1
|
Tailor NK, Deswal G, Guarve K, Grewal AS. Development of Mycobacterium tuberculosis Enoyl Acyl Reductase (InhA) Inhibitors: A Mini-Review. Mini Rev Med Chem 2025; 25:219-233. [PMID: 39301902 DOI: 10.2174/0113895575309785240902102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
This review article delves into the critical role of Enoyl acyl carrier protein reductase (InhA; ENR), a vital enzyme in the NADH-dependent acyl carrier protein reductase family, emphasizing its significance in fatty acid synthesis and, more specifically, the biosynthesis of mycolic acid. The primary objective of this literature review is to elucidate diverse scaffolds and their developmental progression targeting InhA inhibition, thereby disrupting mycolic acid biosynthesis. Various scaffolds, including thiourea, piperazine, thiadiazole, triazole, quinazoline, benzamide, rhodanine, benzoxazole, and pyridine, have been systematically explored for their potential as InhA inhibitors. Noteworthy findings highlight thiadiazole and triazole derivatives, demonstrating promising IC50 values within the nanomolar concentration range. The review offers comprehensive insights into InhA's structure, structure-activity relationships, and a detailed overview of distinct scaffolds as effective inhibitors of InhA.
Collapse
Affiliation(s)
- Navin Kumar Tailor
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Geeta Deswal
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, 135001, Haryana, India
| | - Kumar Guarve
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, 135001, Haryana, India
| | - Ajmer Singh Grewal
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, 135001, Haryana, India
| |
Collapse
|
2
|
Li C, Jin K. Chemical Strategies towards the Development of Effective Anticancer Peptides. Curr Med Chem 2024; 31:1839-1873. [PMID: 37170992 DOI: 10.2174/0929867330666230426111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023]
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.
Collapse
Affiliation(s)
- Cuicui Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
3
|
Guo J, Xie Z, Ruan W, Tang Q, Qiao D, Zhu W. Thiazole-based analogues as potential antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and their SAR elucidation. Eur J Med Chem 2023; 259:115689. [PMID: 37542993 DOI: 10.1016/j.ejmech.2023.115689] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
In recent years, the overuse of antibiotics has resulted in the emergence of antibiotic resistance, which is a serious global health problem. Methicillin-resistant Staphylococcus aureus (MRSA) is a common and virulent bacterium in clinical practice. Numerous researchers have focused on developing new candidate drugs that are effective, less toxic, and can overcome MRSA resistance. Thiazole derivatives have been found to exhibit antibacterial activity against drug-sensitive and drug-resistant pathogens. By hybridizing thiazole with other antibacterial pharmacophores, it is possible to obtain more effective antibacterial candidate drugs. Thiazole derivatives have shown potential in developing new drugs that can overcome drug resistance, reduce toxicity, and improve pharmacokinetic characteristics. This article reviews the recent progress of thiazole compounds as potential antibacterial compounds and examines the structure-activity relationship (SAR) in various directions. It covers articles published from 2018 to 2023, providing a comprehensive platform to plan and develop new thiazole-based small MRSA growth inhibitors with minimal side effects.
Collapse
Affiliation(s)
- Jiaojiao Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Zhouling Xie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Wei Ruan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
4
|
Egu SA, Ali I, Khan KM, Chigurupati S, Qureshi U, Salar U, Taha M, Felemban SG, Venugopal V, Ul-Haq Z. Syntheses, in vitro, and in silico studies of rhodanine-based schiff bases as potential α-amylase inhibitors and radicals (DPPH and ABTS) scavengers. Mol Divers 2023; 27:767-791. [PMID: 35604512 DOI: 10.1007/s11030-022-10454-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
A two-step reaction method was used to synthesize a series of rhodanine-based Schiff bases (2-33) that were characterized using spectroscopic techniques. All compounds were assessed for α-amylase inhibitory and radical scavenging (DPPH and ABTS) activities. In comparison to the standard acarbose (IC50 = 9.08 ± 0.07 µM), all compounds demonstrated good to moderate α-amylase inhibitory activity (IC50 = 10.91 ± 0.08-61.89 ± 0.102 µM). Compounds also demonstrated significantly higher DPPH (IC50 = 10.33 ± 0.02-96.65 ± 0.03 µM) and ABTS (IC50 = 12.01 ± 0.12-97.47 ± 0.13 µM) radical scavenging activities than ascorbic acid (DPPH, IC50 = 15.08 ± 0.03 µM; ABTS, IC50 = 16.09 ± 0.17 µM). The limited structure-activity relationship (SAR) suggests that the position and nature of the substituted groups on the phenyl ring have a vital role in varying inhibitory potential. Among the series, compounds with an electron-withdrawing group at the para position showed the highest potency. Kinetic studies revealed that the compounds followed a competitive mode of inhibition. Molecular docking results are found to agree with experimental findings, showing that compounds reside in the active pocket due to the main rhodanine moiety.
