1
|
Li Y, Zhang Y, Zhang J, Zhan Z, Mao W. Development of novel focal adhesion kinase (FAK) inhibitors for targeting cancer: Structural insights and therapeutic potential. Eur J Med Chem 2024; 279:116913. [PMID: 39357313 DOI: 10.1016/j.ejmech.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase frequently overexpressed in various cancer cells, facilitating tumor growth through the regulation of cell adhesion, migration, and proliferation. Consequently, targeting FAK is considered a promising anti-tumor strategy, particularly for invasive cancers. Numerous potent small-molecule inhibitors have progressed to clinical trials. Among these, Defactinib is under evaluation for regulatory approval as a treatment for ovarian serous tumors. Furthermore, novel FAK inhibitors, including PROTACs, have emerged as key research focuses, anticipated to overcome the limitations of traditional inhibitors. In this Perspective, we highlight the protein structure, biological functions, relevant signaling pathways, and associations of FAK with cancer development. We also analyze the clinical status of FAK inhibitors, paying special attention to the various classes of FAK inhibitors, with detailed analyses of their chemical structures, structure-activity relationships (SARs), bioactivity profiles, selectivity profiles, and therapeutic potentials.
Collapse
Affiliation(s)
- Yingnan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Yuming Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China; West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| |
Collapse
|
2
|
Ye YX, Cao YY, Xu LS, Wang HC, Liu XH, Zhu HL. FAK inhibitors in cancer, a patent review - an update on progress. Expert Opin Ther Pat 2024; 34:593-610. [PMID: 38946486 DOI: 10.1080/13543776.2024.2368742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase over-expressed in various malignancies which is related to various cellular functions such as adhesion, metastasis and proliferation. AREAS COVERED There is growing evidence that FAK is a promising therapeutic target for designing inhibitors by regulating the downstream pathways of FAK. Some potential FAK inhibitors have entered clinical phase research. EXPERT OPINION FAK could be an effective target in medicinal chemistry research and there were a variety of FAKIs have been patented recently. Here, we updated an overview of design, synthesis and structure-activity relationship of chemotherapeutic FAK inhibitors (FAKIs) from 2017 until now based on our previous work. We hope our efforts can broaden the understanding of FAKIs and provide new ideas and insights for future cancer treatment from medicinal chemistry point of view.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, PR China
| | - Yu-Yao Cao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Li-Sheng Xu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, PR China
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, PR China
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, PR China
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, PR China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| |
Collapse
|
3
|
Li R, Gong L, Sun J, Liang Z, He J, Huang J, Ning X, Song H, Li R, Zhang Q, Lin Z, Yin Y. Discovery of 2,4-diarylaminopyrimidine derivatives bearing sulfonamide moiety as novel FAK inhibitors. Bioorg Chem 2024; 144:107134. [PMID: 38237389 DOI: 10.1016/j.bioorg.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Two series of 2,4-diarylaminopyrimidine derivatives containing sulfonamide moiety were designed and synthesized for screening as inhibitors of focal adhesion kinase (FAK). Most compounds significantly inhibited the enzymatic activities of FAK, and the best compound was 7b (IC50 = 0.27 nM). A majority of aminoethyl sulfonamide derivatives could effectively inhibit the proliferation of human cancer cell lines (HCT116, A549, MDA-MB-231 and Hela) expressing high levels of FAK. Particularly, compounds 7b, 7c, and 7o exhibited more significant efficacy against all of four cancer cell lines within concentrations of 1.5 μM. Furthermore, these three compounds displayed higher selectivity of cancer cells over normal cells (SI value > 14), compared to the positive control TAE226 (SI value = 1.63). Interestingly, introduction of dithiocarbamate moiety to the aminoethyl sulfonamide derivatives can indeed improve the antiproliferative activities against A549 cells. Especially, compound 8d demonstrated most significant cytotoxicity activity against A549 cells with an IC50 value of 0.08 μM, which is 20-fold superior to parent compound 7k. Additionally, compound 7b, which display the best anti-FAK potency, can inhibit the clone formation and migration of HCT-116 cells, and cause cell cycle arrest at G2/M phase, inducing apoptosis by promoting ROS production. Overall, these results suggest that 7b is a valuable FAK inhibitor that deserves further optimization to improve its druggability.
