1
|
Mansouri MM, Emami L, Rezaei Z, Khabnadideh S. Design, synthesis, biological assessments and computational studies of 3-substituted phenyl quinazolinone derivatives as promising anti-cancer agents. BMC Chem 2025; 19:125. [PMID: 40361154 PMCID: PMC12070605 DOI: 10.1186/s13065-025-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
A new series of 3-substituted phenyl quinazolinone derivatives were designed and synthesized as anti-cancer agents. The most potent derivative with IC50 values of 12.84 ± 0.84 and 10.90 ± 0.84 µM against MCF-7 and SW480 cell lines was comparable to Cisplatin and Erlotinib as positive controls. Cell cycle analysis showed that the most active compound could arrest at S phase in MCF-7 breast cancer cells. The apoptosis assay demonstrated the induction of apoptosis in the MCF-7 cell line, too. Molecular docking results showed better accommodation of the most active compound through hydrogen bonding interaction in the binding site of EGFR enzyme. Molecular dynamics simulations for the potent analogue demonstrated well binding stability compared to the less active analogue, with a lower RMSD, Rg and more interactions with the original active site residues. DFT calculations were performed on the active and inactive compounds, using Gaussian 09 at the M06-2X/6-31 + G(d) theoretical level. ADME (Absorption, Distribution, Metabolism, and Excretion) properties showed that most of the compounds are in acceptable range of Lipiniski rule. These findings underscore the potential of the synthesized compounds as potent cytotoxic inhibitors and provide insights for developing effective treatments for cancer therapy.
Collapse
Affiliation(s)
- Maryam Moghtader Mansouri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Emami
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Khabnadideh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Geng W, Lei Q, Zhang W, Gan X. Discovery of Novel N-Phenylphthalimide Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4585-4593. [PMID: 39950633 DOI: 10.1021/acs.jafc.4c09708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Developing new compounds with improved bioactivity is a crucial objective in herbicide research. To discover new compounds with high biological activity, a series of N-phenylphthalimide derivatives containing ether and oxime ether moieties were designed and synthesized. The assays demonstrated significant inhibitory effects of certain compounds on Nicotiana tabacum PPO (NtPPO). Among them, compound A4 exhibited the most potent inhibition of NtPPO, with a Ki value of 9.05 nM, surpassing both flumioxazin (Ki = 52.0 nM) and flumiclorac-pentyl (Ki = 46.3 nM). In addition, compound A4 exhibited complete inhibition against six weed species (Setaria viridis, Echinochloa crus-galli, Digitaria sanguinalis, Amaranthus retroflexus, Abutilon theophrasti, and Portulaca oleracea) and caused only 30-50% damage to maize and rice at 150 g a.i./ha. Molecular simulation analysis demonstrated that compound A4 exhibited stable binding to NtPPO due to the formation of a strong hydrogen bond with Arg98 (2.8 Å), surpassing the interactions of flumiclorac-pentyl (3.2 Å) and flumioxazin (3.1 Å). These findings suggest that compound A4 holds potential as a novel PPO inhibitor for the management of agricultural weeds.
Collapse
Affiliation(s)
- Wang Geng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Qiong Lei
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
3
|
Huai Z, Li Z, Xue W, Li S, Huang Y, Cao X, Wei Q, Wang Y. Novel curcumin derivatives N17 exert anti-cancer effects through the CSNK1G3/AKT axis in triple-negative breast cancer. Biochem Pharmacol 2024; 229:116472. [PMID: 39127154 DOI: 10.1016/j.bcp.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Curcumin, extracted from Zingiberaceae and Araceae rhizomes, is clinically used for its anti-inflammatory, antibacterial, antioxidant, and anti-cancer properties. Its safety and potential make it a promising base for designing enhanced derivatives. The focus now is on optimizing curcumin and synthesizing more potent 1,4-pentadien-3-ones, which have anti-cancer activities. In the realm of triple-negative breast cancer (TNBC), an aggressive and invasive form with high metastatic potential, the need for innovative treatments is acute. The challenges posed by chemotherapy resistance, recurrence, and TNBC's heterogeneity have emphasized the necessity for novel therapeutic approaches. Our strategy involved the integration of a quinoxaline ring into 1,4-pentadien-3-one, followed by subsequent modifications. In this study, N17 demonstrated the ability to induce cell death and effectively suppress cell proliferation in breast cancer cells. These observed anti-cancer effects were attributed to the inhibition of p-AKT(S473), a key regulator implicated in both cell apoptosis and the modulation of epithelial-mesenchymal transition process in breast cancer cells. Furthermore, our investigation indicated N17 achieves its inhibitory effects on p-AKT(S473) by specifically targeting the CSNK1G3 protein. Remarkably, N17 not only impedes the EMT process but also triggers apoptosis through the CSNK1G3/AKT signaling axis. These findings provide the critical role of CSNK1G3 as an anti-cancer regulator in TNBC, establishing N17 as a pharmacological intervention with immense promise for treating cancer metastasis.
