1
|
Akabane T, Suzuki N, Ikeda K, Yonezawa T, Nagatoishi S, Matsumura H, Yoshizawa T, Tsuchiya W, Kamino S, Tsumoto K, Ishimaru K, Katoh E, Hirotsu N. THOUSAND-GRAIN WEIGHT 6, which is an IAA-glucose hydrolase, preferentially recognizes the structure of the indole ring. Sci Rep 2024; 14:6778. [PMID: 38514802 PMCID: PMC10958001 DOI: 10.1038/s41598-024-57506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
An indole-3-acetic acid (IAA)-glucose hydrolase, THOUSAND-GRAIN WEIGHT 6 (TGW6), negatively regulates the grain weight in rice. TGW6 has been used as a target for breeding increased rice yield. Moreover, the activity of TGW6 has been thought to involve auxin homeostasis, yet the details of this putative TGW6 activity remain unclear. Here, we show the three-dimensional structure and substrate preference of TGW6 using X-ray crystallography, thermal shift assays and fluorine nuclear magnetic resonance (19F NMR). The crystal structure of TGW6 was determined at 2.6 Å resolution and exhibited a six-bladed β-propeller structure. Thermal shift assays revealed that TGW6 preferably interacted with indole compounds among the tested substrates, enzyme products and their analogs. Further analysis using 19F NMR with 1,134 fluorinated fragments emphasized the importance of indole fragments in recognition by TGW6. Finally, docking simulation analyses of the substrate and related fragments in the presence of TGW6 supported the interaction specificity for indole compounds. Herein, we describe the structure and substrate preference of TGW6 for interacting with indole fragments during substrate recognition. Uncovering the molecular details of TGW6 activity will stimulate the use of this enzyme for increasing crop yields and contributes to functional studies of IAA glycoconjugate hydrolases in auxin homeostasis.
Collapse
Affiliation(s)
- Tatsuki Akabane
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Oura, Gunma, 374-0193, Japan
| | - Nobuhiro Suzuki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Kazuyoshi Ikeda
- Medicinal Chemistry Data Intelligence Unit, Drug Development Data Intelligence Platform Group, Medical Sciences Innovation Hub Program (MIH), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Division of Physics for Life Functions, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Tomoki Yonezawa
- Division of Physics for Life Functions, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Satoru Nagatoishi
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Wataru Tsuchiya
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Satoshi Kamino
- CRYO SHIP Incorporated, 1-266-3, Sakuragi-cho, Omiya-ku, Saitama, Saitama, 330-0854, Japan
| | - Kouhei Tsumoto
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ken Ishimaru
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Etsuko Katoh
- Department of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura, Oura, Gunma, 374-0193, Japan.
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Oura, Gunma, 374-0193, Japan.
| |
Collapse
|
2
|
Ikeda K, Kezuka Y, Nonaka T, Yonezawa T, Osawa M, Katoh E. Comprehensive Approach of 19F Nuclear Magnetic Resonance, Enzymatic, and In Silico Methods for Site-Specific Hit Selection and Validation of Fragment Molecules that Inhibit Methionine γ-Lyase Activity. J Med Chem 2021; 64:14299-14310. [PMID: 34582207 DOI: 10.1021/acs.jmedchem.1c00766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fragment-based screening using 19F NMR (19F-FS) is an efficient method for exploring seed and lead compounds for drug discovery. Here, we demonstrate the utility and merits of using 19F-FS for methionine γ-lyase-binding fragments, together with a 19F NMR-based competition and mutation assay, as well as enzymatic and in silico methods. 19F NMR-based assays provided useful information on binding between 19F-FS hit fragments and target proteins. Although the 19F-FS and enzymatic assay were weakly correlated, they show that the 19F-FS hit fragments contained compounds with inhibitory activity. Furthermore, we found that in silico calculations partially account for the differences in activity levels between the 19F-FS hits as per NMR analysis. A comprehensive approach combining the 19F-FS and other methods not only identified fragment hits but also distinguished structural differences in chemical groups with diverse activity levels.
Collapse
Affiliation(s)
- Kazuyoshi Ikeda
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuichiro Kezuka
- Division of Structural Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Takamasa Nonaka
- Division of Structural Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Tomoki Yonezawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masanori Osawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Etsuko Katoh
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
3
|
Prosser KE, Kohlbrand AJ, Seo H, Kalaj M, Cohen SM. 19F-Tagged metal binding pharmacophores for NMR screening of metalloenzymes. Chem Commun (Camb) 2021; 57:4934-4937. [PMID: 33870988 PMCID: PMC8137660 DOI: 10.1039/d1cc01231b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrates the screening of a collection of twelve 19F-tagged metal-binding pharmacophores (MBPs) against the Zn(ii)-dependent metalloenzyme human carbonic anhydrase II (hCAII) by 19F NMR. The isomorphous replacement of Zn(ii) by Co(ii) in hCAII produces enhanced sensitivity and reveals the potential of 19F NMR-based techniques for metalloenzyme ligand discovery.
Collapse
Affiliation(s)
- Kathleen E Prosser
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Alysia J Kohlbrand
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Hyeonglim Seo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Mark Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. NMR as a "Gold Standard" Method in Drug Design and Discovery. Molecules 2020; 25:E4597. [PMID: 33050240 PMCID: PMC7594251 DOI: 10.3390/molecules25204597] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Benjamin Gabriel Poulson
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Kousik Chandra
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Ryan T. McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada;
| | - Manel Dhahri
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Fatimah Alahmari
- Nanomedicine Department, Institute for Research and Medical, Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia;
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| |
Collapse
|