Collapse
Affiliation(s)
- Ridong Li
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Jiawei Sun
- Department of Pharmaceutics, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Jianan He
- MindRank AI Ltd., Kejiyuan Road, Hangzhou, Zhejiang 310000, PR China
| | - Junjie Huang
- MindRank AI Ltd., Kejiyuan Road, Hangzhou, Zhejiang 310000, PR China
| | - Xianling Ning
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Huajie Song
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
4
|
Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Med Chem 2024; 16:271-289. [PMID: 38269431 DOI: 10.4155/fmc-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Fabio Scianò
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Francesca Terrana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Barbara Parrino
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Patrizia Diana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, Pisa, 56017, Italy
| | - Daniela Carbone
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|
5
|
Three-Dimensional-QSAR and Relative Binding Affinity Estimation of Focal Adhesion Kinase Inhibitors. Molecules 2023; 28:molecules28031464. [PMID: 36771129 PMCID: PMC9919860 DOI: 10.3390/molecules28031464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Precise binding affinity predictions are essential for structure-based drug discovery (SBDD). Focal adhesion kinase (FAK) is a member of the tyrosine kinase protein family and is overexpressed in a variety of human malignancies. Inhibition of FAK using small molecules is a promising therapeutic option for several types of cancer. Here, we conducted computational modeling of FAK-targeting inhibitors using three-dimensional structure-activity relationship (3D-QSAR), molecular dynamics (MD), and hybrid topology-based free energy perturbation (FEP) methods. The structure-activity relationship (SAR) studies between the physicochemical descriptors and inhibitory activities of the chemical compounds were performed with reasonable statistical accuracy using CoMFA and CoMSIA. These are two well-known 3D-QSAR methods based on the principle of supervised machine learning (ML). Essential information regarding residue-specific binding interactions was determined using MD and MM-PB/GBSA methods. Finally, physics-based relative binding free energy (ΔΔGRBFEA→B) terms of analogous ligands were estimated using alchemical FEP simulation. An acceptable agreement was observed between the experimental and computed relative binding free energies. Overall, the results suggested that using ML and physics-based hybrid approaches could be useful in synergy for the rational optimization of accessible lead compounds with similar scaffolds targeting the FAK receptor.
Collapse
|
6
|
Diehl CJ, Ciulli A. Discovery of small molecule ligands for the von Hippel-Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chem Soc Rev 2022; 51:8216-8257. [PMID: 35983982 PMCID: PMC9528729 DOI: 10.1039/d2cs00387b] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The von Hippel-Lindau (VHL) Cullin RING E3 ligase is an essential enzyme in the ubiquitin-proteasome system that recruits substrates such as the hypoxia inducible factor for ubiquitination and subsequent proteasomal degradation. The ubiquitin-proteasome pathway can be hijacked toward non-native neo-substrate proteins using proteolysis targeting chimeras (PROTACs), bifunctional molecules designed to simultaneously bind to an E3 ligase and a target protein to induce target ubiquitination and degradation. The availability of high-quality small-molecule ligands with good binding affinity for E3 ligases is fundamental for PROTAC development. Lack of good E3 ligase ligands as starting points to develop PROTAC degraders was initially a stumbling block to the development of the field. Herein, the journey towards the design of small-molecule ligands binding to VHL is presented. We cover the structure-based design of VHL ligands, their application as inhibitors in their own right, and their implementation into rationally designed, potent PROTAC degraders of various target proteins. We highlight the key findings and learnings that have provided strong foundations for the remarkable development of targeted protein degradation, and that offer a blueprint for designing new ligands for E3 ligases beyond VHL.
Collapse
Affiliation(s)
- Claudia J Diehl
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
7
|
Design, synthesis and activity evaluation of isopropylsulfonyl-substituted 2,4- diarylaminopyrimidine derivatives as FAK inhibitors for the potential treatment of pancreatic cancer. Eur J Med Chem 2022; 241:114607. [PMID: 35872546 DOI: 10.1016/j.ejmech.2022.114607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022]
Abstract
A series of isopropylsulfonyl-substituted 2,4-diarylaminopyrimidine derivatives were designed and synthesized as FAK inhibitors to evaluate their biological activity against pancreatic cancer. One of the most promising compound, 9h, effectively interfered with FAK-mediated phosphorylation and suppressed the proliferation of human pancreatic cancer AsPC-1 cells with half maximal inhibitory concentration (IC50) values of 0.1165 nM and 0.1596 μM, respectively. In addition, 9h also exhibited relatively low toxicity against immortalized normal human liver L-02 cells, indicating its low hepatotoxicity at an equivalent dosage. Furthermore, the elucidation of the mechanism of action revealed that compound 9h effectively inhibited cell migration and inhibited the proliferation of AsPC-1 by blocking the cell cycle at the G2/M phase. Moreover, 9h also demonstrated efficacy in inhibiting tumor growth in a murine AsPC-1 cell xenograft model at the dosage of 10 mg/kg without losing noticeable body weight. All these findings provide important clues for the identification of potent FAK inhibitors.
Collapse
|
8
|
Spallarossa A, Tasso B, Russo E, Villa C, Brullo C. The Development of FAK Inhibitors: A Five-Year Update. Int J Mol Sci 2022; 23:ijms23126381. [PMID: 35742823 PMCID: PMC9223874 DOI: 10.3390/ijms23126381] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/06/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed in different solid cancers. In recent years, FAK has been recognized as a new target for the development of antitumor agents, useful to contrast tumor development and metastasis formation. To date, studies on the role of FAK and FAK inhibitors are of great interest for both pharmaceutical companies and academia. This review is focused on compounds able to block FAK with different potencies and with different mechanisms of action, that have appeared in the literature since 2017. Furthermore, new emerging PROTAC molecules have appeared in the literature. This summary could improve knowledge of new FAK inhibitors and provide information for future investigations, in particular, from a medicinal chemistry point of view.
