1
|
Vadabingi N, Mallepogu V, Mallapu RE, Pasala C, Poreddy S, Bellala P, Amineni U, Cirandur SR, Meriga B. Novel sulfamethoxazole and 1-(2-fluorophenyl) piperazine derivatives as potential apoptotic and antiproliferative agents by inhibition of BCL2; design, synthesis, biological evaluation, and docking studies. 3 Biotech 2024; 14:269. [PMID: 39421851 PMCID: PMC11480306 DOI: 10.1007/s13205-024-04111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
UNLABELLED In the present study, a novel series of sulfamethoxazole and 1-(2-fluorophenyl) piperazine derivatives were designed, synthesized and characterized by FTIR, IH NMR,13C NMR, Mass spectrometry, CHN data, and evaluated for their efficiency as BCL2 inhibitors that could lead to potential antiproliferative activity. The ten newly synthesized compounds were screened for their therapeutic activity using MDA-MB-231 breast cancer cell lines. All the test compounds exhibited moderate to high cytotoxic activity in MTT assay. Among them, compounds 3e and 6b exhibited promising antitumor activity, as evidenced by their IC50 values of 16.98 and 17.33 μM respectively. In addition, both compounds 3e and 6b displayed potential antioxidant and apoptosis induction properties. The qRT-PCR analysis showed down regulation of BCL2 expression and up regulation of Casp3 expression in 3e and 6b treated MDA-MB-231 cells. Further, the interaction between critical amino acids of the active domains of BCL2 and 3e and 6b was evaluated by MD simulation, and the results reflected the potent inhibitory activities of 3e and 6b. In summary, the novel compounds 3e and 6b demonstrate their potent anti-cancer properties by inducing apoptosis and selectively targeting BCL2 and caspases-3. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-024-04111-6.
Collapse
Affiliation(s)
| | - Venkataswamy Mallepogu
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502 India
| | - Rani E. Mallapu
- Department of Chemistry, Rayalaseema University, Kurnool, Andhra Pradesh India
| | - Chiranjeevi Pasala
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, Andhra Pradesh India
| | - Sumithra Poreddy
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh India
| | - Poojitha Bellala
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh India
| | - Umamaheswari Amineni
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, Andhra Pradesh India
| | - Suresh Reddy Cirandur
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh India
| | - Balaji Meriga
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502 India
| |
Collapse
|
2
|
Li SS, Chen JJ, Zhang MM, Wang WX, Zhang WY, Ma C. Design, synthesis, and biological evaluation of novel benzimidazole derivatives as anti-cervical cancer agents through PI3K/Akt/mTOR pathway and tubulin inhibition. Eur J Med Chem 2024; 271:116425. [PMID: 38636129 DOI: 10.1016/j.ejmech.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is one of the most attractive therapeutic targets for cervical cancer treatment. In this study, we designed and synthesized a series of benzimidazole derivatives and evaluated their anti-cervical cancer activity. Compound 4r exhibited strong antiproliferative activity in different cervical cancer cell lines HeLa, SiHa and Ca Ski, and relative lower cytotoxicity to normal hepatic and renal cell lines LO2 and HEK-293t (IC50 values were at 21.08 μM and 23.96 μM respectively). Its IC50 value was at 3.38 μM to the SiHa cells. Further mechanistic studies revealed that 4r induced apoptosis, arrested cell cycle in G2/M phase, suppressed PI3K/Akt/mTOR pathway and inhibit the polymerization of tubulin. Molecular docking study suggested that 4r formed key H-bonds action with PI3Kα (PDB ID:8EXU) and tubulin (PDB ID:1SA0). Zebrafish acute toxicity experiments showed that high concentrations of 4r did not cause death or malformation of zebrafish embryos. All these results demonstrated that 4r would be a promising lead candidate for further development of novel PI3K and tubulin dual inhibitors in cervical cancer treatment.
