met Inhibitors. ACS OMEGA 2020; 5:16482-16490. [PMID: 32685812 PMCID: PMC7364574 DOI: 10.1021/acsomega.0c00838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/19/2020] [Indexed: 05/29/2023]
Abstract
Two series of novel triazolo-pyridazine/-pyrimidine derivatives were designed, synthesized, and evaluated for their inhibitory activity against c-Met kinase, as well as three c-Met overexpressed cancer cell lines (A549, MCF-7, and HeLa) and one normal human hepatocytes cell line LO2 in vitro. The pharmacological data indicated that most of the tested compounds showed moderate cytotoxicity, and the most promising compound 12e exhibited significant cytotoxicity against A549, MCF-7, and HeLa cell lines with IC50 values of 1.06 ± 0.16, 1.23 ± 0.18, and 2.73 ± 0.33 μM, respectively. Moreover, the inhibitory activity of compound 12e against c-Met kinase (IC50 = 0.090 μM) was equal to that of Foretinib (IC50 = 0.019 μM). The result of the acridine orange (AO) single staining test demonstrated that compound 12e could remarkably induce apoptosis of A549 cells. The results of apoptosis and cycle distribution of cells showed that compound 12e could induce late apoptosis of A549 cells and stimulate A549 cells arresting in the G0/G1 phase. Structure-activity relationships (SARs), pharmacological results, and docking studies indicated that the introduction of 5-methylthiazole fragment to the five-atom moiety was beneficial for the activity. So far, the existing data indicated that compound 12e may become a potential class II c-Met inhibitor.
Collapse
Affiliation(s)
- Qian Zhang
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Xiaobo Liu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Wenhui Gan
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jinjin Wu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Hualan Zhou
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Zunhua Yang
- College
of Pharmacy, Jiangxi University of Traditional
Chinese Medicine, Nanchang 330004, China
| | - Yiling Zhang
- College
of Pharmacy, Jiangxi University of Traditional
Chinese Medicine, Nanchang 330004, China
| | - Min Liao
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Ping Yuan
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Wufu Zhu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| |
Collapse
|
19
|
Mohareb RM, Abouzied AS, Abbas NS. Synthesis and Biological Evaluation of Novel 4,5,6,7-Tetrahydrobenzo[D]-Thiazol-2- Yl Derivatives Derived from Dimedone with Anti-Tumor, C-Met, Tyrosine Kinase and Pim-1 Inhibitions. Anticancer Agents Med Chem 2020; 19:1438-1453. [PMID: 31038076 DOI: 10.2174/1871520619666190416102144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/01/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dimedone and thiazole moieties are privileged scaffolds (acting as primary pharmacophores) in many compounds that are useful to treat several diseases, mainly tropical infectious diseases. Thiazole derivatives are a very important class of compounds due to their wide range of pharmaceutical and therapeutic activities. On the other hand, dimedone is used to synthesize many therapeutically active compounds. Therefore, the combination of both moieties through a single molecule to produce heterocyclic compounds will produce excellent anticancer agents. OBJECTIVE The present work reports the synthesis of 47 new substances belonging to two classes of compounds: Dimedone and thiazoles, with the purpose of developing new drugs that present high specificity for tumor cells and low toxicity to the organism. To achieve this goal, our strategy was to synthesize a series of 4,5,6,7-tetrahydrobenzo[d]-thiazol-2-yl derivatives using the reaction of the 2-bromodimedone with cyanothioacetamide. METHODS The reaction of 2-bromodimedone with cyanothioacetamide gave the 4,5,6,7-tetrahydrobenzo[d]- thiazol-2-yl derivative 4. The reactivity of compound 4 towards some chemical reagents was observed to produce different heterocyclic derivatives. RESULTS A cytotoxic screening was performed to evaluate the performance of the new derivatives in six tumor cell lines. Thirteen compounds were shown to be promising toward the tumor cell lines which were further evaluated toward five tyrosine kinases. CONCLUSION The results of antitumor screening showed that many of the tested compounds were of high inhibition towards the tested cell lines. Compounds 6c, 8c, 11b, 11d, 13b, 14b, 15c, 15g, 21b, 21c, 20d and 21d were the most potent compounds toward c-Met kinase and PC-3 cell line. The most promising compounds 6c, 8c, 11b, 11d, 13b, 14b, 15c, 15g, 20c, 20d, 21b, 21c and 21d were further investigated against tyrosine kinase (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Compounds 6c, 11b, 11d, 14b, 15c, and 20d were selected to examine their Pim-1 kinase inhibition activity the results revealed that compounds 11b, 11d and 15c had high activities.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Amr S Abouzied
- National Organization for Drug Control & Research, Cairo, Egypt.,Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Nermeen S Abbas
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, A. R., Egypt.,Department of Chemistry, Faculty of Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
20
|