Collapse
|
9
|
Design, synthesis and biological evaluation of novel FAK inhibitors with better selectivity over IR than TAE226. Bioorg Chem 2022; 124:105790. [DOI: 10.1016/j.bioorg.2022.105790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022]
|
10
|
Abdel-Maksoud MS, Mohamed Hassan R, Abdel-Sattar El-Azzouny A, Nabil Aboul-Enein M, Oh CH. Anticancer profile and anti-inflammatory effect of new N-(2-((4-(1,3-diphenyl-1H-pyrazol-4-yl)pyridine sulfonamide derivatives. Bioorg Chem 2021; 117:105424. [PMID: 34678604 DOI: 10.1016/j.bioorg.2021.105424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
A new series of N-(2-((4-(1,3-diphenyl-1H-pyrazol-4-yl)pyridine sulfonamide derivatives 11a-o were designed and synthesized based on our previous works. The new series was tested for its anticancer and anti-inflammatory effects. The anticancer profile of final target compounds was obtained by testing them over 60 cell lines belong to nine types of cancers. Compound 11c showed the highest percent inhibition, so its potency was measured over the most sensitive cell line to determine its IC50 over each cell. In addition, compound 11c was tested over kinase panel to get its biological target(s). Compound 11c had strong activity over JNK1, JNK2, p38a and V600EBRAF. All final target compounds were tested against the four kinases to build a structure activity relationship. Compound 11c was subjected to cell cycle analysis to check at which phase is affected by 11c. The anti-inflammatory effect of final target compounds was screened by testing their ability to inhibit both nitric oxide release and prostaglandin E2 production on raw 264.7 macrophages in addition to test their cytotoxic effect on the same cells. Compound 11n showed the highest ability to inhibit prostaglandin E2 and all compound showed moderate to low activity regarding inhibition of nitric oxide release. Compound 11n was investigated for its ability to reduce Interleukin 6 and TNF-alpha. In addition, compound 11n was tested for its effect on induced Nitric oxide synthase (iNOS), and COX-2 mRNA expression level and its effect on nitric oxide synthase (iNOS), COX-1 and COX-2 protein levels where it showed selectivity for COX-2 compared to COX-1 and iNOS.
Collapse
Affiliation(s)
- Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| | - Rasha Mohamed Hassan
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Aida Abdel-Sattar El-Azzouny
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Nabil Aboul-Enein
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu 34113, Republic of Korea.
| |
Collapse
|
11
|
Progress in the development of small molecular inhibitors of the Bruton's tyrosine kinase (BTK) as a promising cancer therapy. Bioorg Med Chem 2021; 47:116358. [PMID: 34479103 DOI: 10.1016/j.bmc.2021.116358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Bruton tyrosine kinase (BTK) is a key kinase in the B cell antigen receptor signal transduction pathway, which is involved in the regulation of the proliferation, differentiation and apoptosis of B cells. BTK has become a significant target for the treatment of hematological malignancies and autoimmune diseases. Ibrutinib, the first-generation BTK inhibitor, has made a great contribution to the treatment of B cell malignant tumors, but there are still some problems such as resistance or miss target of site mutation. Therefore, there is an imperative need to develop novel BTK inhibitors to overcome these problems. Besides, proteolysis targeting chimera (PROTAC) technology has been successfully applied to the development of BTK degradation agents, which has opened a fresh way for the BTK targeted treatment. This paper reviews the biological function of BTK, the discovery and development of BTK targeted drugs as a promising cancer therapy. It mainly reviews the binding sites and structural characteristics of BTK, structure-activity relationships, activity and drug resistance of BTK inhibitors, as well as potential treatment strategies to overcome the resistance of BTK, which provides a reference for the rational design and development of new powerful BTK inhibitors.
Collapse
|
12
|
Design, Synthesis and Anticancer Profile of New 4-(1 H-benzo[ d]imidazol-1-yl)pyrimidin-2-amine-Linked Sulfonamide Derivatives with V600EBRAF Inhibitory Effect. Int J Mol Sci 2021; 22:ijms221910491. [PMID: 34638829 PMCID: PMC8508980 DOI: 10.3390/ijms221910491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
A new series of 4-(1H-benzo[d]imidazol-1-yl)pyrimidin-2-amine linked sulfonamide derivatives 12a–n was designed and synthesized according to the structure of well-established V600EBRAF inhibitors. The terminal sulfonamide moiety was linked to the pyrimidine ring via either ethylamine or propylamine bridge. The designed series was tested at fixed concentration (1 µM) against V600EBRAF, finding that 12e, 12i and 12l exhibited the strongest inhibitory activity among all target compounds and 12l had the lowest IC50 of 0.49 µM. They were further screened on NCI 60 cancer cell lines to reveal that 12e showed the most significant growth inhibition against multiple cancer cell lines. Therefore, cell cycle analysis of 12e was conducted to investigate the effect on cell cycle progression. Finally, virtual docking studies was performed to gain insights for the plausible binding modes of vemurafenib, 12i, 12e and 12l.
Collapse
|
13
|
Abstract
FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed.
