1
|
Heid E, Probst D, Green WH, Madsen GKH. EnzymeMap: curation, validation and data-driven prediction of enzymatic reactions. Chem Sci 2023; 14:14229-14242. [PMID: 38098707 PMCID: PMC10718068 DOI: 10.1039/d3sc02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Enzymatic reactions are an ecofriendly, selective, and versatile addition, sometimes even alternative to organic reactions for the synthesis of chemical compounds such as pharmaceuticals or fine chemicals. To identify suitable reactions, computational models to predict the activity of enzymes on non-native substrates, to perform retrosynthetic pathway searches, or to predict the outcomes of reactions including regio- and stereoselectivity are becoming increasingly important. However, current approaches are substantially hindered by the limited amount of available data, especially if balanced and atom mapped reactions are needed and if the models feature machine learning components. We therefore constructed a high-quality dataset (EnzymeMap) by developing a large set of correction and validation algorithms for recorded reactions in the literature and showcase its significant positive impact on machine learning models of retrosynthesis, forward prediction, and regioselectivity prediction, outperforming previous approaches by a large margin. Our dataset allows for deep learning models of enzymatic reactions with unprecedented accuracy, and is freely available online.
Collapse
Affiliation(s)
- Esther Heid
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | | | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | | |
Collapse
|
2
|
Kang SW, Antoney J, Lupton DW, Speight R, Scott C, Jackson CJ. Asymmetric Ene-Reduction by F 420 -Dependent Oxidoreductases B (FDOR-B) from Mycobacterium smegmatis. Chembiochem 2023; 24:e202200797. [PMID: 36716144 DOI: 10.1002/cbic.202200797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Asymmetric reduction by ene-reductases has received considerable attention in recent decades. While several enzyme families possess ene-reductase activity, the Old Yellow Enzyme (OYE) family has received the most scientific and industrial attention. However, there is a limited substrate range and few stereocomplementary pairs of current ene-reductases, necessitating the development of a complementary class. Flavin/deazaflavin oxidoreductases (FDORs) that use the uncommon cofactor F420 have recently gained attention as ene-reductases for use in biocatalysis due to their stereocomplementarity with OYEs. Although the enzymes of the FDOR-As sub-group have been characterized in this context and reported to catalyse ene-reductions enantioselectively, enzymes from the similarly large, but more diverse, FDOR-B sub-group have not been investigated in this context. In this study, we investigated the activity of eight FDOR-B enzymes distributed across this sub-group, evaluating their specific activity, kinetic properties, and stereoselectivity against α,β-unsaturated compounds. The stereochemical outcomes of the FDOR-Bs are compared with enzymes of the FDOR-A sub-group and OYE family. Computational modelling and induced-fit docking are used to rationalize the observed catalytic behaviour and proposed a catalytic mechanism.
