1
|
Srikanth Y, Julius T, Gayathri M, Tuyishime HS, Gelege MD, Kumar SS, Reddy DH, Chakravarthi G, Ramakrishna K. Indole 3 carbinol attenuated memory impairment, oxidative stress, inflammation, and apoptosis in bilateral common carotid artery occlusion induced brain damage in rats. 3 Biotech 2025; 15:51. [PMID: 39898236 PMCID: PMC11780242 DOI: 10.1007/s13205-024-04199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
Global cerebral ischemia (GCI) is associated with a multifaceted etiology, including increased oxidative stress, inflammation, and elevated acetylcholinesterase (AChE) activity, ultimately leading to cognitive and memory impairments. This study aimed to evaluate the neuroprotective, cognitive, and memory-enhancing effects of indole 3-carbinol (I3C), a phytochemical found in cruciferous vegetables. Additionally, network pharmacology analyses were conducted to identify potential molecular targets of I3C in GCI. Bilateral common carotid artery occlusion (BCCAO) surgery was performed to induce GCI. I3C was administered orally for 14 days, and cognitive and memory functions were assessed using the Y-maze and Morris water maze paradigms. Biomarkers of oxidative stress (MDA, Nrf2, SOD, and CAT), inflammatory markers (NF-κB, TNF-α, and IL-10), and AChE enzyme activity were evaluated. The results demonstrated that I3C treatment significantly inhibited AChE activity, improved spontaneous alternation (%) in the Y-maze test, increased the number of entries and time spent in the platform zone, and reduced escape latency in the Morris water maze test, indicating enhanced cognitive and memory functions. I3C treatment also increased brain levels of Nrf2, SOD, and CAT while reducing MDA levels. Furthermore, it decreased pro-inflammatory markers such as NF-κB and TNF-α and elevated the anti-inflammatory marker IL-10, suggesting neuroprotection through the mitigation of oxidative stress and inflammation. Histopathological analysis revealed improved integrity of CA1 neurons in BCCAO rats treated with I3C. Network pharmacology studies identified TP53, AKT1, TNF, STAT3, BCL2, SRC, ESR1, CCND1, CASP8, and CASP3 as the top ten molecular targets for I3C in the context of GCI. Our in vivo data, supported by network pharmacology studies, suggest that I3C's neuroprotective and cognitive-enhancing effects are driven by its ability to alleviate oxidative stress, inflammation, and apoptosis. Overall, this study suggests that I3C is a promising neuroprotective and memory-enhancing agent for global cerebral ischemia.
Collapse
Affiliation(s)
- Yadava Srikanth
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Tuwune Julius
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Meda Gayathri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Honnete Samuel Tuyishime
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Mtemi Daudi Gelege
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Suda Satish Kumar
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | | | - Guntupalli Chakravarthi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| | - Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302 India
| |
Collapse
|
2
|
Sharma A, Rudrawar S, Sharma A, Bharate SB, Jadhav HR. Unveiling the potential of novel indol-3-yl-phenyl allylidene hydrazine carboximidamide derivatives as AChE/BACE 1 dual inhibitors: a combined in silico, synthesis and in vitro study. RSC Adv 2024; 14:23853-23872. [PMID: 39081657 PMCID: PMC11287240 DOI: 10.1039/d4ra04315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Considering the failure of many enzyme inhibitors for Alzheimer's disease (AD), research is now focused on multi-target directed drug discovery. In this paper, inhibition of two essential enzymes implicated in AD pathologies, acetylcholinesterase (AChE) and BACE 1 (Beta-site APP Cleaving Enzyme), has been explored. Taking clues from our previous work, 41 novel indol-3-yl phenyl allylidene hydrazine carboximidamide derivatives were synthesized. The results indicated that compounds inhibited both enzymes in micromolar concentrations. Compound 1l is proposed as the most active. In silico, it was seen to occupy the binding pocket of AChE and BACE 1. The ADME predictions showed that these compounds have acceptable physicochemical characteristics. This study provides new leads for the assessment of AChE and BACE 1 dual inhibition as a promising strategy for AD treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus, Vidya Vihar Pilani - 333031 RJ India +91-1596-244183 +91-1596-255 506