Collapse
|
14
|
Pang XJ, Liu XJ, Liu Y, Liu WB, Li YR, Yu GX, Tian XY, Zhang YB, Song J, Jin CY, Zhang SY. Drug Discovery Targeting Focal Adhesion Kinase (FAK) as a Promising Cancer Therapy. Molecules 2021; 26:molecules26144250. [PMID: 34299525 PMCID: PMC8308130 DOI: 10.3390/molecules26144250] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
FAK is a nonreceptor intracellular tyrosine kinase which plays an important biological function. Many studies have found that FAK is overexpressed in many human cancer cell lines, which promotes tumor cell growth by controlling cell adhesion, migration, proliferation, and survival. Therefore, targeting FAK is considered to be a promising cancer therapy with small molecules. Many FAK inhibitors have been reported as anticancer agents with various mechanisms. Currently, six FAK inhibitors, including GSK-2256098 (Phase I), VS-6063 (Phase II), CEP-37440 (Phase I), VS-6062 (Phase I), VS-4718 (Phase I), and BI-853520 (Phase I) are undergoing clinical trials in different phases. Up to now, there have been many novel FAK inhibitors with anticancer activity reported by different research groups. In addition, FAK degraders have been successfully developed through “proteolysis targeting chimera” (PROTAC) technology, opening up a new way for FAK-targeted therapy. In this paper, the structure and biological function of FAK are reviewed, and we summarize the design, chemical types, and activity of FAK inhibitors according to the development of FAK drugs, which provided the reference for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Xiao-Jing Pang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Xiu-Juan Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Yuan Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Wen-Bo Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Yin-Ru Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Guang-Xi Yu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Xin-Yi Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Yan-Bing Zhang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Jian Song
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| | - Sai-Yang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| |
Collapse
|
15
|
Azevedo-Barbosa H, Dias DF, Franco LL, Hawkes JA, Carvalho DT. From Antibacterial to Antitumour Agents: A Brief Review on The Chemical and Medicinal Aspects of Sulfonamides. Mini Rev Med Chem 2021; 20:2052-2066. [PMID: 32888265 DOI: 10.2174/1389557520666200905125738] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Sulfonamides have been in clinical use for many years, and the development of bioactive substances containing the sulfonamide subunit has grown steadily in view of their important biological properties such as antibacterial, antifungal, antiparasitic, antioxidant, and antitumour properties. This review addresses the medicinal chemistry aspects of sulfonamides; covering their discovery, the structure- activity relationship and the mechanism of action of the antibacterial sulfonamide class, as well as the physico-chemical and pharmacological properties associated with this class. It also provides an overview of the various biological activities inherent to sulfonamides, reporting research that emphasises the importance of this group in the planning and development of bioactive substances, with a special focus on potential antitumour properties. The synthesis of sulfonamides is considered to be simple and provides a diversity of derivatives from a wide variety of amines and sulfonyl chlorides. The sulfonamide group is a non-classical bioisostere of carboxyl groups, phenolic hydroxyl groups and amide groups. This review highlights that most of the bioactive substances have the sulfonamide group, or a related group such as sulfonylurea, in an orientation towards other functional groups. This structural characteristic was observed in molecules with distinct antibacterial activities, demonstrating a clear structure-activity relationship of sulfonamides. This short review sought to contextualise the discovery of classic antibacterial sulfonamides and their physico-chemical and pharmacological properties. The importance of the sulfonamide subunit in Medicinal Chemistry has been highlighted and emphasised, in order to promote its inclusion in the planning and synthesis of future drugs.
Collapse
Affiliation(s)
- Helloana Azevedo-Barbosa
- Faculdade de Ciencias Farmaceuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | | | - Lucas Lopardi Franco
- Faculdade de Ciencias Farmaceuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Jamie Anthony Hawkes
- Faculdade de Ciencias Farmaceuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| | - Diogo Teixeira Carvalho
- Faculdade de Ciencias Farmaceuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil
| |
Collapse
|
16
|
Qi Y, Li Y, Fang Y, Gao H, Qiang B, Wang S, Zhang H. Design, Synthesis, Biological Evaluation, and Molecular Docking of 2,4-Diaminopyrimidine Derivatives Targeting Focal Adhesion Kinase as Tumor Radiotracers. Mol Pharm 2021; 18:1634-1642. [PMID: 33739836 DOI: 10.1021/acs.molpharmaceut.0c01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are two important topics in the field of cancer research: one is targeted molecular therapy and the other is tumor molecular imaging. Focal adhesion kinase (FAK) is considered as an attractive target for oncologic diagnosis and therapy. A series of 2,4-diaminopyrimidine derivatives were labeled with 18F to study their biological properties and their potential as positron emission tomography tumor imaging agents. They inhibited the activity of FAK with IC50 values in the wide range of 0.6-2164 nM, among which the IC50 of Q6 was 3.2 nM. For the biodistribution in S180-bearing mice, the corresponding [18F]Q6 was relatively good, with the highest uptake of 3.35 ± 0.32 % ID/g at 30 min postinjection, with a tumor/muscle ratio of 2.08 and a tumor/bone ratio of 2.48. Accordingly, [18F]Q6 was considered as a potential PET imaging agent for tumor diagnosis.
