1
|
Chen Y, Xiang S, Chen C, Su Q, Zhang Z, Fan Y, Cui Z, Yin L, Zuo H, Zuo M. Antithrombotic Effect of a Bivalent DNA Aptamer of Thrombin. ACS Biomater Sci Eng 2025; 11:2705-2712. [PMID: 40203196 DOI: 10.1021/acsbiomaterials.5c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Thrombin plays a critical role in both coagulation and platelet activation, and its interaction with thrombin-protease-activated receptor 1 (PAR1) on platelets and vascular smooth muscle cells (VSMCs) leads to a series of pathological processes such as thrombosis, restenosis, and atherosclerosis. This study investigated the antithrombotic properties of a bivalent DNA aptamer (bApt) with phosphorothioate backbone modification designed to inhibit thrombin, with a specific focus on its ability to regulate the thrombin-PAR1 signaling pathway. The results showed that bApt modulated the thrombin-PAR1 pathway, effectively reduced thrombus formation, platelet aggregation, and VSMC proliferation. Key findings from the study highlight that bApt successfully prolonged coagulation reaction time (R value), coagulation time (K value), maximum amplitude (MA) and reduced coagulation angle (α value), and also prolonged thrombin time (TT) and activated partial thromboplastin time (APTT), in a dose-dependent manner. Moreover, in an arterial injury model, bApt reduced thrombus formation significantly, supporting its potential as a therapeutic agent for thrombotic diseases.
Collapse
MESH Headings
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/chemistry
- Thrombin/antagonists & inhibitors
- Thrombin/metabolism
- Animals
- Platelet Aggregation/drug effects
- Fibrinolytic Agents/pharmacology
- Fibrinolytic Agents/chemistry
- Thrombosis/drug therapy
- Humans
- Blood Coagulation/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Male
- Cell Proliferation/drug effects
- Receptor, PAR-1/metabolism
Collapse
Affiliation(s)
- Yanxi Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shoubo Xiang
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610071, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunfa Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiuyu Su
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yangyang Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhihong Cui
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lixue Yin
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610071, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mingliang Zuo
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610071, China
| |
Collapse
|
2
|
Cline H, Wei Z, Groeneveld DJ, Hix JML, Xu X, Flick MJ, Palumbo JS, Poole LG, Dockendorff C, Griffin JH, Luyendyk JP. Hepatocyte-independent PAR1-biased signaling controls liver pathology in experimental obesity. J Thromb Haemost 2024; 22:3191-3198. [PMID: 39122189 PMCID: PMC11513232 DOI: 10.1016/j.jtha.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Protease-activated receptor-1 (PAR1) has emerged as an important link between coagulation and the complications of obesity including metabolic dysfunction-associated steatotic liver disease (MASLD). PAR1 is expressed by various cells and cleaved by different proteases to generate unique tethered agonists that activate distinct signaling pathways. Mice expressing PAR1 with an R41Q mutation have disabled canonical thrombin-mediated signaling, whereas R46Q mice express PAR1 resistant to noncanonical signaling by activated protein C. METHODS Mice with whole body and hepatocyte-selective PAR1 deficiency as well as PAR1 R41Q and R46Q mice were fed a high-fat diet (HFD) to induce MASLD. RESULTS HFD-fed R41Q mice displayed reduced hepatic steatosis and liver/body weight ratio. In contrast, HFD-fed R46Q mice displayed increased relative liver weight and hepatic steatosis alongside increased serum alanine aminotransferase activity. Surprisingly, despite the distinct impact of PAR1 mutations on steatosis, selective deletion of PAR1 in hepatocytes had no impact. To evaluate a viable PAR1-targeted approach, mice with HFD-induced obesity were treated with the allosteric PAR1 modulator NRD-21, which inhibits canonical PAR1 inflammatory signaling but promotes PAR1 protective, noncanonical anti-inflammatory signaling. NRD-21 treatment reduced plasma tumor necrosis factor-alpha, serum alanine aminotransferase activity, hepatic steatosis, and insulin resistance (Homeostatic Model Assessment for Insulin Resistance) but increased plasma active glucagon-like peptide-1. CONCLUSION The results suggest that nonhepatocellular canonical PAR1 cleavage drives MASLD in obese mice and provide translational proof-of-concept that selective pharmacologic modulation of PAR1 yields multiple metabolic benefits in experimental obesity.