Collapse
Affiliation(s)
- Ziyou Huai
- School of Life Science, Bengbu Medical University, Bengbu 233000, PR China; Department of Medical Genetics, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Zijian Li
- School of Life Science, Bengbu Medical University, Bengbu 233000, PR China; College of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| | - Wei Xue
- Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Shujing Li
- School of Life Science, Bengbu Medical University, Bengbu 233000, PR China
| | - Yinjiu Huang
- School of Life Science, Bengbu Medical University, Bengbu 233000, PR China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, PR China.
| | - Yuanyuan Wang
- School of Life Science, Bengbu Medical University, Bengbu 233000, PR China.
| |
Collapse
|
4
|
Zheng Y, Chen M, Zhang R, Xue W. Design, synthesis, antimicrobial activity, and mechanism of novel 3-(2,4-dichlorophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives. PEST MANAGEMENT SCIENCE 2024; 80:5388-5399. [PMID: 38961685 DOI: 10.1002/ps.8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 06/09/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Plant pathogens cause substantial crop losses annually, posing a grave threat to global food security. Fungicides have usually been used for their control, but the rapid development of pesticide resistance renders many ineffective, therefore the search for novel and efficient green pesticides to prevent and control plant diseases has become the top priority in crop planting. RESULTS The results of bioassay studies indicated that most of the target compounds showed certain antimicrobial activity in vitro. In particular, compound X7 showed high inhibitory activity against Xanthomonas oryzae pv. oryzae (Xoo), with an EC50 value of 27.47 μg mL-1, surpassing conventional control agents such as thiazole zinc (41.55 μg mL-1) and thiodiazole copper (53.39 μg mL-1). Further studies on molecular docking showed that X7 had a strong binding affinity with 2FBW. The morphological change observed by scanning electron microscopy indicated that the surface of Xoo appears wrinkled and cracked under X7 treatment and a total of 2662 proteins were identified by label-free proteomic analysis. Three experiments have elucidated the mechanism whereby X7 induced considerable changes in the physiological and biochemical properties of Xoo, which in turn affected the reproduction and growth of bacteria. CONCLUSION This work represents a pivotal advancement, offering important reference for the research and development therapeutics in combating plant pathogens. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuguo Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Mei Chen
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Renfeng Zhang
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Emami L, Hassani M, Mardaneh P, Zare F, Saeedi M, Emami M, Khabnadideh S, Sadeghian S. 6-Bromo quinazoline derivatives as cytotoxic agents: design, synthesis, molecular docking and MD simulation. BMC Chem 2024; 18:125. [PMID: 38965630 PMCID: PMC11225515 DOI: 10.1186/s13065-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Based on unselectively, several side effects and drug resistance of available anticancer agents, the development and research for novel anticancer agents is necessary. In this study, a new series of quinazoline-4(3H)-one derivatives having a thiol group at position 2 of the quinazoline ring (8a-8 h) were designed and synthesized as potential anticancer agents. The Chemical structures of all compounds were characterized by 1H-NMR, 13C-NMR, and Mass spectroscopy. The antiproliferative activity of all derivatives were determined against two cancer cell lines (MCF-7 and SW480) and one normal cell lines (MRC-5) by the MTT method. Cisplatin, Erlotinib and Doxorubicin were used as positive controls. The results of in vitro screening showed that 8a with an aliphatic linker to SH group was the most potent compound with IC50 values of 15.85 ± 3.32 and 17.85 ± 0.92 µM against MCF-7 and SW480 cell lines, respectively. 8a indicated significantly better potency compared to Erlotinib in the MCF-7 cell line. The cytotoxic results obtained from testing compound 8a on the normal cell line, revealing an IC50 value of 84.20 ± 1.72 µM, provide compelling evidence of its selectivity in distinguishing between tumorigenic and non-tumorigenic cell lines. Structure-activity relationship indicated that the variation in the anticancer activities of quinazoline-4(3H)-one derivatives was affected by different substitutions on the SH position. Molecular docking and MD simulation were carried out for consideration of the binding affinity of compounds against EGFR and EGFR-mutated. The binding energy of compounds 8a and 8c were calculated at -6.7 and - 5.3 kcal.mol- 1, respectively. Compounds 8a and 8c were found to establish hydrogen bonds and some other important interactions with key residue. The DFT analysis was also performed at the B3LYP/6-31 + G(d, p) level for compounds 8a, 8c and Erlotinib. Compound 8a was thermodynamically more stable than 8c. Also, the calculated theoretical and experimental data for the IR spectrum were in agreement. The obtained results delineated that the 8a can be considered an appropriate pharmacophore to develop as an anti-proliferative agent.