Collapse
Affiliation(s)
- Yueheng Qi
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Ye Li
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Yu Fang
- College of Chemistry and Chemical Engineering, Anyang Normal University, No. 436 Xian'ge Road, Anyang 455000, Henan Province, China
| | - Hang Gao
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Bingchao Qiang
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Shuxia Wang
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Huabei Zhang
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
17
|
Chauhan A, Khan T. Focal adhesion kinase—An emerging viable target in cancer and development of focal adhesion kinase inhibitors. Chem Biol Drug Des 2020; 97:774-794. [DOI: 10.1111/cbdd.13808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Akshita Chauhan
- Department of Quality Assurance Bhanuben Nanavati College of Pharmacy Mumbai India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance Bhanuben Nanavati College of Pharmacy Mumbai India
| |
Collapse
|
18
|
Lu Y, Sun H. Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). J Med Chem 2020; 63:14382-14403. [PMID: 33058670 DOI: 10.1021/acs.jmedchem.0c01248] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor intracellular tyrosine kinase that plays an essential role in cancer cell adhesion, survival, proliferation, and migration through both its enzymatic activities and scaffolding functions. Overexpression of FAK has been found in many human cancer cells from different origins, which promotes tumor progression and influences clinical outcomes in different classes of human tumors. Therefore, FAK has been considered as a promising target for small molecule anticancer drug development. Many FAK inhibitors targeting different domains of FAK with various mechanisms of functions have been reported, including kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors. In addition, FAK-targeting PROTACs, which can induce the degradation of FAK, have also been developed. In this Perspective, we summarized the progress in the development of small molecular FAK inhibitors and proposed the perspectives for the future development of agents targeting FAK.
Collapse
Affiliation(s)
- Yang Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
19
|
Discovery of 7H-pyrrolo[2,3-d]pyridine derivatives as potent FAK inhibitors: Design, synthesis, biological evaluation and molecular docking study. Bioorg Chem 2020; 102:104092. [PMID: 32707280 DOI: 10.1016/j.bioorg.2020.104092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
Abstract
Focal adhesion kinase (FAK) is an intracellular non-receptor tyrosine kinase responsible for development of various tumor types. Aiming to explore new potent inhibitors, two series of 2,4-disubstituted-7H-pyrrolo[2,3-d]pyrimidine derivatives were designed and synthesized on the base of structure-based design strategy. Biological evaluation indicated that most of these new compounds could potently inhibit FAK kinase, leading to the promising inhibitors against the proliferation of U-87MG, A-549, and MDA-MB-231 cancer cell lines. Among them, the optimized compound 18h potently inhibited the enzyme (IC50 = 19.1 nM) and displayed stronger potency than TAE-226 in U-87MG, A-549 and MDA-MB-231 cells, with IC50 values of 0.35, 0.24, and 0.34 μM, respectively. Compound 18h is a multi-target kinase inhibitor. Furthermore, compound 18h also exhibited relatively less cytotoxicity (IC50 = 3.72 μM) toward a normal human cell line, HK2. According to the flow cytometry and wound healing assay results, compound 18h effectively induced apoptosis and G0/G1 phase arrest of MDA-MB-231 cells and suppressed the migration of U-87MG, A-549 and MDA-MB-231 cells. The docking study of compound 18h was performed to elucidate its possible binding modes and to provide a structural basis for the further structural guidance design of FAK inhibitors. Collectively, these data support the further development of compound 18h as a lead compound for FAK-targeted anticancer drug discovery.
Collapse
|
20
|
Wang R, Yu S, Zhao X, Chen Y, Yang B, Wu T, Hao C, Zhao D, Cheng M. Design, synthesis, biological evaluation and molecular docking study of novel thieno[3,2-d]pyrimidine derivatives as potent FAK inhibitors. Eur J Med Chem 2019; 188:112024. [PMID: 31923858 DOI: 10.1016/j.ejmech.2019.112024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/13/2019] [Accepted: 12/29/2019] [Indexed: 10/25/2022]
Abstract
A series of 2,7-disubstituted-thieno[3,2-d]pyrimidine derivatives were designed, synthesized and evaluated as novel focal adhesion kinase (FAK) inhibitors. The novel 2,7-disubstituted-thieno[3,2-d]pyrimidine scaffold has been designed as a new kinase inhibitor platform that mimics the bioactive conformation of the well-known diaminopyrimidine motif. Most of the compounds potently suppressed the enzymatic activities of FAK and potently inhibited the proliferation of U-87MG, A-549 and MDA-MB-231 cancer cell lines. Among these derivatives, the optimized compound 26f potently inhibited the enzyme (IC50 = 28.2 nM) and displayed stronger potency than TAE-226 in U-87MG, A-549 and MDA-MB-231 cells, with IC50 values of 0.16, 0.27, and 0.19 μM, respectively. Compound 26f also exhibited relatively less cytotoxicity (IC50 = 3.32 μM) toward a normal human cell line, HK2. According to the flow cytometry results, compound 26f induced the apoptosis of MDA-MB-231 cells in a dose-dependent manner and effectively arrested MDA-MB-231 cells in G0/G1 phase. Further investigations revealed that compound 26f potently suppressed the migration of MDA-MB-231 cells. Collectively, these data support the further development of compound 26f as a lead compound for FAK-targeted anticancer drug discovery.