Collapse
Affiliation(s)
- Si-Si Li
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Jun-Jie Chen
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Miao-Miao Zhang
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Wei-Xu Wang
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Wei-Yi Zhang
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Active Components of Natural Medicine and Drug Release Technology, Xinjiang Medical University, Urumqi, 830011, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Urumqi, 830011, China.
| | - Cheng Ma
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Active Components of Natural Medicine and Drug Release Technology, Xinjiang Medical University, Urumqi, 830011, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Urumqi, 830011, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
3
|
Bareth D, Jain S, Kumawat J, Kishore D, Dwivedi J, Hashmi SZ. Synthetic and pharmacological developments in the hybrid s-triazine moiety: A review. Bioorg Chem 2024; 143:106971. [PMID: 38016395 DOI: 10.1016/j.bioorg.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
This article summarizes the most recent advancements in the synthetic and pharmacological approaches along with the structure activity relationship towards the s-triazine and its derivatives. Much attention has been given to s-triazine core due to its facile synthesis, interesting pharmacology, high reactivity, and binding characteristics towards various enzymes. An array of biological applications has been demonstrated by s-triazines including antimalarial, anti-HIV, anti-viral, antimicrobial, anti-tuberculosis to name a few. In the present investigation s-triazine based molecular structures have been assembled in respect to their synthesis and medicinal properties. Further, the competence of s-triazine has been correlated and compared with the other heterocyclic moieties to substantiates-triazine a privileged scaffold. From the literature it is revealed that nucleophilic substitution at 2, 4, and 6 positions is significant for various biological applications. This article would help in assisting the chemists in designing novel molecular entities with high medicinal value.
Collapse
Affiliation(s)
- Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
4
|
Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. An insight into the biological activity and structure-based drug design attributes of sulfonylpiperazine derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Wang X, Zhang M, Zhu R, Wu Z, Wu F, Wang Z, Yu Y. Design, Synthesis, Biological Evaluation, and Molecular Modeling of 2-Difluoromethylbenzimidazole Derivatives as Potential PI3Kα Inhibitors. Molecules 2022; 27:387. [PMID: 35056702 PMCID: PMC8777764 DOI: 10.3390/molecules27020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
PI3Kα is one of the potential targets for novel anticancer drugs. In this study, a series of 2-difluoromethylbenzimidazole derivatives were studied based on the combination of molecular modeling techniques 3D-QSAR, molecular docking, and molecular dynamics. The results showed that the best comparative molecular field analysis (CoMFA) model had q2 = 0.797 and r2 = 0.996 and the best comparative molecular similarity indices analysis (CoMSIA) model had q2 = 0.567 and r2 = 0.960. It was indicated that these 3D-QSAR models have good verification and excellent prediction capabilities. The binding mode of the compound 29 and 4YKN was explored using molecular docking and a molecular dynamics simulation. Ultimately, five new PI3Kα inhibitors were designed and screened by these models. Then, two of them (86, 87) were selected to be synthesized and biologically evaluated, with a satisfying result (22.8 nM for 86 and 33.6 nM for 87).
Collapse
Affiliation(s)
- Xiangcong Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
| | - Moxuan Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
| | - Ranran Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
| | - Zhongshan Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, 100 Haiquan Road, Shanghai 201400, China
| | - Zhonghua Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, 100 Haiquan Road, Shanghai 201400, China
| | - Yanyan Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201400, China; (X.W.); (M.Z.); (R.Z.); (Z.W.); (F.W.)