Megally Abdo NY, Milad Mohareb R, Halim PA. Uses of cyclohexane-1,3-dione for the synthesis of 1,2,4-triazine derivatives as anti-proliferative agents and tyrosine kinases inhibitors. Bioorg Chem 2020; 97:103667. [PMID: 32087416 DOI: 10.1016/j.bioorg.2020.103667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/02/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023]
Abstract
Tetrahydrobenzo[b]thiophene derivatives were well known to be biologically active compounds and many of them occupy a wide range as anticancer agent drugs. One of our main aim of this work was to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of novel 1,2,4-triazines as efficient anticancer drugs with low cytotoxicity and good bioavailability properties using cyclohexane-1,3-dione and 3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene-2-diazonium chloride to give the 2-(2-(2,6-dioxocyclohexylidene)hydrazinyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (3) as the key starting material for many heterocyclization reactions. Compound 3 was reacted with phenylisothiocyanate to give the tetrahydrobenzo[e][1,2,4]triazine derivative 5 which reacted with hydrazines to give dihydrazone derivatives. In addition, it underwent multi-component reactions with aromatic aldehydes and either malononitrile or ethyl cyanoacetate in the presence of triethylamine or ammonium acetate to produce fused pyran and fused pyridine derivatives, respectively. Compounds obtained in this work were evaluated for their c-Met kinase inhibitory potency as well as in-vitro cytotoxic activity against the six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721). Molecular modeling studies were carried out for the most active compounds 5, 7a, 7b, 10c, 10e, 11c and 11f using Molecular Operating Environment (MOE) software. It was found that all the tested compounds displayed potent c-Met enzymatic activity with IC50 values ranging from 0.24 to 9.36 nM. Ten of them (5, 7a, 7b, 10c, 10e, 10f, 11b, 11c, 11d and 11f) exhibited higher potency with IC50 values less than 1.00 nM compared with foretinib (IC50 = 1.16 nM). Also those compounds possessed moderate to strong cytotoxicity against the six tested cancer cell lines in the single-digit µM range. The synthesized compounds 5, 7a, 7b, 10c, 10e, 11c and 11f were fit on the active site of c-Met kinase, with almost the same binding pattern as foretinib and higher binding energy scores (from -16.38 to -18.21 kcal/mol) compared to foretinib (-16.37 kcal/mol). A series of novel 1,2,4-triazines were synthesized and displayed potent bioactivities, indicating that these compounds could be considered as a new lead for more investigation in the future.
Collapse
Affiliation(s)
- Nadia Y Megally Abdo
- Chemistry Department, Faculty of Education, Alexandria University, 21526 Alexandria, Egypt
| | | | - Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
21
|
Zhang B, Liu X, Xiong H, Zhang Q, Sun X, Yang Z, Xu S, Zheng P, Zhu W. Discovery of [1,2,4]triazolo[4,3-a]pyrazine derivatives bearing a 4-oxo-pyridazinone moiety as potential c-Met kinase inhibitors. NEW J CHEM 2020. [DOI: 10.1039/d0nj00575d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We disclosed the preparation and biological evaluation of a series of [1,2,4]triazolo[4,3-a]pyrazine derivatives bearing 4-oxo-pyridazinone moieties, which demonstrated potent inhibition of c-Met kinase, culminating in the discovery of 22i.
Collapse
Affiliation(s)
- Binliang Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Xiaobo Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Hehua Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Qian Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Xin Sun
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Zunhua Yang
- College of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang
- China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| |
Collapse
|
22
|
Liu JC, Narva S, Zhou K, Zhang W. A Review on the Antitumor Activity of Various Nitrogenous-based Heterocyclic Compounds as NSCLC Inhibitors. Mini Rev Med Chem 2019; 19:1517-1530. [DOI: 10.2174/1389557519666190312152358] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
At present, cancers have been causing deadly fears to humans and previously unpredictable
losses to health. Especially, lung cancer is one of the most common causes of cancer-related mortality
accounting for approximately 15% of all cancer cases worldwide. While Non-Small Cell Lung Carcinomas
(NSCLCs) makes up to 80% of lung cancer cases. The patient compliance has been weakening
because of serious drug resistance and adverse drug effects. Therefore, there is an urgent need for the
development of novel structural agents to inhibit NSCLCs. Nitrogen-containing heterocyclic compounds
exhibit wide range of biological properties, especially antitumor activity. We reviewed some
deadly defects of clinical medicines for the lung cancer therapy and importance of nitrogen based heterocyclic
derivatives against NSCLCs. Nitrogen heterocycles exhibit significant antitumor activity
against NSCLCs. Nitrogen heterocyclic hybrids could be developed as multi-target-directed NSCLC
inhibitors and it is believed that the review is significant for rational designs and new ideas in the development
of nitrogen heterocyclic-based drugs.