Collapse
Affiliation(s)
- Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Sijia Yu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiangxin Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yixuan Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China; The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Bowen Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chenzhou Hao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
21
|
Design and synthesis of diphenylpyrimidine derivatives (DPPYs) as potential dual EGFR T790M and FAK inhibitors against a diverse range of cancer cell lines. Bioorg Chem 2019; 94:103408. [PMID: 31706682 DOI: 10.1016/j.bioorg.2019.103408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/28/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023]
Abstract
A new class of pyrimidine derivatives were designed and synthesized as potential dual FAK and EGFRT790M inhibitors using a fragment-based drug design strategy. This effort led to the identification of the two most active inhibitors, namely 9a and 9f, against both FAK (IC50 = 1.03 and 3.05 nM, respectively) and EGFRT790M (IC50 = 3.89 and 7.13 nM, respectively) kinase activity. Moreover, most of these compounds also exhibited strong antiproliferative activity against the three evaluated FAK-overexpressing pancreatic cancer (PC) cells (AsPC-1, BxPC-3, Panc-1) and two drug-resistant cancer cell lines (breast cancer MCF-7/adr cells and lung cancer H1975 cells) at concentrations lower than 6.936 μM. In addition, 9a was also effective in the in vivo assessment conducted in a FAK-driven human AsPC-1 cell xenograft mouse model. Overall, this study offers a new insight into the treatment of hard to treat cancers.
Collapse
|
22
|
Wang R, Chen Y, Zhao X, Yu S, Yang B, Wu T, Guo J, Hao C, Zhao D, Cheng M. Design, synthesis and biological evaluation of novel 7H-pyrrolo[2,3-d]pyrimidine derivatives as potential FAK inhibitors and anticancer agents. Eur J Med Chem 2019; 183:111716. [PMID: 31550660 DOI: 10.1016/j.ejmech.2019.111716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023]
Abstract
A series of 7H-pyrrolo[2,3-d]pyrimidine derivatives possessing a dimethylphosphine oxide moiety were designed, synthesized and evaluated as novel Focal adhesion kinase (FAK) inhibitors. Most compounds potently suppressed the enzymatic activities of FAK, with IC50 values in the 10-8-10-9 M range, and potently inhibited the proliferation of breast (MDA-MB-231) and lung (A549) cancer cell lines. The representative compound 25b exhibited potent enzyme inhibition (IC50 = 5.4 nM) and good selectivity when tested on a panel of 26 kinases. 25b exhibited antiproliferative activity against A549 cells (IC50 = 3.2 μM) and relatively less cytotoxicity to a normal human cell line HK2. Compound 25b also induced apoptosis and suppressed the migration of A549 cells in a concentration-dependent manner. Further profiling of compound 25b revealed it had good metabolic stability in mouse, rat and human liver microsomes in vitro and showed weak inhibitory activity against various subtypes of human cytochrome P450. The docking study of compound 25b was performed to elucidate its possible binding modes and to provide a structural basis for further structure-guided design of FAK inhibitors.
Collapse
Affiliation(s)
- Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yixuan Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China; The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiangxin Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Sijia Yu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Bowen Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jing Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chenzhou Hao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
23
|
Zhai Z, Li R, Bai X, Ning X, Lin Z, Zhao X, Jin Y, Yin Y. Design, synthesis and biological evaluation of novel dithiocarbamate-substituted diphenylaminopyrimidine derivatives as BTK inhibitors. Bioorg Med Chem 2019; 27:4124-4142. [DOI: 10.1016/j.bmc.2019.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 02/08/2023]
|
24
|
Zhou J, Yi Q, Tang L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:250. [PMID: 31186061 PMCID: PMC6560741 DOI: 10.1186/s13046-019-1265-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
FAK is a tyrosine kinase overexpressed in cancer cells and plays an important role in the progression of tumors to a malignant phenotype. Except for its typical role as a cytoplasmic kinase downstream of integrin and growth factor receptor signaling, related studies have shown new aspects of the roles of FAK in the nucleus. FAK can promote p53 degradation through ubiquitination, leading to cancer cell growth and proliferation. FAK can also regulate GATA4 and IL-33 expression, resulting in reduced inflammatory responses and immune escape. These findings establish a new model of FAK from the cytoplasm to the nucleus. Activated FAK binds to transcription factors and regulates gene expression. Inactive FAK synergizes with different E3 ligases to promote the turnover of transcription factors by enhancing ubiquitination. In the tumor microenvironment, nuclear FAK can regulate the formation of new blood vessels, affecting the tumor blood supply. This article reviews the roles of nuclear FAK in regulating gene expression. In addition, the use of FAK inhibitors to target nuclear FAK functions will also be emphasized.
Collapse
Affiliation(s)
- Jin Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
25
|
Su Y, Li R, Ning X, Lin Z, Zhao X, Zhou J, Liu J, Jin Y, Yin Y. Discovery of 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety as novel FAK inhibitors with antitumor and anti-angiogenesis activities. Eur J Med Chem 2019; 177:32-46. [PMID: 31129452 DOI: 10.1016/j.ejmech.2019.05.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022]
Abstract
A series of 2,4-diarylaminopyrimidine derivatives containing dithiocarbamate moiety were designed by molecular hybridization strategy and synthesized for screening as inhibitors of focal adhesion kinase (FAK). Most of these compounds exhibit significant antiproliferative activities on human cancer cell lines expressing high levels of FAK at nanomolar concentrations. The compound 14z was identified as the most potent FAK inhibitor among these candidates. 14z has excellent anti-proliferative effect with IC50 values from 0.001 μM to 0.06 μM on HCT116, PC-3, U87-MG and MCF-7 cell lines and relatively less cytotoxicity to a nonmalignant cell line MCF-10A compared with MCF-7 cells (SI value > 10). 14z also exhibits significant FAK inhibitory activity (IC50 = 0.07 nM). In addition, compound 14z causes cell cycle arrest at G2/M and prompted apoptosis in both HCT116 and MCF-7 cells in a dose-dependent manner. Further studies show that compound 14z inhibits migration of MCF-7 and has anti-angiogenesis effect on HUVEC cells.