Collapse
Affiliation(s)
- Holly Cline
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Zimu Wei
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Dafna J Groeneveld
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Jeremy M L Hix
- Department of Radiology and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xiao Xu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lauren G Poole
- Department of Pharmacology, Rutgers University, Piscataway, New Jersey, USA
| | | | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
3
|
Nag N, Ray T, Tapader R, Gope A, Das R, Mahapatra E, Saha S, Pal A, Prasad P, Pal A. Metallo-protease Peptidase M84 from Bacillusaltitudinis induces ROS-dependent apoptosis in ovarian cancer cells by targeting PAR-1. iScience 2024; 27:109828. [PMID: 38799586 PMCID: PMC11126781 DOI: 10.1016/j.isci.2024.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
We have purified Peptidase M84 from Bacillus altitudinis in an effort to isolate anticancer proteases from environmental microbial isolates. This metallo-protease had no discernible impact on normal cell survival, but it specifically induced apoptosis in ovarian cancer cells. PAR-1, a GPCR which is reported to be overexpressed in ovarian cancer cells, was identified as a target of Peptidase M84. We observed that Peptidase M84 induced PAR-1 overexpression along with activating its downstream signaling effectors NF-κB and MAPK to promote excessive reactive oxygen species (ROS) generation. This evoked apoptotic death of the ovarian cancer cells through the intrinsic route. In in vivo set-up, weekly intraperitoneal administration of Peptidase M84 in syngeneic mice significantly diminished ascites accumulation, increasing murine survival rates by 60%. Collectively, our findings suggested that Peptidase M84 triggered PAR-1-mediated oxidative stress to act as an apoptosis inducer. This established Peptidase M84 as a drug candidate for receptor mediated targeted-therapy of ovarian cancer.
Collapse
Affiliation(s)
- Niraj Nag
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Tanusree Ray
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rima Tapader
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Animesh Gope
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rajdeep Das
- Molecular Cell Biology of Autophagy Lab, The Francis Crick Institute, 1, Midland Road, London NW1 1AT, UK
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Saibal Saha
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Ananda Pal
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Parash Prasad
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital and Medical Center, 3333 Burnet Avenue, Cincinnati 45229-3026, OH, USA
| | - Amit Pal
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| |
Collapse
|
4
|
Johri N, Matreja PS, Agarwal S, Nagar P, Kumar D, Maurya A. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J Cardiovasc Transl Res 2024; 17:345-355. [PMID: 37851312 DOI: 10.1007/s12265-023-10445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia-reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia-reperfusion injury, and discuss the potential of APC-based therapeutics.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India.
- School of Health & Psychological Sciences, City, University of London, London, United Kingdom.
| | - Prithpal S Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Shalabh Agarwal
- Department of Cardiology, Teerthanker Mahaveer Hospital & Research Centre, Moradabad, Uttar Pradesh, India
| | - Priya Nagar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Deepanshu Kumar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
5
|
Böttner J, Fischer-Schaepmann T, Werner S, Knauth S, Jahnke HG, Thiele H, Büttner P. Amphetamine increases vascular permeability by modulating endothelial actin cytoskeleton and NO synthase via PAR-1 and VEGF-R. Sci Rep 2024; 14:3596. [PMID: 38351286 PMCID: PMC10864289 DOI: 10.1038/s41598-024-53470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Abuse of amphetamine-type stimulants is linked to cardiovascular adverse effects like arrhythmias, accelerated atherosclerosis, acute coronary syndromes and sudden cardiac death. Excessive catecholamine release following amphetamine use causes vasoconstriction and vasospasms, over time leading to hypertension, endothelial dysfunction or even cardiotoxicity. However, immediate vascular pathomechanisms related to amphetamine exposure, especially endothelial function, remain incompletely understood and were analyzed in this study. Pharmaco-pathological effects of acute d-amphetamine-sulfate (DAM) were investigated ex vivo using contraction-force measurements of rat carotid artery rings and in vitro using label-free, real-time electrochemical impedance spectroscopy (EIS) on endothelial and smooth muscle cells. Specific receptor and target blocking was used to identify molecular targets and to characterize intracellular signaling. DAM induced vasodilation represented by 29.3±2.5% decrease in vascular tone (p<0.001) involving vascular endothelial growth factor receptor (VEGF-R) and protease activated receptor 1 (PAR-1). EIS revealed that DAM induces endothelial barrier disruption (-75.9±1.1% of initial cellular impedance, p<0.001) also involving VEGF-R and PAR-1. Further, in response to DAM, Rho-associated protein kinase (ROCK) mediated reversible contraction of actin cytoskeleton resulting in endothelial barrier disruption. Dephosphorylation of Serine1177 (-50.8±3.7%, p<0.001) and Threonine495 (-44.8±6.5%, p=0.0103) of the endothelial NO synthase (eNOS) were also observed. Blocking of VEGF-R and PAR-1 restored baseline eNOS Threonine495 phosphorylation. DAM induced vasodilation, enhanced vascular permeability and actin cytoskeleton contraction and induced eNOS hypophosphorylation involving VEGF-R, PAR-1 and ROCK. These results may contribute to a better understanding of severe adverse cardiovascular effects in amphetamine abuse.