| | - Santosh Rudrawar
- The Institute for Biomedicine and Glycomics, Griffith University Gold Coast 4222 Australia
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast 4222 Australia
| | - Ankita Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu - 181110 India
| | - Sandip B Bharate
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu - 181110 India
| | - Hemant R Jadhav
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus, Vidya Vihar Pilani - 333031 RJ India +91-1596-244183 +91-1596-255 506
| |
Collapse
|
3
|
Verma A, Waiker DK, Singh N, Roy A, Singh N, Saraf P, Bhardwaj B, Krishnamurthy S, Trigun SK, Shrivastava SK. Design, Synthesis, and Biological Investigation of Quinazoline Derivatives as Multitargeting Therapeutics in Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:745-771. [PMID: 38327209 DOI: 10.1021/acschemneuro.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
An efficient and promising method of treating complex neurodegenerative diseases like Alzheimer's disease (AD) is the multitarget-directed approach. Here in this work, a series of quinazoline derivatives (AV-1 to AV-21) were rationally designed, synthesized, and biologically evaluated as multitargeted directed ligands against human cholinesterase (hChE) and human β-secretase (hBACE-1) that exhibit moderate to good inhibitory effects. Compounds AV-1, AV-2, and AV-3 from the series demonstrated balanced and significant inhibition against these targets. These compounds also displayed excellent blood-brain barrier permeability via the PAMPA-BBB assay. Compound AV-2 significantly displaced propidium iodide (PI) from the acetylcholinesterase-peripheral anionic site (AChE-PAS) and was found to be non-neurotoxic at the maximum tested concentration (80 μM) against differentiated SH-SY5Y cell lines. Compound AV-2 also prevented AChE- and self-induced Aβ aggregation in the thioflavin T assay. Additionally, compound AV-2 significantly ameliorated scopolamine and Aβ-induced cognitive impairments in the in vivo behavioral Y-maze and Morris water maze studies, respectively. The ex vivo and biochemical analysis further revealed good hippocampal AChE inhibition and the antioxidant potential of the compound AV-2. Western blot and immunohistochemical (IHC) analysis of hippocampal brain revealed reduced Aβ, BACE-1, APP/Aβ, and Tau molecular protein expressions levels. The pharmacokinetic analysis of compound AV-2 demonstrated significant oral absorption with good bioavailability. The in silico molecular modeling studies of lead compound AV-2 moreover demonstrated a reasonable binding profile with AChE and BACE-1 enzymes and stable ligand-protein complexes throughout the 100 ns run. Compound AV-2 can be regarded as the lead candidate and could be explored more for AD therapy.
Collapse
Affiliation(s)
- Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Umar T, Meena RP, Mustehasan, Kumar P, Khan AA. Recent Updates in Development of Small Molecules as Potential Clinical Candidates for Alzheimer's Disease: A Review. Chem Biol Drug Des 2022; 100:674-681. [PMID: 35996229 DOI: 10.1111/cbdd.14133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 12/08/2022]
Abstract
Alzheimer's disease (AD) is one of the prominent causes for disability and lowered quality of life worldwide in elderly population. It has fostered immense burden to AD patients, families and society. Burgeoning progress in the field of pathogenesis over last two decades has persuaded the investigation of novel pharmacological therapeutics that focuses towards the pathophysiological events of AD. Miscellaneous clinical trials, development and testing of interventions aimed at various targets, such as anti-tau and anti-amyloid interventions, neurotransmitter modification, neuroprotection and anti-neuroinflammation interventions, cognitive enhancement, and interventions to palliate behavioral symptoms have been carried out. Despite massive efforts to find disease modifying therapies there lingers a vital need for continuing the advancement in progress of the AD research. This review features the new developments of small molecule compounds that will be beneficial in evolution of new AD therapies. In particular, this review briefly describes summary of mechanistic causes chiefly associated with AD and focuses on medicinal approach via small molecule inhibitors that can manage cognitive impairment and dysfunction and may combat Alzheimer's development.
