1
|
Xiang Y, Yuan Z, Deng Q, Xie L, Yu D, Shi J. Potential therapeutic medicines for renal fibrosis: Small-molecule compounds and natural products. Bioorg Chem 2024; 143:106999. [PMID: 38035515 DOI: 10.1016/j.bioorg.2023.106999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Renal fibrosis is the pathological change process of chronic kidney disease deteriorating continuously. When the renal organ is stimulated by external stimuli, it will trigger the damage and phenotypic changes of some intrinsic cells in the kidney. When the body's autoimmune regulation or external treatment is not prompted enough to restore the organ, the pathological process is gradually aggravating, inducing a large amount of intracellular collagen deposition, which leads to the appearance of fibrosis and scarring. The renal parenchyma (including glomeruli and tubules) begins to harden, making it difficult to repair the kidney lesions. In the process of gradual changes in the kidney tissue, the kidney units are severely damaged and the kidney function shows a progressive decline, eventually resulting in the clinical manifestation of end-stage renal failure, namely uremia. This review provides a brief description of the diagnosis, pathogenesis, and potential therapeutic inhibitors of renal fibrosis. Since renal fibrosis has not yet had a clear therapeutic target and related drugs, some potential targets and relevant inhibitors are discussed, especially pharmacological effects and interactions with targets. Some existing natural products have potential efficacy for renal fibrosis, which is also roughly summarized, hoping that this article would have reference significance for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
2
|
Colca JR, Tanis SP, Kletzien RF, Finck BN. Insulin sensitizers in 2023: lessons learned and new avenues for investigation. Expert Opin Investig Drugs 2023; 32:803-811. [PMID: 37755339 DOI: 10.1080/13543784.2023.2263369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION 'Insulin sensitizers' derived discoveries of the Takeda Company in 1970s. Pioglitazone remains the best in class with beneficial pleiotropic pharmacology, although use is limited by tolerability issues. Various attempts to expand out of this class assumed the primary molecular target was the transcription factor, PPARγ. Findings over the last 10 years have identified new targets of thiazolidinediones (TZDs) that should alter the drug discovery paradigm. AREAS COVERED We review structural classes of experimental insulin sensitizer drugs, some of which have attained limited approval in some markets. The TZD pioglitazone, originally approved in 1999 as a secondary treatment for type 2 diabetes, has demonstrated benefit in apparently diverse spectrums of disease from cardiovascular to neurological issues. New TZDs modulate a newly identified mitochondrial target (the mitochondrial pyruvate carrier) to reprogram metabolism and produce insulin sensitizing pharmacology devoid of tolerability issues. EXPERT OPINION Greater understanding of the mechanism of action of insulin sensitizing drugs can expand the rationale for the fields of treatment and potential for treatment combinations. This understanding can facilitate the registration and broader use of agents with that impact the pathophysiology that underlies chronic metabolic diseases as well as host responses to environmental insults including pathogens, insulin sensitizer, MPC, mitochondrial target, metabolic reprogramming, chronic and infectious disease.