Collapse
Affiliation(s)
- Suk Woo Kang
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451 (Republic of, Korea
| | - James Antoney
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Robert Speight
- School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Colin Scott
- Environment, Commonwealth Scientific and Industrial Research Organization, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Weber D, de Souza Bastos L, Winkler M, Ni Y, Aliev AE, Hailes HC, Rother D. Multi-enzyme catalysed processes using purified and whole-cell biocatalysts towards a 1,3,4-substituted tetrahydroisoquinoline †‡. RSC Adv 2023; 13:10097-10109. [PMID: 37006360 PMCID: PMC10053099 DOI: 10.1039/d3ra01210g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
In this work, two multi-enzyme catalysed processes to access a 1,3,4-substituted tetrahydroisoquinoline (THIQ), using either purified enzymes or lyophilised whole-cell catalysts, are presented. A key focus was the first step in which the reduction of 3-hydroxybenzoic acid (3-OH-BZ) into 3-hydroxybenzaldehyde (3-OH-BA) was catalysed by a carboxylate reductase (CAR) enzyme. Incorporation of the CAR-catalysed step enables substituted benzoic acids as the aromatic components, which can potentially be obtained from renewable resources by microbial cell factories. In this reduction, the implementation of an efficient cofactor regeneration system of both ATP and NADPH was crucial. Two different recycling approaches, either using purified enzymes or lyophilised whole-cells, were established and compared. Both of them showed high conversions of the acid into 3-OH-BA (>80%). However, the whole-cell system showed superior performance because it allowed the combination of the first and second steps into a one-pot cascade with excellent HPLC yields (>99%, enantiomeric excess (ee) ≥ 95%) producing the intermediate 3-hydroxyphenylacetylcarbinol. Moreover, enhanced substrate loads could be achieved compared to the system employing only purified enzymes. The third and fourth steps were performed in a sequential mode to avoid cross-reactivities and the formation of several side products. Thus, (1R,2S)-metaraminol could be formed with high HPLC yields (>90%, isomeric content (ic) ≥ 95%) applying either purified or whole-cell transaminases from Bacillus megaterium (BmTA) or Chromobacterium violaceum (Cv2025). Finally, the cyclisation step was performed using either a purified or lyophilised whole-cell norcoclaurine synthase variant from Thalictrum flavum (ΔTfNCS-A79I), leading to the formation of the target THIQ product with high HPLC yields (>90%, ic > 90%). As many of the educts applied are from renewable resources and a complex product with three chiral centers can be gained by only four highly selective steps, a very step- and atom efficient approach to stereoisomerically pure THIQ is shown. In this work, two multi-enzyme catalysed processes to access a 1,3,4-substituted tetrahydroisoquinoline (THIQ), using either purified enzymes or lyophilised whole-cell catalysts, are presented.![]()
Collapse
Affiliation(s)
- Douglas Weber
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Juelich GmbH52425 JuelichGermany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen UniversityWorringer Weg 152062 AachenGermany
| | - Lucas de Souza Bastos
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Juelich GmbH52425 JuelichGermany
| | - Margit Winkler
- acib GmbHKrenngasse 37A-8010 GrazAustria
- Institute of Molecular Biotechnology, Graz University of TechnologyPetersgasse 148010 GrazAustria
| | - Yeke Ni
- Department of Chemistry, University College LondonLondonWC1H 0AJUK
| | - Abil E. Aliev
- Department of Chemistry, University College LondonLondonWC1H 0AJUK
| | - Helen C. Hailes
- Department of Chemistry, University College LondonLondonWC1H 0AJUK
| | - Doerte Rother
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Juelich GmbH52425 JuelichGermany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen UniversityWorringer Weg 152062 AachenGermany
| |
Collapse
|
4
|
Kinner A, Nerke P, Siedentop R, Steinmetz T, Classen T, Rosenthal K, Nett M, Pietruszka J, Lütz S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines 2022; 10:964. [PMID: 35625702 PMCID: PMC9138302 DOI: 10.3390/biomedicines10050964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Biocatalysis is constantly providing novel options for the synthesis of active pharmaceutical ingredients (APIs). In addition to drug development and manufacturing, biocatalysis also plays a role in drug discovery and can support many active ingredient syntheses at an early stage to build up entire scaffolds in a targeted and preparative manner. Recent progress in recruiting new enzymes by genome mining and screening or adapting their substrate, as well as product scope, by protein engineering has made biocatalysts a competitive tool applied in academic and industrial spheres. This is especially true for the advances in the field of nonribosomal peptide synthesis and enzyme cascades that are expanding the capabilities for the discovery and synthesis of new bioactive compounds via biotransformation. Here we highlight some of the most recent developments to add to the portfolio of biocatalysis with special relevance for the synthesis and late-stage functionalization of APIs, in order to bypass pure chemical processes.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Regine Siedentop