Collapse
Affiliation(s)
- Yue Su
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ridong Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Xianling Ning
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Juntuo Zhou
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Jia Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yan Jin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yuxin Yin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|
26
|
Wang L, Ai M, Yu J, Jin L, Wang C, Liu Z, Shu X, Tang Z, Liu K, Luo H, Guan W, Sun X, Ma X. Structure-based modification of carbonyl-diphenylpyrimidines (Car-DPPYs) as a novel focal adhesion kinase (FAK) inhibitor against various stubborn cancer cells. Eur J Med Chem 2019; 172:154-162. [PMID: 30978560 DOI: 10.1016/j.ejmech.2019.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
A family of carbonyl-substituted diphenylpyrimidine derivatives (Car-DPPYs) with strong activity against focal adhesion kinase (FAK), were described in this manuscript. Among them, compounds 7a (IC50 = 5.17 nM) and 7f (IC50 = 2.58 nM) displayed equal anti-FAK enzymatic activity to the lead compound TAE226 (6.79 nM). In particular, compound 7a also exhibited strong antiproliferative activity against several stubborn cancer cells, including AsPC-1 cells (IC50 = 0.105 μM), BxPC-3 cells (IC50 = 0.090 μM), and MCF-7/ADR cells (IC50 = 0.59 μM). Additionally, compound 7a also showed great antitumor efficacy in vivo via aAsPC-1 cancer Xenograft mouse model. The preliminary mechanism study by Western blot analysis revealed that 7a repressed FAK phosphorylation in AsPC cancer cells. Taken together, the results indicate that compound 7a may serve as a promising preclinical candidate for treatment of stubborn cancers.
Collapse
Affiliation(s)
- Luhong Wang
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, PR China
| | - Min Ai
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, PR China
| | - Jiawen Yu
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China
| | - Lingling Jin
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, PR China
| | - Changyuan Wang
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, PR China
| | - Zhihao Liu
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Xiaohong Shu
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, PR China
| | - Zeyao Tang
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, PR China
| | - Kexin Liu
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, PR China
| | - Hui Luo
- Liaoning Ben-healthy Natural Technology and Dalian Buyun Biotechnology Co., Ltds., 116085, PR China
| | - Wenshun Guan
- Liaoning Ben-healthy Natural Technology and Dalian Buyun Biotechnology Co., Ltds., 116085, PR China
| | - Xiuli Sun
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China.
| | - Xiaodong Ma
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, PR China.
| |
Collapse
|
27
|
Motaleb MA, Ibrahim IT, Sarhan MO, Zaghary WA. Radioiodination and biological distribution of a new s-triazine derivative for tumor uptake evaluation. J Labelled Comp Radiopharm 2018; 61:1058-1068. [PMID: 30193401 DOI: 10.1002/jlcr.3682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
A newly synthesized s-triazine derivative 1,1',1″-(((1,3,5-triazine-2,4,6-triyl) tris (azanediyl)) tris (benzene-4,1-diyl))tris (ethan-1-one), (1), was synthesized as a part of an ongoing research for development of novel s-triazine-based radiopharmaceuticals. In-vitro cell viability assay against different human cancer cell lines showed very promising inhibitory activity of the synthesized compound. This finding encouraged the radioiodination of 1 to study the degree of its localization in tumor site for evaluating the possibility of its use as a tumor imaging agent. The biodistribution study showed good localization of the radioiodinated derivative 2 at tumor site following i.v. administration in solid tumor-bearing mice. Finally, in a trial to understand the mechanism of the anticancer effect exerted by 1, a target prediction study and a docking study were performed. The results of the first study showed that focal adhesion kinase is a possible target for compound 1 and the docking study confirmed successful binding of both compound 1 and its radioiodinated derivative 2 to the binding site of focal adhesion kinase. As a conclusion, the results of this study suggest that, compound 2 could be used as a potential agent for tumor imaging after preclinical trials.