Collapse
Affiliation(s)
- Tarana Umar
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - R P Meena
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - Mustehasan
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - Pawan Kumar
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| |
Collapse
|
5
|
Shrivastava SK, Nivrutti AA, Bhardwaj B, Waiker DK, Verma A, Tripathi PN, Tripathi M, Saraf P. Drug reposition-based design, synthesis, and biological evaluation of dual inhibitors of acetylcholinesterase and β-Secretase for treatment of Alzheimer's disease. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
The biological activities of butyrylcholinesterase inhibitors. Biomed Pharmacother 2021; 146:112556. [PMID: 34953393 DOI: 10.1016/j.biopha.2021.112556] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022] Open
Abstract
Acetylcholinesterase (AChE) inhibitor is the first choice for the treatment of Alzheimer's disease (AD), but it has some defects, such as dose limitation and unsatisfactory long-term treatment effect. Recent studies have shown that butyrylcholinesterase (BuChE) inhibitors or double acetyl and butyryl cholinesterase inhibitors have better curative effects on AD, and the side effects are lower than those of specific AChE inhibitors. Dual target cholinesterase inhibitors have become a new hotspot in the research of anti-AD drugs. Herein, the synthesis and bioactivities of BuChE inhibitors were reviewed.
Collapse
|
7
|
Guan L, Peng D, Zhang L, Jia J, Jiang H. Design, synthesis, and cholinesterase inhibition assay of liquiritigenin derivatives as anti-Alzheimer's activity. Bioorg Med Chem Lett 2021; 52:128306. [PMID: 34371131 DOI: 10.1016/j.bmcl.2021.128306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/30/2022]
Abstract
The marine environment is a rich resource for discovering functional materials, and seaweed is recognized for its potential use in biology and medicine. Liquiritigenin has been isolated and identified from Sargassum pallidum. To find new anti-Alzheimer's activity, we designed and synthesized thirty-two 7-prenyloxy-2,3-dihydroflavanone derivatives (3a-3p) and 5-hydroxy-7-prenyloxy-2,3-dihydro-flavanone derivatives (4a-4p) as cholinesterases inhibitors based on liquiritigenin as the lead compound. Inhibition screening against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) indicated that all synthesized compounds possessed potent AChE inhibitory activity and moderated to weak BuChE inhibitory activity in vitro. Kinetic studies demonstrated that compound 4o inhibited AChE via a dual binding site ability. In addition, all compounds displayed the radical scavenging effects. Finally, the molecular docking simulation of 4o in AChE active site displayed good agreement with the obtained the pharmacological results.
Collapse
Affiliation(s)
- Liping Guan
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan 316022, China
| | - Dingxin Peng
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan 316022, China
| | - Li Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan 316022, China
| | - Jinjing Jia
- Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing 314001, China
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing 314001, China.
| |
Collapse
|
8
|
Redox Homeostasis and Prospects for Therapeutic Targeting in Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9971885. [PMID: 34394839 PMCID: PMC8355971 DOI: 10.1155/2021/9971885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022]
Abstract
Reactive species, such as those of oxygen, nitrogen, and sulfur, are considered part of normal cellular metabolism and play significant roles that can impact several signaling processes in ways that lead to either cellular sustenance, protection, or damage. Cellular redox processes involve a balance in the production of reactive species (RS) and their removal because redox imbalance may facilitate oxidative damage. Physiologically, redox homeostasis is essential for the maintenance of many cellular processes. RS may serve as signaling molecules or cause oxidative cellular damage depending on the delicate equilibrium between RS production and their efficient removal through the use of enzymatic or nonenzymatic cellular mechanisms. Moreover, accumulating evidence suggests that redox imbalance plays a significant role in the progression of several neurodegenerative diseases. For example, studies have shown that redox imbalance in the brain mediates neurodegeneration and alters normal cytoprotective responses to stress. Therefore, this review describes redox homeostasis in neurodegenerative diseases with a focus on Alzheimer's and Parkinson's disease. A clearer understanding of the redox-regulated processes in neurodegenerative disorders may afford opportunities for newer therapeutic strategies.