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Till Steinmetz
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Thomas Classen
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Markus Nett
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Jörg Pietruszka
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf Located at Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| |
Collapse
|
5
|
Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry 2022; 28:e202103949. [PMID: 35133702 DOI: 10.1002/chem.202103949] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Biocatalysis integrate microbiologists, enzymologists, and organic chemists to access the repertoire of pharmaceutical and agrochemicals with high chemoselectivity, regioselectivity, and enantioselectivity. The saturation of carbon-carbon double bonds by biocatalysts challenges the conventional chemical methodology as it bypasses the use of precious metals (in combination with chiral ligands and molecular hydrogen) or organocatalysts. In this line, Ene-reductases (ERs) from the Old Yellow Enzymes (OYEs) family are found to be a prominent asymmetric biocatalyst that is increasingly used in academia and industries towards unparalleled stereoselective trans-hydrogenations of activated C=C bonds. ERs gained prominence as they were used as individual catalysts, multi-enzyme cascades, and in conjugation with chemical reagents (chemoenzymatic approach). Besides, ERs' participation in the photoelectrochemical and radical-mediated process helps to unlock many scopes outside traditional biocatalysis. These up-and-coming methodologies entice the enzymologists and chemists to explore, expand and harness the chemistries displayed by ERs for industrial settings. Herein, we reviewed the last five year's exploration of organic transformations using ERs.
Collapse
Affiliation(s)
- Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Chemistry Department and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
6
|
Abstract
1,2,3,4-Tetrahydroisoquinolines form a valuable scaffold for a variety of bioactive secondary metabolites and commercial pharmaceuticals. Due to the harsh or complex conditions of the conventional chemical synthesis of this molecular motif, alternative mild reaction pathways are in demand. Here we present an easy-to-operate chemoenzymatic one-pot process for the synthesis of tetrahydroisoquinolines starting from benzylic alcohols and an amino alcohol. We initially demonstrate the oxidation of 12 benzylic alcohols by a laccase/TEMPO system to the corresponding aldehydes, which are subsequently integrated in a phosphate salt mediated Pictet–Spengler reaction with m-tyramine. The reaction conditions of both individual reactions were analyzed separately, adapted to each other, and a straightforward one-pot process was developed. This enables the production of 12 1,2,3,4-tetrahydroisoquinolines with yields of up to 87% with constant reaction conditions in phosphate buffer and common laboratory glass bottles without the supplementation of any additives.
Collapse
|
7
|
Heid E, Goldman S, Sankaranarayanan K, Coley CW, Flamm C, Green WH. EHreact: Extended Hasse Diagrams for the Extraction and Scoring of Enzymatic Reaction Templates. J Chem Inf Model 2021; 61:4949-4961. [PMID: 34587449 PMCID: PMC8549070 DOI: 10.1021/acs.jcim.1c00921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Data-driven computer-aided synthesis planning utilizing organic or biocatalyzed reactions from large databases has gained increasing interest in the last decade, sparking the development of numerous tools to extract, apply, and score general reaction templates. The generation of reaction rules for enzymatic reactions is especially challenging since substrate promiscuity varies between enzymes, causing the optimal levels of rule specificity and optimal number of included atoms to differ between enzymes. This complicates an automated extraction from databases and has promoted the creation of manually curated reaction rule sets. Here, we present EHreact, a purely data-driven open-source software tool, to extract and score reaction rules from sets of reactions known to be catalyzed by an enzyme at appropriate levels of specificity without expert knowledge. EHreact extracts and groups reaction rules into tree-like structures, Hasse diagrams, based on common substructures in the imaginary transition structures. Each diagram can be utilized to output a single or a set of reaction rules, as well as calculate the probability of a new substrate to be processed by the given enzyme by inferring information about the reactive site of the enzyme from the known reactions and their grouping in the template tree. EHreact heuristically predicts the activity of a given enzyme on a new substrate, outperforming current approaches in accuracy and functionality.