Collapse
Affiliation(s)
- Jia-Chun Liu
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Suresh Narva
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kang Zhou
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen Zhang
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
23
|
Abdallah AE, Mohareb RM, Ahmed EA. Novel Pyrano[2,3‐
d
]thiazole and Thiazolo[4,5‐
b
]pyridine Derivatives: One‐pot Three‐component Synthesis and Biological Evaluation as Anticancer Agents, c‐Met, and Pim‐1 Kinase Inhibitors. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Rafat M. Mohareb
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | - Ebtsam A. Ahmed
- Department of Chemistry, Faculty of ScienceHelwan University Cairo Egypt
| |
Collapse
|
24
|
Liu M, Liang Y, Zhu Z, Wang J, Cheng X, Cheng J, Xu B, Li R, Liu X, Wang Y. Discovery of Novel Aryl Carboxamide Derivatives as Hypoxia-Inducible Factor 1α Signaling Inhibitors with Potent Activities of Anticancer Metastasis. J Med Chem 2019; 62:9299-9314. [DOI: 10.1021/acs.jmedchem.9b01313] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingming Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
- Anhui Chem-Bright Bioengineering Company Limited, Huaibei 235025, China
| | - Yuru Liang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongzhen Zhu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xingxing Cheng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiayi Cheng
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Binpeng Xu
- Anhui Chem-Bright Bioengineering Company Limited, Huaibei 235025, China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
25
|
Design, synthesis and evaluation of sulfonylurea-containing 4-phenoxyquinolines as highly selective c-Met kinase inhibitors. Bioorg Med Chem 2019; 27:2801-2812. [DOI: 10.1016/j.bmc.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
|
26
|
Aradhyula BPR, Mawnai IL, Kollipara MR. Pyrazole Based Mono- and Di-Substituted Half Sandwich d 6
Platinum Group Metal Complexes: Synthesis and Spectral Characterization. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201800292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ibaniewkor L. Mawnai
- Center for Advanced Studies in Chemistry; North-Eastern Hill University; 793 022 Shillong India
| | - Mohan Rao Kollipara
- Center for Advanced Studies in Chemistry; North-Eastern Hill University; 793 022 Shillong India
| |
Collapse
|
27
|
Sun ZG, Yang YA, Zhang ZG, Zhu HL. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin Drug Discov 2018; 14:59-69. [PMID: 30518273 DOI: 10.1080/17460441.2019.1551355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, Linyi, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yong-An Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhi-Gang Zhang
- Department of Cardiology, Linyi Central Hospital, Linyi, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Mohareb RM, Samir EM, Halim PA. Synthesis, and anti-proliferative, Pim-1 kinase inhibitors and molecular docking of thiophenes derived from estrone. Bioorg Chem 2018; 83:402-413. [PMID: 30415021 DOI: 10.1016/j.bioorg.2018.10.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
Heterocyclization of steroids were reported to give biologically active products where ring D modification occured. Estrone (1) was used as a template to develop new heterocyclic compounds. Ring D modification of 1 through its reaction with cyanoacetylhydrazine and elemental sulfur gave the thiophene derivative 3. The latter compound reacted with acetophenone derivatives 4a-c to give the hydrazide-hydrazone derivatives 5a-c, respectively. In addition, compound 3 formed thiazole derivatives through its first reaction with phenylisothiocyanate to give the thiourea derivative 9 followed by the reaction of the later with α-halocarbonyl compounds. In the present work a series of novel estrone derivatives were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase, and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). The most promising compounds 5b, 5c, 11a, 13c, 15b, 15c, 15d, 17a and 17b were further investigated against the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR. Compounds 5b, 15d, 17a and 17b were selected to examine their Pim-1 kinase inhibition activity where compounds 15d and 17b showed high activities. Molecular docking of some of the most potent compounds was demonstrated.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| | - Eman M Samir