Collapse
Affiliation(s)
- Samuel Attah Egu
- Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Kogi, Nigeria
| | - Irfan Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 52571, Kingdom of Saudi Arabia
| | - Urooj Qureshi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Vijayan Venugopal
- Faculty of Pharmacy, AIMST University, 08100, Bedong, Kedah, Malaysia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
5
|
Chaurasyia A, Chawla P, Monga V, Singh G. Rhodanine derivatives: An insight into the synthetic and medicinal perspectives as antimicrobial and antiviral agents. Chem Biol Drug Des 2023; 101:500-549. [PMID: 36447391 DOI: 10.1111/cbdd.14163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022]
Abstract
Rhodanine or 2-Thioxothiazolidin-4-one is a privileged heterocyclic compound offering a wide opportunity for structural modification, lead development, and modification. It is one of the highly decorated scaffolds in the drug discovery process. Rhodanine derivatives possess a plethora of biological activities due to their ability to interact with a diverse range of protein targets, which provide tremendous opportunities to discover new drugs with different modes of action. The most common strategy for developing novel rhodanine derivatives is the introduction of structurally diverse substituents at the C-5 or N-3, or both positions. Since the inception of Epralestat into the market in 1992, the exploration of rhodanine-3-acetic acids has led to the development of novel leads against different biological targets such as MRSA, HHV-6, Mycobacterial tuberculosis, dengue, etc. In the current pandemic era, some rhodanine compounds have been explored against SARS-CoV-2. In recent years, rhodanine and its derivatives have witnessed significant progress in developing new drug leads as potential antimicrobial and antiviral agents. Different synthetic methodologies and recent developments in the medicinal chemistry of rhodanine derivatives, including biological activities, their mechanistic aspects, structure-activity relationships, and in silico findings, have been compiled in the present review. This article will benefit the scientific community and offer perspectives on how these scaffolds as privileged structures might be exploited in the future for rational design and discovery of rhodanine-based bio-active molecules.
Collapse
Affiliation(s)
- Abhishek Chaurasyia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.,Research Scholar, IK Gujral Punjab Technical University, Kapurthala, Punjab, India
| |
Collapse
|
6
|
N-Derivatives of ( Z)-Methyl 3-(4-Oxo-2-thioxothiazolidin-5-ylidene)methyl)-1 H-indole-2-carboxylates as Antimicrobial Agents-In Silico and In Vitro Evaluation. Pharmaceuticals (Basel) 2023; 16:ph16010131. [PMID: 36678628 PMCID: PMC9865890 DOI: 10.3390/ph16010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Herein, we report the experimental evaluation of the antimicrobial activity of seventeen new (Z)-methyl 3-(4-oxo-2-thioxothiazolidin-5-ylidene)methyl)-1H-indole-2-carboxylate derivatives. All tested compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria. Their activity exceeded those of ampicillin as well as streptomycin by 10-50 fold. The most sensitive bacterium was En. Cloacae, while E. coli was the most resistant one, followed by M. flavus. The most active compound appeared to be compound 8 with MIC at 0.004-0.03 mg/mL and MBC at 0.008-0.06 mg/mL. The antifungal activity of tested compounds was good to excellent with MIC in the range of 0.004-0.06 mg/mL, with compound 15 being the most potent. T. viride was the most sensitive fungal, while A. fumigatus was the most resistant one. Docking studies revealed that the inhibition of E. coli MurB is probably responsible for their antibacterial activity, while 14a-lanosterol demethylase of CYP51Ca is involved in the mechanism of antifungal activity. Furthermore, drug-likeness and ADMET profile prediction were performed. Finally, the cytotoxicity studies were performed for the most active compounds using MTT assay against normal MRC5 cells.
Collapse
|
7
|
Hanwarinroj C, Phusi N, Kamsri B, Kamsri P, Punkvang A, Ketrat S, Saparpakorn P, Hannongbua S, Suttisintong K, Kittakoop P, Spencer J, Mulholland AJ, Pungpo P. Discovery of novel and potent InhA inhibitors by an in silico screening and pharmacokinetic prediction. Future Med Chem 2022; 14:717-729. [PMID: 35485258 DOI: 10.4155/fmc-2021-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: In silico screening approaches were performed to discover novel InhA inhibitors. Methods: Candidate InhA inhibitors were obtained from the combination of virtual screening and pharmacokinetic prediction. In addition, molecular mechanics Poisson-Boltzmann surface area, molecular mechanics Generalized Born surface area and WaterSwap methods were performed to investigate the binding interactions and binding energy of candidate compounds. Results: Four candidate compounds with suitable physicochemical, pharmacokinetic and antibacterial properties are proposed. The crucial interactions of the candidate compounds were H-bond, pi-pi and sigma-pi interactions observed in the InhA binding site. The binding affinity of these compounds was improved by hydrophobic interactions with hydrophobic side chains in the InhA pocket. Conclusion: The four newly identified InhA inhibitors reported in this study could serve as promising hit compounds against Mycobacterium tuberculosis and may be considered for further experimental studies.