Collapse
Affiliation(s)
- Esther Heid
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel Goldman
- Computational
and Systems Biology, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Karthik Sankaranarayanan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Connor W. Coley
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Christoph Flamm
- Department
of Theoretical Chemistry, University of
Vienna, 1090 Vienna, Austria
| | - William H. Green
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Galanie S, Entwistle D, Lalonde J. Engineering biosynthetic enzymes for industrial natural product synthesis. Nat Prod Rep 2021; 37:1122-1143. [PMID: 32364202 DOI: 10.1039/c9np00071b] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2000 to 2020 Natural products and their derivatives are commercially important medicines, agrochemicals, flavors, fragrances, and food ingredients. Industrial strategies to produce these structurally complex molecules encompass varied combinations of chemical synthesis, biocatalysis, and extraction from natural sources. Interest in engineering natural product biosynthesis began with the advent of genetic tools for pathway discovery. Genes and strains can now readily be synthesized, mutated, recombined, and sequenced. Enzyme engineering has succeeded commercially due to the development of genetic methods, analytical technologies, and machine learning algorithms. Today, engineered biosynthetic enzymes from organisms spanning the tree of life are used industrially to produce diverse molecules. These biocatalytic processes include single enzymatic steps, multienzyme cascades, and engineered native and heterologous microbial strains. This review will describe how biosynthetic enzymes have been engineered to enable commercial and near-commercial syntheses of natural products and their analogs.
Collapse
Affiliation(s)
- Stephanie Galanie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | - David Entwistle
- Process Chemistry, Codexis, Inc., Redwood City, California, USA
| | - James Lalonde
- Microbial Digital Genome Engineering, Inscripta, Inc., Pleasanton, California, USA
| |
Collapse
|
9
|
Winand L, Schneider P, Kruth S, Greven NJ, Hiller W, Kaiser M, Pietruszka J, Nett M. Mutasynthesis of Physostigmines in Myxococcus xanthus. Org Lett 2021; 23:6563-6567. [PMID: 34355569 DOI: 10.1021/acs.orglett.1c02374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The alkaloid physostigmine is an approved anticholinergic drug and an important lead structure for the development of novel therapeutics. Using a complementary approach that merged chemical synthesis with pathway refactoring, we produced a series of physostigmine analogues with altered specificity and toxicity profiles in the heterologous host Myxococcus xanthus. The compounds that were generated by applying a simple feeding strategy include the promising drug candidate phenserine, which was previously accessible only by total synthesis.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Pascal Schneider
- Institute of Bioorganic Chemistry, Heinrich-Heine-University Düsseldorf at Forschungszentrum Jülich, Jülich, 44227 Nordrhein-Westfalen, Germany
| | - Sebastian Kruth
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Nico-Joel Greven
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-University Düsseldorf at Forschungszentrum Jülich, Jülich, 44227 Nordrhein-Westfalen, Germany.,Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1), Forschungszentrum Jülich, Jülich, 52428 Nordrhein-Westfalen, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| |
Collapse
|
10
|
Mantel M, Giesler M, Guder M, Rüthlein E, Hartmann L, Pietruszka J. Lewis‐Base‐Brønsted‐Säure‐Enzym‐Katalyse in enantioselektiven mehrstufigen Eintopf‐Synthesen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marvin Mantel
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Deutschland
| | - Markus Giesler
- Institut für Organische und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Marian Guder
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1) Forschungszentrum Jülich GmbH 52428 Jülich Deutschland
| | - Elisabeth Rüthlein
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Deutschland
| | - Laura Hartmann
- Institut für Organische und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Deutschland
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1) Forschungszentrum Jülich GmbH 52428 Jülich Deutschland
| |
Collapse
|
11
|
Mantel M, Giesler M, Guder M, Rüthlein E, Hartmann L, Pietruszka J. Lewis Base-Brønsted Acid-Enzyme Catalysis in Enantioselective Multistep One-Pot Syntheses. Angew Chem Int Ed Engl 2021; 60:16700-16706. [PMID: 33856095 PMCID: PMC8360128 DOI: 10.1002/anie.202103406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/08/2021] [Indexed: 12/23/2022]
Abstract
Establishing one-pot, multi-step protocols combining different types of catalysts is one important goal for increasing efficiency in modern organic synthesis. In particular, the high potential of biocatalysts still needs to be harvested. Based on an in-depth mechanistic investigation of a new organocatalytic protocol employing two catalysts {1,4-diazabicyclo[2.2.2]octane (DABCO); benzoic acid (BzOH)}, a sequence was established providing starting materials for enzymatic refinement (ene reductase; alcohol dehydrogenase): A gram-scale access to a variety of enantiopure key building blocks for natural product syntheses was enabled utilizing up to six catalytic steps within the same reaction vessel.