Collapse
Affiliation(s)
| | | | | | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St Louis, Euclid Ave, MO, USA
| |
Collapse
|
3
|
Benova A, Ferencakova M, Bardova K, Funda J, Prochazka J, Spoutil F, Cajka T, Dzubanova M, Balcaen T, Kerckhofs G, Willekens W, van Lenthe GH, Alquicer G, Pecinova A, Mracek T, Horakova O, Rossmeisl M, Kopecky J, Tencerova M. Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones. Mol Metab 2022; 65:101598. [PMID: 36103974 PMCID: PMC9508355 DOI: 10.1016/j.molmet.2022.101598] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The use of thiazolidinediones (TZDs) as insulin sensitizers has been shown to have side effects including increased accumulation of bone marrow adipocytes (BMAds) associated with a higher fracture risk and bone loss. A novel TZD analog MSDC-0602K with low affinity to PPARγ has been developed to reduce adverse effects of TZD therapy. However, the effect of MSDC-0602K on bone phenotype and bone marrow mesenchymal stem cells (BM-MSCs) in relation to obesity has not been intensively studied yet. Methods Here, we investigated whether 8-week treatment with MSDC-0602K has a less detrimental effect on bone loss and BM-MSC properties in obese mice in comparison to first generation of TZDs, pioglitazone. Bone parameters (bone microstructure, bone marrow adiposity, bone strength) were examined by μCT and 3-point bending test. Primary BM-MSCs were isolated and measured for osteoblast and adipocyte differentiation. Cellular senescence, bioenergetic profiling, nutrient consumption and insulin signaling were also determined. Results The findings demonstrate that MSDC-0602K improved bone parameters along with increased proportion of smaller BMAds in tibia of obese mice when compared to pioglitazone. Further, primary BM-MSCs isolated from treated mice and human BM-MSCs revealed decreased adipocyte and higher osteoblast differentiation accompanied with less inflammatory and senescent phenotype induced by MSDC-0602K vs. pioglitazone. These changes were further reflected by increased glycolytic activity differently affecting glutamine and glucose cellular metabolism in MSDC-0602K-treated cells compared to pioglitazone, associated with higher osteogenesis. Conclusion Our study provides novel insights into the action of MSDC-0602K in obese mice, characterized by the absence of detrimental effects on bone quality and BM-MSC metabolism when compared to classical TZDs and thus suggesting a potential therapeutical use of MSDC-0602K in both metabolic and bone diseases. MSDC-0602K improves bone quality and increases proportion of smaller BMAds in obese mice. MSDC-0602K-treated mice show lower adipogenic differentiation with less senescent phenotype in primary BM-MSCs. MSDC-0602K induces higher glycolytic activity in BM-MSCs compared to pioglitazone. MSDC-0602-treated BM-MSCs prefer glutamine over glucose uptake in comparison to AT-MSCs. Beneficial effect of MSDC-06002K in BM-MSCs manifests by absence of MPC inhibition.
Collapse
Affiliation(s)
- Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Ferencakova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Tim Balcaen
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Department of Materials Engineering, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | | | | | - Glenda Alquicer
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Alena Pecinova
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic.
| |
Collapse
|
4
|
Singh G, Kajal K, Pradhan T, Bhurta D, Monga V. The medicinal perspective of 2,4-thiazolidinediones based ligands as antimicrobial, antitumor and antidiabetic agents: A review. Arch Pharm (Weinheim) 2022; 355:e2100517. [PMID: 35715383 DOI: 10.1002/ardp.202100517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
2,4-Thiazolidinedione (2,4-TZD), commonly known as glitazone, is a ubiquitous heterocyclic pharmacophore possessing a plethora of pharmacological activities and offering a vast opportunity for structural modification. The diverse range of biological activities endowed with a novel mode of action, low cost, and easy synthesis has attracted the attention of medicinal chemists. Several researchers have integrated the TZD core with different structural fragments to develop a wide range of lead molecules against various clinical disorders. The most common sites for structural modifications at the 2,4-TZD nucleus are the N-3 and the active methylene at C-5. The review covers the recent development of TZD derivatives such as antimicrobial, anticancer, and antidiabetic agents. Various 2,4-TZD based agents or drugs, which are either under clinical development or in the market, are discussed in the study. Different synthetic methodologies for synthesizing the 2,4-TZD core are also included in the manuscript. The importance of various substitutions at N-3 and C-5 and the mechanisms of action and structure-activity relationships are also discussed. We hope this study will serve as a valuable tool for the scientific community engaged in the structural exploitation of the 2,4-TZD core for developing novel drug m\olecules for life-threatening ailments.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Kumari Kajal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, New Delhi, India
| | - Deendyal Bhurta
- Department of Pharmaceutical Chemistry, Rajendra Institute of Technology and Sciences, Sirsa, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.,Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
5
|
Colca JR, Finck BN. Metabolic Mechanisms Connecting Alzheimer's and Parkinson's Diseases: Potential Avenues for Novel Therapeutic Approaches. Front Mol Biosci 2022; 9:929328. [PMID: 35782864 PMCID: PMC9243557 DOI: 10.3389/fmolb.2022.929328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's (AD) and Parkinson's Diseases (PD) are common neurodegenerative disorders growing in incidence and prevalence and for which there are no disease-modifying treatments. While there are considerable complexities in the presentations of these diseases, the histological pictures of these pathologies, as well as several rare genetic predispositions for each, point to the involvement of maladaptive protein processing and inflammation. Importantly, the common presentations of AD and PD are connected to aging and to dysmetabolism, including common co-diagnosis of metabolic syndrome or diabetes. Examination of anti-diabetic therapies in preclinical models and in some observational clinical studies have suggested effectiveness of the first generation insulin sensitizer pioglitazone in both AD and PD. Recently, the mitochondrial pyruvate carrier (MPC) was shown to be a previously unrecognized target of pioglitazone. New insulin sensitizers are in development that can be dosed to full engagement of this previously unappreciated mitochondrial target. Here we review molecular mechanisms that connect modification of pyruvate metabolism with known liabilities of AD and PD. The mechanisms involve modification of autophagy, inflammation, and cell differentiation in various cell types including neurons, glia, macrophages, and endothelium. These observations have implications for the understanding of the general pathology of neurodegeneration and suggest general therapeutic approaches to disease modification.