Collapse
|
9
|
Khoshbakht M, Srey J, Adpressa DA, Jagels A, Loesgen S. Precursor-Directed Biosynthesis of Aminofulvenes: New Chalanilines from Endophytic Fungus Chalara sp. Molecules 2021; 26:4418. [PMID: 34361574 PMCID: PMC8347292 DOI: 10.3390/molecules26154418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
The plant endophyte Chalara sp. is able to biotransform the epigenetic modifier vorinostat to form unique, aniline-containing polyketides named chalanilines. Here, we sought to expand the chemical diversity of chalaniline A-type molecules by changing the aniline moiety in the precursor vorinostat. In total, twenty-three different vorinostat analogs were prepared via two-step synthesis, and nineteen were incorporated by the fungus into polyketides. The highest yielding substrates were selected for large-scale precursor-directed biosynthesis and five novel compounds, including two fluorinated chalanilines, were isolated, purified, and structurally characterized. Structure elucidation relied on 1D and 2D NMR techniques and was supported by low- and high-resolution mass spectrometry. All compounds were tested for their bioactivity but were not active in antimicrobial or cell viability assays. Aminofulvene-containing natural products are rare, and this high-yielding, precursor-directed process allows for the diversification of this class of compounds.
Collapse
Affiliation(s)
- Mahsa Khoshbakht
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
| | - Jason Srey
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
| | - Donovon A. Adpressa
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
| | - Annika Jagels
- Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, Gainesville, FL 32080, USA;
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
- Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, Gainesville, FL 32080, USA;
| |
Collapse
|
10
|
Choubey PK, Tripathi A, Sharma P, Shrivastava SK. Design, synthesis, and multitargeted profiling of N-benzylpyrrolidine derivatives for the treatment of Alzheimer’s disease. Bioorg Med Chem 2020; 28:115721. [DOI: 10.1016/j.bmc.2020.115721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
|
11
|
Chen T, Xiong H, Yang JF, Zhu XL, Qu RY, Yang GF. Diaryl Ether: A Privileged Scaffold for Drug and Agrochemical Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9839-9877. [PMID: 32786826 DOI: 10.1021/acs.jafc.0c03369] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antibacterial, antimalarial, herbicidal, fungicidal, insecticidal, and so on. In this review, we highlight the medicinal and agrochemical versatility of the DE motif according to the published information in the past decade and comprehensively give a summary of the target recognition, structure-activity relationship (SAR), and mechanism of action of its analogues. It is expected that this profile may provide valuable guidance for the discovery of new active ingredients both in drug and pesticide research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
12
|
Computational exploration and experimental validation to identify a dual inhibitor of cholinesterase and amyloid-beta for the treatment of Alzheimer’s disease. J Comput Aided Mol Des 2020; 34:983-1002. [DOI: 10.1007/s10822-020-00318-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
|
13
|
Tripathi A, Choubey PK, Sharma P, Seth A, Saraf P, Shrivastava SK. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease. Bioorg Chem 2020; 95:103506. [DOI: 10.1016/j.bioorg.2019.103506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/12/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
|
14
|
El-Sayed NAE, Farag AES, Ezzat MAF, Akincioglu H, Gülçin İ, Abou-Seri SM. Design, synthesis, in vitro and in vivo evaluation of novel pyrrolizine-based compounds with potential activity as cholinesterase inhibitors and anti-Alzheimer's agents. Bioorg Chem 2019; 93:103312. [DOI: 10.1016/j.bioorg.2019.103312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 01/17/2023]
|