Collapse
Affiliation(s)
- Marvin Mantel
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
| | - Markus Giesler
- Institut für Organische und Makromolekulare ChemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Marian Guder
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1)Forschungszentrum Jülich GmbH52428JülichGermany
| | - Elisabeth Rüthlein
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
| | - Laura Hartmann
- Institut für Organische und Makromolekulare ChemieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Jörg Pietruszka
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1)Forschungszentrum Jülich GmbH52428JülichGermany
| |
Collapse
|
12
|
Habash SS, Brass HUC, Klein AS, Klebl DP, Weber TM, Classen T, Pietruszka J, Grundler FMW, Schleker ASS. Novel Prodiginine Derivatives Demonstrate Bioactivities on Plants, Nematodes, and Fungi. FRONTIERS IN PLANT SCIENCE 2020; 11:579807. [PMID: 33178246 PMCID: PMC7596250 DOI: 10.3389/fpls.2020.579807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/18/2020] [Indexed: 05/06/2023]
Abstract
Bacterial metabolites represent an invaluable source of bioactive molecules which can be used as such or serve as chemical frameworks for developing new antimicrobial compounds for various applications including crop protection against pathogens. Prodiginines are tripyrrolic, red-colored compounds produced by many bacterial species. Recently, due to the use of chemical-, bio-, or mutasynthesis, a novel group of prodiginines was generated. In our study, we perform different assays to evaluate the effects of prodigiosin and five derivatives on nematodes and plant pathogenic fungi as well as on plant development. Our results showed that prodigiosin and the derivatives were active against the bacterial feeding nematode Caenorhabditis elegans in a concentration- and derivative-dependent manner while a direct effect on infective juveniles of the plant parasitic nematode Heterodera schachtii was observed for prodigiosin only. All compounds were found to be active against the plant pathogenic fungi Phoma lingam and Sclerotinia sclerotiorum. Efficacy varied depending on compound concentration and chemical structure. We observed that prodigiosin (1), the 12 ring- 9, and hexenol 10 derivatives are neutral or even positive for growth of Arabidopsis thaliana depending on the applied compound concentration, whereas other derivatives appear to be suppressive. Our infection assays revealed that the total number of developed H. schachtii individuals on A. thaliana was decreased to 50% in the presence of compounds 1 or 9. Furthermore, female nematodes and their associated syncytia were smaller in size. Prodiginines seem to indirectly inhibit H. schachtii parasitism of the plant. Further research is needed to elucidate their mode of action. Our results indicate that prodiginines are promising metabolites that have the potential to be developed into novel antinematodal and antifungal agents.