Collapse
Affiliation(s)
- Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mardaneh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Saeedi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sara Sadeghian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Emami L, Zare F, Khabnadideh S, Rezaei Z, Sabahi Z, Zare Gheshlaghi S, Behrouz M, Emami M, Ghobadi Z, Madadelahi Ardekani S, Barzegar F, Ebrahimi A, Sabet R. Synthesis, design, biological evaluation, and computational analysis of some novel uracil-azole derivatives as cytotoxic agents. BMC Chem 2024; 18:3. [PMID: 38173035 PMCID: PMC10765869 DOI: 10.1186/s13065-023-01106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
The design and synthesis of novel cytotoxic agents is still an interesting topic for medicinal chemistry researchers due to the unwanted side effects of anticancer drugs. In this study, a novel series of uracil-azole hybrids were designed and synthesized. The cytotoxic activity, along with computational studies: molecular docking, molecular dynamic simulation, density functional theory, and ADME properties were also, evaluated. The compounds were synthesized by using 3-methyl-6-chlorouracil as the starting material. Cytotoxicity was determined using MTT assay in the breast carcinoma cell line (MCF-7) and Hepatocellular carcinoma cell line (HEPG-2). These derivatives demonstrated powerful inhibitory activity against breast and hepatocellular carcinoma cell lines in comparison to Cisplatin as positive control. Among these compounds, 4j displayed the best selectivity profile and good activity with IC50 values of 16.18 ± 1.02 and 7.56 ± 5.28 µM against MCF-7 and HEPG-2 cell lines respectively. Structure-activity relationships revealed that the variation in the cytotoxic potency of the synthesized compounds was affected by various substitutions of benzyl moiety. The docking output showed that 4j bind well in the active site of EGFR and formed a stable complex with the EGFR protein. DFT was used to investigate the reactivity descriptors of 4a and 4j. The outputs demonstrated that these uracil-azole hybrids can be considered as potential cytotoxic agents.
Collapse
Affiliation(s)
- Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sabahi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | - Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Marzieh Behrouz
- Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghobadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | | | - Fatemeh Barzegar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran.
| |
Collapse
|
7
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
8
|
Kosmalski T, Kupczyk D, Baumgart S, Paprocka R, Studzińska R. A Review of Biologically Active Oxime Ethers. Molecules 2023; 28:5041. [PMID: 37446703 DOI: 10.3390/molecules28135041] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Oxime ethers are a class of compounds containing the >C=N-O-R moiety. The presence of this moiety affects the biological activity of the compounds. In this review, the structures of oxime ethers with specific biological activity have been collected and presented, and bactericidal, fungicidal, antidepressant, anticancer and herbicidal activities, among others, are described. The review includes both those substances that are currently used as drugs (e.g., fluvoxamine, mayzent, ridogrel, oxiconazole), as well as non-drug structures for which various biological activity studies have been conducted. To the best of our knowledge, this is the first review of the biological activity of compounds containing such a moiety. The authors hope that this review will inspire scientists to take a greater interest in this group of compounds, as it constitutes an interesting research area.