Collapse
Affiliation(s)
- Julia Böttner
- Department of Cardiology, Heart Center Leipzig at Leipzig University, Strümpellstr. 39, 04289, Leipzig, Germany.
| | - Tina Fischer-Schaepmann
- Department of Cardiology, Heart Center Leipzig at Leipzig University, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at Leipzig University, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Sarah Knauth
- Institute for Orthodontics, Leipzig University, Liebigstr. 21, 04103, Leipzig, Germany
| | - Heinz-Georg Jahnke
- Center for Biotechnology and Biomedicine at Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at Leipzig University, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Petra Büttner
- Department of Cardiology, Heart Center Leipzig at Leipzig University, Strümpellstr. 39, 04289, Leipzig, Germany
| |
Collapse
|
6
|
Carré J, Kerforne T, Hauet T, Macchi L. Tissue Injury Protection: The Other Face of Anticoagulant Treatments in the Context of Ischemia and Reperfusion Injury with a Focus on Transplantation. Int J Mol Sci 2023; 24:17491. [PMID: 38139319 PMCID: PMC10743711 DOI: 10.3390/ijms242417491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Organ transplantation has enhanced the length and quality of life of patients suffering from life-threatening organ failure. Donors deceased after brain death (DBDDs) have been a primary source of organs for transplantation for a long time, but the need to find new strategies to face organ shortages has led to the broadening of the criteria for selecting DBDDs and advancing utilization of donors deceased after circulatory death. These new sources of organs come with an elevated risk of procuring organs of suboptimal quality. Whatever the source of organs for transplant, one constant issue is the occurrence of ischemia-reperfusion (IR) injury. The latter results from the variation of oxygen supply during the sequence of ischemia and reperfusion, from organ procurement to the restoration of blood circulation, triggering many deleterious interdependent processes involving biochemical, immune, vascular and coagulation systems. In this review, we focus on the roles of thrombo-inflammation and coagulation as part of IR injury, and we give an overview of the state of the art and perspectives on anticoagulant therapies in the field of transplantation, discussing benefits and risks and proposing a strategic guide to their use during transplantation procedures.
Collapse
Affiliation(s)
- Julie Carré
- Service D’Hématologie Biologique, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France;
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
| | - Thomas Kerforne
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- Service D’Anesthésie-Réanimation et Médecine Péri-Opératoire, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
| | - Thierry Hauet
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
- Service de Biochimie, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France
| | - Laurent Macchi
- Service D’Hématologie Biologique, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France;
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
| |
Collapse
|
7
|
Künze G, Isermann B. Targeting biased signaling by PAR1: function and molecular mechanism of parmodulins. Blood 2023; 141:2675-2684. [PMID: 36952648 PMCID: PMC10646804 DOI: 10.1182/blood.2023019775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
The G protein-coupled receptor (GPCR) protease-activated receptor 1 (PAR1) is a therapeutic target that was originally pursued with the aim of restricting platelet activation and the burden of cardiovascular diseases. In clinical studies, the use of orthosteric PAR1 inhibitors was associated with an increased risk of hemorrhage, including intracranial hemorrhage. Because (1) PAR1 is expressed by various cell types, including endothelial cells, (2) conveys in mice a physiological indispensable function for vascular development during embryogenesis, and (3) is subject to biased signaling dependent on the activating proteases, orthosteric PAR1 inhibition may be associated with unwanted side effects. Alternatively, the protease-activated protein C (aPC) and its variants can promote valuable anti-inflammatory signaling via PAR1. Most recently, small molecule allosteric modulators of PAR1 signaling, called parmodulins, have been developed. Parmodulins inhibit coagulation and platelet activation yet maintain cytoprotective effects typically provoked by PAR1 signaling upon the activation by aPC. In this study, we review the discovery of parmodulins and their preclinical data, summarize the current knowledge about their mode of action, and compare the structural interaction of parmodulin and PAR1 with that of other intracellularly binding allosteric GPCR modulators. Thus, we highlight the pharmaceutical potential and challenges associated with the future development of parmodulins.