Collapse
Affiliation(s)
- Chayanin Hanwarinroj
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Nareudon Phusi
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Bundit Kamsri
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Sombat Ketrat
- School of Information Science & Technology, Vidyasirimedhi Institute of Science & Technology, Rayong, 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health & Toxicology (EHT), CHE, Ministry of Education, Bangkok, 10300, Thailand
| | - James Spencer
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
8
|
Mermer A. The Importance of Rhodanine Scaffold in Medicinal Chemistry: A Comprehensive Overview. Mini Rev Med Chem 2021; 21:738-789. [PMID: 33334286 DOI: 10.2174/1389557521666201217144954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
After the clinical use of epalrestat that contains a rhodanine ring, in type II diabetes mellitus and diabetic complications, rhodanin-based compounds have become an important class of heterocyclic in the field of medicinal chemistry. Various modifications to the rhodanine ring have led to a broad spectrum of biological activity of these compounds. Synthesis of rhodanine derivatives, depended on advenced throughput scanning hits, frequently causes potent and selective modulators of targeted enzymes or receptors, which apply their pharmacological activities through different mechanisms of action. Rhodanine-based compounds will likely stay a privileged scaffold in drug discovery because of different probability of chemical modifications of the rhodanine ring. We have, therefore reviewed their biological activities and structure activity relationship.
Collapse
Affiliation(s)
- Arif Mermer
- Department of Biotechnology, Hamidiye Health Science Institute, University of Health Sciences Turkey, 34668, İstanbul, Turkey
| |
Collapse
|
9
|
Sun ZG, Zhao LH, Yeh SM, Li ZN, Ming X. Research Development, Optimization and Modifications of Anti-cancer Peptides. Mini Rev Med Chem 2021; 21:58-68. [PMID: 32767954 DOI: 10.2174/1389557520666200729163146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Anti-cancer peptides play an important role in the area of cancer inhibition. A variety of anti- cancer peptides have emerged through the extraction and structural modification of peptides from biological tissues. This review provides the research background of anti-cancer peptides, the introduction of the mechanism of anti-cancer peptides for inhibition of cancers, the discovery and development along with optimization and modifications of these peptides in the clinical application. In conclusion, it can be said that anti-cancer peptides will play a major role in the future oncologic clinic.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi 276400, China
| | - Liang-Hui Zhao
- Weifang Medical University, No. 7166 Baotong West Street, Weifang 261000, China
| | - Stacy Mary Yeh
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston- Salem, NC 27101, United States
| | - Zhi-Na Li
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi 276400, China
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston- Salem, NC 27101, United States
| |
Collapse
|
10
|
Du Q, Zhang X, Pan X, Zhang H, Yang YS, Liu J, Jiao Q. A novel strategy for efficient chemoenzymatic synthesis of D-glutamine using recombinant Escherichia coli cells. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Future Med Chem 2020; 12:1327-1358. [PMID: 32602375 DOI: 10.4155/fmc-2020-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldose Reductase 2 (ALR2), the rate-limiting enzyme of the polyol pathway, plays an important role in detoxification of some toxic aldehydes. Under hyperglycemia, this enzyme overactivates and causes diabetic complications (DC). Therefore, ALR2 inhibition has been established as a potential approach to manage these complications. Several ALR2 inhibitors have been reported, but none of them could reach US FDA approval. One of the main reasons is their poor selectivity over ALR1, which leads to the toxicity. The current review underlines the molecular connectivity of ALR2 with DC and comparative analysis of the catalytic domains of ALR2 and ALR1, to better understand the selectivity issues. This report also discusses the key features required for ALR2 inhibition and to limit toxicity due to off-target activity.
Collapse
|
12
|
Bayindir S, Yararli K. The easy synthesis of new N-substituted 5-oxindoline-rhodanines and their sensing ability: the recognition of acetate ions in aqueous solution. NEW J CHEM 2019. [DOI: 10.1039/c9nj01732a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, there has been increasing interest in developing innovative synthetic strategies for the decoration of rhodanine-cores.
Collapse
Affiliation(s)
- Sinan Bayindir
- Department of Chemistry
- Faculty of Sciences and Arts
- Bingöl University
- Bingöl
- Turkey
| | - Kemal Yararli
- Department of Chemistry
- Faculty of Sciences and Arts
- Bingöl University
- Bingöl
- Turkey
| |
Collapse
|