Collapse
Affiliation(s)
- Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza Str. 24, 85-092 Bydgoszcz, Poland
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
9
|
Sun S, Yan J, Tai L, Chai J, Hu H, Han L, Lu A, Yang C, Chen M. Novel (Z)/(E)-1,2,4-triazole derivatives containing oxime ether moiety as potential ergosterol biosynthesis inhibitors: design, preparation, antifungal evaluation, and molecular docking. Mol Divers 2023; 27:145-157. [PMID: 35290557 DOI: 10.1007/s11030-022-10412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Inspired by the highly effective and broad-spectrum antifungal activity of ergosterol biosynthesis inhibitions, a series of novel 1,2,4-triazole derivatives containing oxime ether moiety were constructed for screening the bioactivity against phytopathogenic fungi. The (Z)- and (E)-isomers of target compounds were successfully separated and identified by the spectroscopy and single crystal X-ray diffraction analyses. The bioassay results showed that the (Z)-isomers of target compounds possessed higher antifungal activity than the (E)-isomers. Strikingly, the compound (Z)-5o exhibited excellent antifungal activity against Rhizoctonia solani with the EC50 value of 0.41 μg/mL in vitro and preventive effect of 94.58% in vivo at 200 μg/mL, which was comparable to the positive control tebuconazole. The scanning electron microscopy observation indicated that the compound (Z)-5o caused the mycelial morphology to become wizened and wrinkled. The molecular docking modes of (Z)-5o and (E)-5o with the potential target protein RsCYP51 were especially compared. And the main interactions between ligands and amino acid residues were carefully analyzed to preliminarily explain the mechanism leading to the difference of activity between two isomers. The study provided a new lead molecular skeleton for developing novel triazole fungicides targeting ergosterol biosynthesis.
Collapse
Affiliation(s)
- Shengxin Sun
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinghua Yan
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lang Tai
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianqi Chai
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Hu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Han
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aimin Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlong Yang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
New substituted quinazoline analogs: synthesis, anticancer evaluation and docking study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Liu Y, He Z, Ma W, Bao G, Li Y, Yu C, Li J, E R, Xu Z, Wang R, Sun W. Copper(I)-Catalyzed Late-Stage Introduction of Oxime Ethers into Peptides at the Carboxylic Acid Site. Org Lett 2022; 24:9248-9253. [PMID: 36508502 DOI: 10.1021/acs.orglett.2c03813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed a method of introducing biological oxime ether fragments into peptides by CuI-catalyzed late-stage modification and functionalization of peptides, utilizing their acid moiety and varied 2H-azirines. As a result of its mild conditions, high atom economy, moderate yield, and excellent functional-group tolerance, the method can provide access to late-stage peptide modification and functionalization at their acid sites both in the homogeneous phase and on resins in SPPS, providing a new tool kit for peptide functionalization, diversification, and fluorescent labeling.
Collapse
Affiliation(s)
- Yuyang Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Wen Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Jingyue Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
12
|
Chai L, Chai Y, Zhang X. Two mono‐ and dinuclear Bi (III) complexes combined with crystallographic, spectroscopic, antibacterial activities, MEP/HSA, and TD/DFT calculations. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lan‐Qin Chai
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Yong‐Mei Chai
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Xiao‐Fang Zhang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| |
Collapse
|
13
|
Chai YM, Zhang HB, Zhang XY, Chai LQ. X-ray structures, spectroscopic, antimicrobial activity, ESP/HSA and TD/DFT calculations of Bi(III) complex containing imidazole ring. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Chai Y, Li C, Zhang X, Chai L. Antimicrobial activities of two 1‐D, 2‐D and 3‐D mononuclear Mn (II) and dinuclear Bi (III) complexes: X‐ray structures, spectroscopic, ESP, HSA and TD/DFT studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yong‐Mei Chai
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Cheng‐Guo Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Xiao‐Fang Zhang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Lan‐Qin Chai
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| |
Collapse
|
15
|
Li BY, Kang GQ, Huang M, Duan WG, Lin GS, Huang M, Wang X. Synthesis, bioactivity and computational simulation study of novel (Z)-3-caren-5-one oxime ethers as potential antifungal agents. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04690-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Wang Y, Zhou R, Sun N, He M, Wu Y, Xue W. Synthesis and antibacterial activity of novel 1,4‐pentadien‐3‐one derivatives bearing a benzothiazole moiety. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yihui Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals Guizhou University Guiyang China
- Monitoring of Four Families Anshun Ecological Environment Monitoring Center Anshun China
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals Guizhou University Guiyang China
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals Guizhou University Guiyang China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals Guizhou University Guiyang China
| | - Yongjun Wu
- Institute of Agro‐bioengineering/College of Life Sciences Guizhou University Guiyang China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals Guizhou University Guiyang China
| |
Collapse
|