Collapse
Affiliation(s)
- Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| |
Collapse
|
8
|
Festoff BW, Dockendorff C. The Evolving Concept of Neuro-Thromboinflammation for Neurodegenerative Disorders and Neurotrauma: A Rationale for PAR1-Targeting Therapies. Biomolecules 2021; 11:1558. [PMID: 34827556 PMCID: PMC8615608 DOI: 10.3390/biom11111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Interest in the role of coagulation and fibrinolysis in the nervous system was active in several laboratories dating back before cloning of the functional thrombin receptor in 1991. As one of those, our attention was initially on thrombin and plasminogen activators in synapse formation and elimination in the neuromuscular system, with orientation towards diseases such as amyotrophic lateral sclerosis (ALS) and how clotting and fibrinolytic pathways fit into its pathogenesis. This perspective is on neuro-thromboinflammation, emphasizing this emerging concept from studies and reports over more than three decades. It underscores how it may lead to novel therapeutic approaches to treat the ravages of neurotrauma and neurodegenerative diseases, with a focus on PAR1, ALS, and parmodulins.
Collapse
Affiliation(s)
- Barry W. Festoff
- PHLOGISTIX LLC, Department of Neurology, University of Kansas Medical School, Kansas City, MO 64108, USA
| | | |
Collapse
|
9
|
Chandrabalan A, Ramachandran R. Molecular mechanisms regulating Proteinase‐Activated Receptors (PARs). FEBS J 2021; 288:2697-2726. [DOI: 10.1111/febs.15829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Arundhasa Chandrabalan
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| |
Collapse
|
10
|
Gandhi DM, Rosas R, Greve E, Kentala K, D-R Diby N, Snyder VA, Stephans A, Yeung THW, Subramaniam S, DiMilo E, Kurtenbach KE, Arnold LA, Weiler H, Dockendorff C. The parmodulin NRD-21 is an allosteric inhibitor of PAR1 Gq signaling with improved anti-inflammatory activity and stability. Bioorg Med Chem 2019; 27:3788-3796. [PMID: 31320211 PMCID: PMC6706283 DOI: 10.1016/j.bmc.2019.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022]
Abstract
Novel analogs of the allosteric, biased PAR1 ligand ML161 (parmodulin 2, PM2) were prepared in order to identify potential anti-thrombotic and anti-inflammatory compounds of the parmodulin class with improved properties. Investigations of structure-activity relationships of the western portion of the 1,3-diaminobenzene scaffold were performed using an intracellular calcium mobilization assay with endothelial cells, and several heterocycles were identified that inhibited PAR1 at sub-micromolar concentrations. The oxazole NRD-21 was profiled in additional detail, and it was confirmed to act as a selective, reversible, negative allosteric modulator of PAR1. In addition to inhibiting human platelet aggregation, it showed superior anti-inflammatory activity to ML161 in a qPCR assay measuring the expression of tissue factor in response to the cytokine TNF-alpha in endothelial cells. Additionally, NRD-21 is much more plasma stable than ML161, and is a promising lead compound for the parmodulin class for anti-thrombotic and anti-inflammatory indications.
Collapse
Affiliation(s)
- Disha M Gandhi
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Ricardo Rosas
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Eric Greve
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Kaitlin Kentala
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - N'Guessan D-R Diby
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Vladyslava A Snyder
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Allison Stephans
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Teresa H W Yeung
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | | | - Elliot DiMilo
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, WI 53211, USA
| | - Khia E Kurtenbach
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, WI 53211, USA
| | - Hartmut Weiler
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chris Dockendorff
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|