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, 100 Haiquan Road, Shanghai 201400, China
| |
Collapse
|
6
|
Akbary Moghaddam V, Kasmaeifar V, Mahmoodi Z, Ghafouri H, Saberi O, Mohammadi A. A novel sulfamethoxazole derivative as an inhibitory agent against HSP70: A combination of computational with in vitro studies. Int J Biol Macromol 2021; 189:194-205. [PMID: 34428485 DOI: 10.1016/j.ijbiomac.2021.08.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/01/2023]
Abstract
In the current study, a novel derivative of sulfamethoxazole (a sulfonamide containing anti-biotic) named ZM-093 (IUPAC name: (E)-4-((4-(bis(2-hydroxyethyl)amino)phenyl)diazenyl)-N-(5-methylisoxazole-3-yl)benzenesulfonamide) was synthesized via common diazotization-coupling reactions from sulfamethoxazole and subsequently characterized through NMR/FT-IR spectroscopy. After evaluation, the compound was geometrically optimized at the DFT level of theory with BL3YP method and 6/31++G (d,p) basis set and from the optimized structure, several molecular descriptors important in the biological reactivity of the compound, such as global reactivity parameters, molecular electrostatic potential, average local ionization energy, and drug-likeness features of the compound were computationally analyzed. The experimental in vitro investigations of the interaction between ZM-093 and heat shock protein 70 (HSP70), a protein that is highly expressed in several types of cancers, exhibited a significant inhibitory effect against the chaperone activity of HSP70 for the titled compound (P-value < 0.01) and the comparison between the experimental studies with the mentioned computational analysis, as well as molecular docking, illustrated that ZM-093 may inhibit HSP70 through binding to its substrate-binding domain. Finally, by taking all the previous results into account, a new method for assessing the inhibitory activity of ligand to HSP70 is introduced based on protonography, a recently developed method that is dependent on the catalytic activity of carbonic anhydrase on polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
| | - Vesal Kasmaeifar
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Zainab Mahmoodi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran; Department of Marine Sciences, Caspian Sea basin Research Center, University of Guilan, Rasht, Iran.
| | - Omid Saberi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
7
|
Bansal Y, Minhas R, Singhal A, Arora RK, Bansal G. Benzimidazole: A Multifacted Nucelus for Anticancer Agents. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208141107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is characterized by an uncontrolled proliferation of cells, dedifferentiation,
invasiveness and metastasis. Endothelial growth factor (eGF), insulin-like growth factor
(IGF), platelet-derived growth factor (PDGF), Fibroblast growth factor (FGF), Vascular endothelial
growth factor (VEGF), checkpoint kinase 1 & 2 ( Chk1 & Chk2), aurora kinases,
topoisomerases, histone deacetylators (HDAC), poly(ADP-Ribose)polymerase (PARP), farnesyl
transferases, RAS-MAPK pathway and PI3K-Akt-mTOR pathway, are some of the
prominent mediators implicated in the proliferation of tumor cells. Huge artillery of natural
and synthetic compounds as anticancer, which act by inhibiting one or more of the enzymes
and/or pathways responsible for the progression of tumor cells, is reported in the literature.
The major limitations of anticancer agents used in clinics as well as of those under development
in literature are normal cell toxicity and other side effects due to lack of specificity.
Hence, medicinal chemists across the globe have been working for decades to develop potent and safe anticancer
agents from natural sources as well as from different classes of heterocycles. Benzimidazole is one of the most important
and explored heteronucelus because of their versatility in biological actions as well as synthetic applications
in medicinal chemistry. The structural similarity of amino derivatives of benzimidazole with purines makes it a fascinating
nucleus for the development of anticancer, antimicrobial and anti-HIV agents. This review article is an attempt
to critically analyze various reports on benzimidazole derivatives acting on different targets to act as anticancer so as
to understand the structural requirements around benzimidazole nucleus for each target and enable medicinal chemists
to promote rational development of antitumor agents.