Collapse
Affiliation(s)
- Mohamed A Motaleb
- Labeled Compounds Department, Hot Laboratories Centre, Atomic Energy Authority, Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled Compounds Department, Hot Laboratories Centre, Atomic Energy Authority, Cairo, Egypt.,Faculty of Pharmacy, Bian University, Baghdad, Iraq
| | - Mona O Sarhan
- Labeled Compounds Department, Hot Laboratories Centre, Atomic Energy Authority, Cairo, Egypt
| | - Wafaa A Zaghary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
28
|
Song J, Lan J, Chen C, Hu S, Song J, Liu W, Zeng X, Lou H, Ben-David Y, Pan W. Design, synthesis and bioactivity investigation of tetrandrine derivatives as potential anti-cancer agents. MEDCHEMCOMM 2018; 9:1131-1141. [PMID: 30109000 PMCID: PMC6072089 DOI: 10.1039/c8md00125a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
Twenty-four 14-sulfonamide-tetrandrine derivatives as potential anti-cancer agents were synthesized. The synthetic derivatives were investigated for their cytotoxic activity against human cancer cell lines MDA-MB-231, PC3, WM9, HEL and K562. Initially, the IC50 values (50% inhibitory concentrations) of all of the compounds were determined. These derivatives exhibited potent, but distinct, inhibitory effects on the above-mentioned cell lines. Among them, compound 23, which was modified with a 2-naphthalenesulfonyl group at the 14-amino position, showed impressive inhibition of all five cancer cell lines, and especially of MDA-MB-231 cells with an IC50 value of 1.18 ± 0.14 μM. Further mechanism exploration showed that 23 induced potent apoptotic cell death on MDA-MB-231 cancer cells in a concentration-dependent manner. The results revealed that 23 might be a potential anti-cancer drug candidate.
Collapse
Affiliation(s)
- Junrong Song
- Guizhou University , Huaxi Avenue South , Guiyang 550025 , PR China .
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , 3491 Baijin Road , Guiyang 550014 , PR China .
| | - Junjie Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , 3491 Baijin Road , Guiyang 550014 , PR China .
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and , Chinese Academy of Sciences , 3491 Baijin Road , Guiyang 550014 , PR China
| | - Chao Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , 3491 Baijin Road , Guiyang 550014 , PR China .
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and , Chinese Academy of Sciences , 3491 Baijin Road , Guiyang 550014 , PR China
| | - Shengcao Hu
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and , Chinese Academy of Sciences , 3491 Baijin Road , Guiyang 550014 , PR China
- Zunyi Medical University , 6 West Road , Zunyi 563000 , PR China
| | - Jialei Song
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , 3491 Baijin Road , Guiyang 550014 , PR China .
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and , Chinese Academy of Sciences , 3491 Baijin Road , Guiyang 550014 , PR China
| | - Wulin Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , 3491 Baijin Road , Guiyang 550014 , PR China .
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and , Chinese Academy of Sciences , 3491 Baijin Road , Guiyang 550014 , PR China
| | - Xueyi Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , 3491 Baijin Road , Guiyang 550014 , PR China .
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and , Chinese Academy of Sciences , 3491 Baijin Road , Guiyang 550014 , PR China
| | - Huayong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , 3491 Baijin Road , Guiyang 550014 , PR China .
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and , Chinese Academy of Sciences , 3491 Baijin Road , Guiyang 550014 , PR China
| | - Yaacov Ben-David
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , 3491 Baijin Road , Guiyang 550014 , PR China .
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and , Chinese Academy of Sciences , 3491 Baijin Road , Guiyang 550014 , PR China
| | - Weidong Pan
- Guizhou University , Huaxi Avenue South , Guiyang 550025 , PR China .
- State Key Laboratory of Functions and Applications of Medicinal Plants , Guizhou Medical University , 3491 Baijin Road , Guiyang 550014 , PR China .
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and , Chinese Academy of Sciences , 3491 Baijin Road , Guiyang 550014 , PR China
| |
Collapse
|
29
|
Lv PC, Jiang AQ, Zhang WM, Zhu HL. FAK inhibitors in Cancer, a patent review. Expert Opin Ther Pat 2017; 28:139-145. [DOI: 10.1080/13543776.2018.1414183] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peng-Cheng Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| | - Ai-Qin Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| | - Wei-Ming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| |
Collapse
|
30
|
Ge Y, Wang C, Song S, Huang J, Liu Z, Li Y, Meng Q, Zhang J, Yao J, Liu K, Ma X, Sun X. Identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma. Eur J Med Chem 2017; 143:1847-1857. [PMID: 29146136 DOI: 10.1016/j.ejmech.2017.10.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/05/2023]
Abstract
The BTK and JAK3 receptor tyrosine kinases are two validated and therapeutically amenable targets in the treatment of B-cell lymphomas. Here we report the identification of several classes of pyrimidine derivatives as potent BTK and JAK3 dual inhibitors. Among these molecules, approximately two thirds displayed strong inhibitory capacity at less than 10 nM concentration, and four compounds (7e, 7g, 7m and 7n) could significantly inhibit the phosphorylation of BTK and JAK3 enzymes at concentrations lower than 1 nM. Additionally, these pyrimidine derivatives also exhibited enhanced activity to block the proliferation of B-cell lymphoma cells compared with the representative BTK inhibitor ibrutinib. In particular, two structure-specific compounds 7b and 7e displayed stronger activity than reference agents in cell-based evaluation, with IC50 values lower than 10 μM. Further biological studies, including flow cytometric analysis, and a xenograft model for in vivo evaluation, also indicated their efficacy and low toxicity in the treatment of B-cell lymphoma. These findings provide a new insight for the development of novel anti-B-cell lymphoma drugs with multi-target actions.
Collapse
Affiliation(s)
- Yang Ge
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China; College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Changyuan Wang
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Shijie Song
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Jiaxin Huang
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Zhihao Liu
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Yongming Li
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Qiang Meng
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Jianbin Zhang
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Jihong Yao
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Kexin Liu
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Xiaodong Ma
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China.
| | - Xiuli Sun
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.
| |
Collapse
|