Collapse
Affiliation(s)
- Samer S. Habash
- INRES Molecular Phytomedicine, University of Bonn, Bonn, Germany
- *Correspondence: Samer S. Habash, ; orcid.org/0000-0002-4493-1451
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - David P. Klebl
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - Tim Moritz Weber
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - Thomas Classen
- IBG-1: Bioorganic Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
- IBG-1: Bioorganic Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - A. Sylvia S. Schleker
- INRES Molecular Phytomedicine, University of Bonn, Bonn, Germany
- A. Sylvia S. Schleker,
| |
Collapse
|
13
|
Kampers LFC, Volkers RJM, Martins dos Santos VAP. Pseudomonas putida KT2440 is HV1 certified, not GRAS. Microb Biotechnol 2019; 12:845-848. [PMID: 31199068 PMCID: PMC6680625 DOI: 10.1111/1751-7915.13443] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas putida is rapidly becoming a workhorse for industrial production due to its metabolic versatility, genetic accessibility and stress-resistance properties. The P. putida strain KT2440 is often described as Generally Regarded as Safe, or GRAS, indicating the strain is safe to use as food additive. This description is incorrect. P. putida KT2440 is classified by the FDA as HV1 certified, indicating it is safe to use in a P1 or ML1 environment.
Collapse
Affiliation(s)
- Linde F. C. Kampers
- Laboratory of Systems and Synthetic BiologyWageningen University and Research CentreStippeneng 46708WageningenThe Netherlands
| | - Rita J. M. Volkers
- Laboratory of Systems and Synthetic BiologyWageningen University and Research CentreStippeneng 46708WageningenThe Netherlands
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic BiologyWageningen University and Research CentreStippeneng 46708WageningenThe Netherlands
- Lifeglimmer GmbHMarkelstr. 3812163BerlinGermany
| |
Collapse
|
14
|
Martelli G, Galletti P, Baiula M, Calcinari L, Boschi G, Giacomini D. Chiral β-lactam-based integrin ligands through Lipase-catalysed kinetic resolution and their enantioselective receptor response. Bioorg Chem 2019; 88:102975. [DOI: 10.1016/j.bioorg.2019.102975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022]
|
15
|
Abstract
Recent studies of multiple enzyme families collectively referred to as ene-reductases (ERs) have highlighted potential industrial application of these biocatalysts in the production of fine and speciality chemicals. Processes have been developed whereby ERs contribute to synthetic routes as isolated enzymes, components of multi-enzyme cascades, and more recently in metabolic engineering and synthetic biology programmes using microbial cell factories to support chemicals production. The discovery of ERs from previously untapped sources and the expansion of directed evolution screening programmes, coupled to deeper mechanistic understanding of ER reactions, have driven their use in natural product and chemicals synthesis. Here we review developments, challenges and opportunities for the use of ERs in fine and speciality chemicals manufacture. The ER research field is rapidly expanding and the focus of this review is on developments that have emerged predominantly over the last 4 years.
Collapse
Affiliation(s)
- Helen S Toogood
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S Scrutton
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
16
|
Toogood HS, Scrutton NS. Discovery, Characterisation, Engineering and Applications of Ene Reductases for Industrial Biocatalysis. ACS Catal 2019; 8:3532-3549. [PMID: 31157123 PMCID: PMC6542678 DOI: 10.1021/acscatal.8b00624] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies of multiple enzyme families collectively referred to as ene-reductases (ERs) have highlighted potential industrial application of these biocatalysts in the production of fine and speciality chemicals. Processes have been developed whereby ERs contribute to synthetic routes as isolated enzymes, components of multi-enzyme cascades, and more recently in metabolic engineering and synthetic biology programmes using microbial cell factories to support chemicals production. The discovery of ERs from previously untapped sources and the expansion of directed evolution screening programmes, coupled to deeper mechanistic understanding of ER reactions, have driven their use in natural product and chemicals synthesis. Here we review developments, challenges and opportunities for the use of ERs in fine and speciality chemicals manufacture. The ER research field is rapidly expanding and the focus of this review is on developments that have emerged predominantly over the last 4 years.