- National Organization for Drug Control & Research, P.O. 29, Cairo, Egypt
| | - Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
29
|
Mohareb RM, Klapötke TM, Reinhardt E. Uses of dimedone for the synthesis of thiazole derivatives as new anti-tumor, c-Met, tyrosine kinase, and Pim-1 inhibitions. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2252-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Parikh PK, Ghate MD. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur J Med Chem 2018; 143:1103-1138. [DOI: 10.1016/j.ejmech.2017.08.044] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/03/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
|
31
|
Synthesis and bioevaluation and doking study of 1H-pyrrolo[2,3-b]pyridine derivatives bearing aromatic hydrazone moiety as c-Met inhibitors. Eur J Med Chem 2017; 145:315-327. [PMID: 29331754 DOI: 10.1016/j.ejmech.2017.12.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/24/2023]
Abstract
Two series of aromatic hydrazone derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (7a-r, 8a-i, 12a-b, 13a-c, 16a-d and 17a-e) were designed, synthesized and evaluated for the IC50 values against four cancer cell lines (A549, HepG2, MCF-7and PC-3). Two selected compounds (7c and 17e) were further evaluated for the activity against c-Met, Flt-3, VEGFR-2 and EGFR kinases. The data indicated that targets compounds were selective for c-Met kinase. And the most promising compound 7c was further studied in terms of dose-dependent, time-dependent and cell apoptosis. Most of the compounds showed excellent cytotoxicity activity, especially the most promising compound 7c with the IC50 values of 0.82 ± 0.08 μM, 1.00 ± 0.11 μM, 0.93 ± 0.28 μM and 0.92 ± 0.17 μM against A549, HepG2, MCF-7 and PC-3 cell lines and 0.506 μM against c-Met kinase. Structure-activity relationships (SARs) and docking studies indicated that the activities of the phenyl hydrazone derivatives (7a-r and 8a-i) were superior to that of the heterocyclic hydrazone series (12a-b, 13a-c, 16a-d and 17a-e). What's more, the further studies indicated that the target compounds can induce apoptosis of A549 cells and arrest efficiently the cell cycle progression in G2/M phase of A549 cells.
Collapse
|
32
|
DeHart DN, Lemasters JJ, Maldonado EN. Erastin-Like Anti-Warburg Agents Prevent Mitochondrial Depolarization Induced by Free Tubulin and Decrease Lactate Formation in Cancer Cells. SLAS DISCOVERY 2017; 23:23-33. [PMID: 29024608 DOI: 10.1177/2472555217731556] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In Warburg metabolism, suppression of mitochondrial metabolism contributes to a low cytosolic ATP/ADP ratio favoring enhanced aerobic glycolysis. Flux of metabolites across the mitochondrial outer membrane occurs through voltage-dependent anion channels (VDAC). In cancer cells, free dimeric tubulin induces VDAC closure and dynamically regulates mitochondrial membrane potential (ΔΨ). Erastin, a small molecule that binds to VDAC, antagonizes the inhibitory effect of tubulin on VDAC and hyperpolarizes mitochondria in intact cells. Here, our aim was to identify novel compounds from the ChemBridge DIVERSet library that block the inhibitory effect of tubulin on ΔΨ using cell-based screening. HCC4006 cells were treated with nocodazole (NCZ) to increase free tubulin and decrease ΔΨ in the presence or absence of library compounds. Tetramethylrhodamine methylester (TMRM) fluorescence was assessed by high-content imaging to determine changes in ΔΨ. Compounds were considered positive if ΔΨ increased in the presence of NCZ. Using confocal microscopy, we identified and validated six lead molecules that antagonized the depolarizing effect of NCZ. Lead compounds and erastin did not promote microtubule stabilization, so changes in ΔΨ were independent of tubulin dynamics. The most potent lead compound also decreased lactate formation. These novel small molecules represent a potential new class of anti-Warburg drugs.