Collapse
Affiliation(s)
- Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Ankit Singhal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Radhey Krishan Arora
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| |
Collapse
|
8
|
Majeed Ganai A, Khan Pathan T, Hampannavar GA, Pawar C, Obakachi VA, Kushwaha B, Deshwar Kushwaha N, Karpoormath R. Recent Advances on the s‐Triazine Scaffold with Emphasis on Synthesis, Structure‐Activity and Pharmacological Aspects: A Concise Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202004591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Girish A. Hampannavar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
- Department of Pharmaceutical Chemistry K.L.E.U's College of Pharmacy Vidyanagar, Hubli 580031, Karnataka India
| | - Chandrakant Pawar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Vincent A. Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
9
|
Tran KB, Buchanan CM, Shepherd PR. Evolution of Molecular Targets in Melanoma Treatment. Curr Pharm Des 2020; 26:396-414. [PMID: 32000640 DOI: 10.2174/1381612826666200130091318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the deadliest type of skin cancers, accounting for more than 80% of skin cancer mortality. Although melanoma was known very early in the history of medicine, treatment for this disease had remained largely the same until very recently. Previous treatment options, including removal surgery and systemic chemotherapy, offered little benefit in extending the survival of melanoma patients. However, the last decade has seen breakthroughs in melanoma treatment, which all emerged following new insight into the oncogenic signaling of melanoma. This paper reviewed the evolution of drug targets for melanoma treatment based on the emergence of novel findings in the molecular signaling of melanoma. One of the findings that are most influential in melanoma treatment is that more than 50% of melanoma tumors contain BRAF mutations. This is fundamental for the development of BRAF inhibitors, which is the first group of drugs that significantly improves the overall survival of melanoma patients compared to the traditional chemotherapeutic dacarbazine. More recently, findings of the role of immune checkpoint molecules such as CTLA-4 and PD1/PD-L1 in melanoma biology have led to the development of a new therapeutic category: immune checkpoint inhibitors, which, for the first time in the history of cancer treatment, produced a durable response in a subset of melanoma patients. However, as this paper discussed next, there is still an unmet need for melanoma treatment. A significant population of patients did not respond to either BRAF inhibitors or immune checkpoint inhibitors. Of those patients who gained an initial response from those therapies, a remarkable percentage would develop drug resistance even when MEK inhibitors were added to the treatment. Finally, this paper discusses some possible targets for melanoma treatment.
Collapse
Affiliation(s)
- Khanh B Tran
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Christina M Buchanan
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| |
Collapse
|
10
|
Research advances on selective phosphatidylinositol 3 kinase δ (PI3Kδ) inhibitors. Bioorg Med Chem Lett 2020; 30:127457. [PMID: 32755681 DOI: 10.1016/j.bmcl.2020.127457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
PI3Kδ in B cells mediates antigen receptor signaling and promote neutrophil chemotaxis. The activation of PI3Kδ can cause mast cell maturation and degranulation, myeloid cell dysfunction, and cytokine release. As a key signal molecule, PI3Kδ interacts with the lipid binding domain of a variety of cellular proteins as a secondary messenger, ultimately affecting a series of significant cellular pathways in disease pathology. Therefore, many research organizations and pharmaceutical companies have studied it to develop effectively selective PI3Kδ inhibitors as therapeutics. This review summarizes research advances in varying chemical classes of selective PI3Kδ inhibitors and the structure-activity relationship, and it mainly focuses on the propeller- versus flat-type class of inhibitors.
Collapse
|
11
|
Prasher P, Sharma M, Aljabali AAA, Gupta G, Negi P, Kapoor DN, Singh I, Zacconi FC, Jesus Andreoli Pinto T, Silva MW, Bakshi HA, Chellappan DK, Tambuwala MM, Dua K. Hybrid molecules based on 1,3,5‐triazine as potential therapeutics: A focused review. Drug Dev Res 2020; 81:837-858. [DOI: 10.1002/ddr.21704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Parteek Prasher
- UGC‐Sponsored Centre for Advanced Studies, Department of Chemistry Guru Nanak Dev University Amritsar India
- Department of Chemistry University of Petroleum & Energy Studies Dehradun India
| | - Mousmee Sharma
- UGC‐Sponsored Centre for Advanced Studies, Department of Chemistry Guru Nanak Dev University Amritsar India
- Department of Chemistry Uttaranchal University Dehradun India
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology Faculty of Pharmacy, Yarmouk University Irbid Jordan
| | - Gaurav Gupta
- School of Pharmacy Suresh Gyan Vihar University Jaipur India
| | - Poonam Negi
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
| | - Inderbir Singh
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Flavia C. Zacconi
- Departamento de Organica, faculdad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile Santiago Chile
| | | | - Mateus Webba Silva
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy International Medical University Kuala Lumpur Malaysia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Kamal Dua
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan New South Wales Australia
- Centre for Inflammation, Centenary Institute Royal Prince Alfred Hospital Sydney New South Wales Australia
| |
Collapse
|
12
|
Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg Med Chem Lett 2019; 29:2042-2050. [DOI: 10.1016/j.bmcl.2019.06.041] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
|