Collapse
Affiliation(s)
- Helen S. Toogood
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
17
|
Brass HUC, Klein AS, Nyholt S, Classen T, Pietruszka J. Condensing Enzymes fromPseudoalteromonadaceaefor Prodiginine Synthesis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hannah U. C. Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located atForschungszentrum Jülich Stetternicher Forst, Building 15.8 52426 Jülich Germany
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located atForschungszentrum Jülich Stetternicher Forst, Building 15.8 52426 Jülich Germany
| | - Silke Nyholt
- Institute of Bio- and Geosciences (IBG-1)Forschungszentrum Jülich 52426 Jülich Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences (IBG-1)Forschungszentrum Jülich 52426 Jülich Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located atForschungszentrum Jülich Stetternicher Forst, Building 15.8 52426 Jülich Germany
- Institute of Bio- and Geosciences (IBG-1)Forschungszentrum Jülich 52426 Jülich Germany
| |
Collapse
|
18
|
Ennist JH, Termuehlen HR, Bernhard SP, Fricke MS, Cloninger MJ. Chemoenzymatic Synthesis of Galectin Binding Glycopolymers. Bioconjug Chem 2018; 29:4030-4039. [DOI: 10.1021/acs.bioconjchem.8b00599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica H. Ennist
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Henry R. Termuehlen
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Samuel P. Bernhard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Mackenzie S. Fricke
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Mary J. Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
19
|
Zhao Q, Ansorge-Schumacher MB, Haag R, Wu C. Compartmentalized Aqueous-Organic Emulsion for Efficient Biocatalysis. Chemistry 2018; 24:10966-10970. [DOI: 10.1002/chem.201802458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Qingcai Zhao
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| | | | - Rainer Haag
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| | - Changzhu Wu
- Institute of Microbiology; Technische Universität Dresden; Zellescher Weg 20b 01217 Dresden Germany
- Danish Institute for Advanced Study (DIAS) and Department of Physics Chemistry and Pharmacy; University of Southern Denmark; Odense 5230 Denmark
| |
Collapse
|
20
|
Oldrini D, Fiebig T, Romano MR, Proietti D, Berger M, Tontini M, De Ricco R, Santini L, Morelli L, Lay L, Gerardy-Schahn R, Berti F, Adamo R. Combined Chemical Synthesis and Tailored Enzymatic Elongation Provide Fully Synthetic and Conjugation-Ready Neisseria meningitidis Serogroup X Vaccine Antigens. ACS Chem Biol 2018; 13:984-994. [PMID: 29481045 DOI: 10.1021/acschembio.7b01057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies on the polymerization mode of Neisseria meningitidis serogroup X capsular polymerase CsxA recently identified a truncated construct that can be immobilized and used for length controlled on-column production of oligosaccharides. Here, we combined the use of a synthetic acceptor bearing an appendix for carrier protein conjugation and the on-column process to a novel chemo-enzymatic strategy. After protein coupling of the size optimized oligosaccharide produced by the one-pot elongation procedure, we obtained a more homogeneous glycoconjugate compared to the one previously described starting from the natural polysaccharide. Mice immunized with the conjugated fully synthetic oligomer elicited functional antibodies comparable to controls immunized with the current benchmark MenX glycoconjugates prepared from the natural capsule polymer or from fragments of it enzymatically elongated. This pathogen-free technology allows the fast total in vitro construction of predefined bacterial polysaccharide fragments. Compared to conventional synthetic protocols, the procedure is more expeditious and drastically reduces the number of purification steps to achieve the oligomers. Furthermore, the presence of a linker for conjugation in the synthetic acceptor minimizes manipulations on the enzymatically produced glycan prior to protein conjugation. This approach enriches the methods for fast construction of complex bacterial carbohydrates.
Collapse
Affiliation(s)
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | - Laura Morelli
- University of Milan, Department of Chemistry, via Golgi 19, 20133, Milan, Italy
| | - Luigi Lay
- University of Milan, Department of Chemistry, via Golgi 19, 20133, Milan, Italy
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | |
Collapse
|
21
|
|