Collapse
Affiliation(s)
- David N DeHart
- 1 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA.,3 Center for Cell Death, Injury and Regeneration, Medical University of South Carolina, Charleston, SC, USA
| | - John J Lemasters
- 1 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA.,4 Institute of Theoretical and Experimental Biophysics, Pushchino, Russia
| | - Eduardo N Maldonado
- 1 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA.,3 Center for Cell Death, Injury and Regeneration, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
33
|
Synthesis and Biological Evaluation of Novel 8-Morpholinoimidazo[1,2-a]pyrazine Derivatives Bearing Phenylpyridine/Phenylpyrimidine-Carboxamides. Molecules 2017; 22:molecules22020310. [PMID: 28218676 PMCID: PMC6155691 DOI: 10.3390/molecules22020310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/26/2022] Open
Abstract
Herein we designed and synthesized three series of novel 8-morpholinoimidazo[1,2-a]pyrazine derivatives bearing phenylpyridine/phenylpyrimidine-carboxamides (compounds 12a–g, 13a–g and 14a–g). All the compounds were evaluated for their IC50 values against three cancer cell lines (A549, PC-3 and MCF-7). Most of the target compounds exhibited moderate cytotoxicity against the three cancer cell lines. Two selected compounds 14b, 14c were further tested for their activity against PI3Kα kinase, and the results indicated that compound 14c showed inhibitory activity against PI3Kα kinase with an IC50 value of 1.25 μM. Structure-activity relationships (SARs) and pharmacological results indicated that the replacement of the thiopyranopyrimidine with an imidazopyrazine was beneficial for the activity and the position of aryl group has a significant influence to the activity of these compounds. The compounds 13a–g in which an aryl group substituted at the C-4 position of the pyridine ring were more active than 12a–g substituted at the C-5 position. Moreover, the cytotoxicity of compounds 14a–g bearing phenylpyrimidine-carboxamides was better than that of the compounds 12a–g, 13a–g bearing phenylpyridine-carboxamides. Furthermore, the substituents on the benzene ring also had a significant impact on the cytotoxicity and the pharmacological results showed that electron donating groups were beneficial to the cytotoxicity.
Collapse
|
34
|
Yang Y, Zhang Y, Yang L, Zhao L, Si L, Zhang H, Liu Q, Zhou J. Discovery of imidazopyridine derivatives as novel c-Met kinase inhibitors: Synthesis, SAR study, and biological activity. Bioorg Chem 2017; 70:126-132. [DOI: 10.1016/j.bioorg.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
|
35
|
Liu H, Wang W, Sun C, Wang C, Zhu W, Zheng P. Synthesis and Biological Evaluation of Novel 4-Morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine Derivatives Bearing Phenylpyridine/ Phenylpyrimidine-Carboxamides. Molecules 2016; 21:molecules21111447. [PMID: 27809261 PMCID: PMC6273168 DOI: 10.3390/molecules21111447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022] Open
Abstract
Four series of novel 4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives 11a–j, 12a–j, 13a–g and 14a–g bearing phenylpyridine/phenylpyrimidine- carboxamide scaffolds were designed, synthesized and their IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) were evaluated. Eleven of the compounds showed moderate cytotoxicity activity against the cancer cell lines. Structure-activity relationships (SARs) and pharmacological results indicated that the introduction of phenylpyridine-carboxamide scaffold was beneficial for the activity. What’s more, the oxidation of the sulfur atom in thiopyran and various types of substituents on the aryl group have different impacts on different series of compounds. Furthermore, the positions of aryl group substituents have a slight impact on the activity of the phenylpyridine-carboxamide series compounds.
Collapse
Affiliation(s)
- Huimin Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Wenhui Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Chengyu Sun
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
- Pharmacy Department, The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing 404000, China.
| | - Caolin Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Wufu Zhu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Pengwu Zheng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
36
|
Synthesis, activity and docking studies of phenylpyrimidine-carboxamide Sorafenib derivatives. Bioorg Med Chem 2016; 24:6166-6173. [PMID: 28340913 DOI: 10.1016/j.bmc.2016.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022]
Abstract
Two series of Sorafenib derivatives bearing phenylpyrimidine-carboxamide moiety (16a-g and 17a-p) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, MCF-7 and PC-3). Two selected compounds (17f and 17n) were further evaluated for the activity against VEGFR2/KDR kinase. More than half of the synthesized compounds showed moderate to excellent activity against three cancer cell lines. Compound 17f showed equal activity to Sorafenib against MCF-7 cell line, with the IC50 values of 6.35±0.43μM. Meanwhile, compound 17n revealed more active than Sorafenib against A549 cell line, with the IC50 values of 3.39±0.37μM. Structure-activity relationships (SARs) and docking studies indicated that the second series (17a-p) showed more active than the first series (16a-g). What's more, the introduction of fluoro atom to the phenoxy part played no significant impact on activity. In addition, the presence of electron-donating on aryl group was benefit for the activity.
Collapse
|