Collapse
Affiliation(s)
- Jerry R. Colca
- Metabolic Solutions Development Company, Western Michigan University, Kalamazoo, MI, United States
| | - Brian N. Finck
- Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
6
|
Colca JR, Scherer PE. The metabolic syndrome, thiazolidinediones, and implications for intersection of chronic and inflammatory disease. Mol Metab 2022; 55:101409. [PMID: 34863942 PMCID: PMC8688722 DOI: 10.1016/j.molmet.2021.101409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic disease appears connected to obesity. However, evidence suggests that chronic metabolic diseases are more specifically related to adipose dysfunction rather than to body weight itself. SCOPE OF REVIEW Further study of the first generation "insulin sensitizer" pioglitazone and molecules based on its structure suggests that is possible to decouple body weight from the metabolic dysfunction that drives adverse outcomes. The growing understanding of the mechanism of action of these agents together with advances in the pathophysiology of chronic metabolic disease offers a new approach to treat chronic conditions, such as type 2 diabetes, fatty liver disease, and their common organ and vascular sequelae. MAJOR CONCLUSIONS We hypothesize that treating adipocyte dysfunction with new insulin sensitizers might significantly impact the interface of infectious disease and chronic metabolic disease.
Collapse
Affiliation(s)
- Jerry R Colca
- Department of Biomedical Sciences, Western Michigan University School of Medicine, Kalamazoo, MI 49008, USA; Cirius Therapeutics, Kalamazoo, MI 49007, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
7
|
Colca J. NASH (nonalcoholic steatohepatitis), diabetes, and macrovascular disease: multiple chronic conditions and a potential treatment at the metabolic root. Expert Opin Investig Drugs 2020; 29:191-196. [PMID: 31928475 DOI: 10.1080/13543784.2020.1715940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: NASH and type 2 diabetes (T2D) are clinical definitions that overlap and result from metabolic dysfunction caused by over-nutrition relative to metabolic need. This volume details drug development programs aimed at specific NASH pathology with a focus on liver outcomes; this commentary suggests a metabolic approach that should not be overlooked based on a new understanding of insulin sensitizers.Areas covered: The overlap of NASH and T2D with respect to metabolic syndrome is discussed in the context of new understandings of insulin sensitizers. Adverse clinical outcomes in subjects with advanced NAFLD (e.g. NASH) and advanced metabolic dysfunction (e.g., T2D) are primarily due to cardiovascular issues. Clinical evidence suggests that insulin resistance and hyperinsulinemia predict adverse cardiovascular outcomes. NALFD/NASH significantly contributes to insulin resistance and hyperinsulinemia. A new insulin sensitizer that targets the newly identified mitochondrial pyruvate carrier could provide an approach.Expert opinion: A metabolic approach is needed for the treatment of NASH. Clinical studies are underway to determine whether a new insulin sensitizer that targets pyruvate metabolism can impact NASH, T2D, and cardiovascular disease. A broader view of metabolic disease may provide a more assessable way to track therapeutic benefit.
Collapse
Affiliation(s)
- Jerry Colca
- Cirius Therapeutics, Kalamazoo, MI, USA.,Cirius Therapeutics, San Diago, CA, USA
| |
Collapse
|
8
|
The development of improved syntheses of PPARγ-sparing, insulin sensitizing thiazolidinedione-ketones. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|