1
|
Ryad N, Elmaaty AA, Selim S, Almuhayawi MS, Al Jaouni SK, Abdel-Aziz MS, Alqahtani AS, Zaki I, Abdel Ghany LMA. Design and synthesis of novel 2-(2-(4-bromophenyl)quinolin-4-yl)-1,3,4-oxadiazole derivatives as anticancer and antimicrobial candidates: in vitro and in silico studies. RSC Adv 2024; 14:34005-34026. [PMID: 39463483 PMCID: PMC11505673 DOI: 10.1039/d4ra06712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is the second leading cause of death globally, surpassed only by heart disease. Moreover, bacterial infections remain a significant global health burden, contributing substantially to morbidity and mortality, especially among hospitalized patients. EGFR has emerged as a prime therapeutic target due to its pivotal role in driving uncontrolled cell growth and survival across numerous cancer types. In addition, DNA gyrase represents a promising target for the development of novel antimicrobial agents. Therefore, we aimed to design and synthesize new multi-target quinoline hybrids (7-17e) capable of acting as anti-proliferative and antimicrobial agents by inhibiting EGFR and microbial DNA gyrase, respectively. The inhibitory potential of the synthesized compounds was determined using in vitro and in silico approaches. The antiproliferative activity of the synthesized quinoline-oxadiazole derivatives 7-17e was assessed against two cancer cell lines, namely, hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF-7). The assessed compounds 7-17e showed considerable cytotoxic activity activities against HepG2 and MCF-7 with IC50 values of 0.137-0.332 and 0.164-0.583 μg mL-1, respectively, in comparison to erlotinib as the positive control, which showed an IC50 value of 0.308 and 0.512 μg mL-1, respectively. Moreover, an EGFR tyrosine kinase inhibition assay was conducted on the most prominent candidates. The results showed good IC50 values of 0.14 and 0.18 μM for compounds 8c and 12d, respectively, compared to lapatinib (IC50 value of 0.12 μM). Furthermore, the minimum antimicrobial inhibitory concentration was evaluated for the most prominent candidates with S. aureus, E. coli, and C. albicans. Compounds 17b, 17d and 17e displayed the most potent inhibitory activity, exhibiting 4-, 16- and 8-fold more activity, respectively, than the reference neomycin. Hence, we can conclude that the afforded compounds can be used as lead dual anticancer and antimicrobial candidates for future optimization.
Collapse
Affiliation(s)
- Noha Ryad
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology 6th of October City, P.O. Box 77 Giza Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre Cairo Egypt
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box, 90950 Riyadh 11623 Saudi Arabia
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
- Pharmaceutical Organic Chemistry Department, Clinical Pharmacy Program, East Port Said National University Port Said 42526 Egypt
| | - Lina M A Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology 6th of October City, P.O. Box 77 Giza Egypt
| |
Collapse
|
2
|
Zhang D, Wang W, Ou H, Ning J, Zhou Y, Ke J, Hou A, Chen L, Li P, Ma Y, Jin WB. Identification of chalcone analogues as anti-inflammatory agents through the regulation of NF-κB and JNK activation. RSC Med Chem 2024; 15:2002-2017. [PMID: 38911149 PMCID: PMC11187561 DOI: 10.1039/d4md00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/25/2024] [Indexed: 06/25/2024] Open
Abstract
To develop new anti-inflammatory agents with improved pharmaceutical profiles, a series of chalcone analogues were designed and synthesized. In vitro anti-inflammatory activity of these compounds was evaluated by screening their inhibitory effects on NO production in RAW264.7 cell lines. The most promising compounds 3h and 3l were selected for further investigation by assessment of their dose-dependent inhibitory activity against cytokines such as TNF-α, IL-1β, and IL-6 and PGE2 release. The further study also indicated that 3h and 3l could significantly suppress the expression of iNOS and COX-2 through the NF-κB/JNK signaling pathway. Furthermore, compounds 3h and 3l could also remarkably inhibit the mRNA expression of inflammation-related genes. Meanwhile, 3h could also down-regulate ROS production. Docking simulation was conducted to position compounds 3h and 3l into the iNOS binding site to predict the probable binding mode. In conclusion, this series of chalcone analogues with reasonable drug-likeness obtained via in silico rapid prediction can be used as promising lead candidates.
Collapse
Affiliation(s)
- Die Zhang
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Wenping Wang
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Huiping Ou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen Guangdong China
| | - Jinhua Ning
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Yingxun Zhou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Jin Ke
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Anguo Hou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Linyun Chen
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Peng Li
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen Guangdong China
- State Key Laboratory of Chemical Biology and Drug Discovery and, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Yunshu Ma
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Wen Bin Jin
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
- State Key Laboratory of Chemical Biology and Drug Discovery and, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| |
Collapse
|
3
|
Shang LL, Zhong ZJ, Cheng LP. Discovery of novel polyheterocyclic neuraminidase inhibitors with 1,3,4-oxadiazole thioetheramide as core backbone. Eur J Med Chem 2024; 269:116305. [PMID: 38518525 DOI: 10.1016/j.ejmech.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Inspired by our earlier findings regarding neuraminidase (NA) inhibitors interacting with 150-cavity or 430-cavity of NA, sixteen novel polyheterocyclic NA inhibitors with 1,3,4-oxadiazole thioetheramide as core backbone were designed and synthesized based on the lead compound ZINC13401480. Of the synthesized compounds, compound N5 targeting 150-cavity exerts the best inhibitory activity against the wild-type H5N1 NA, with IC50 value of 0.14 μM, which is superior to oseltamivir carboxylate (OSC) (IC50 = 0.31 μM). Compound N10 targeting 430-cavity exhibits the best activity against the H5N1-H274Y mutant NA. Although the activity of N10 is comparable to that of OSC for wild-type H5N1 inhibition, it is approximately 60-fold more potent than OSC against the H274Y mutant, suggesting that it is not easy for the virus to develop drug resistance and is attractive for drug development. N10 (EC50 = 0.11 μM) also exhibits excellent antiviral activity against H5N1, which is superior to the positive control OSC (EC50 = 1.47 μM). Molecular docking study shows that the occupation of aromatic fused rings and oxadiazole moiety at the active site and the extension of the substituted phenyl to the 150-cavity or 430-cavity make great contributions to the good potency of this series of polyheterocyclic NA inhibitors. Some advancements in the discovery of effective target-specific NA inhibitors in this study may offer some assistance in the development of more potent anti-influenza drugs.
Collapse
Affiliation(s)
- Lin Lin Shang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zhi Jian Zhong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Li Ping Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
4
|
Romeo R, Legnani L, Chiacchio MA, Giofrè SV, Iannazzo D. Antiviral Compounds to Address Influenza Pandemics: An Update from 2016-2022. Curr Med Chem 2024; 31:2507-2549. [PMID: 37691217 DOI: 10.2174/0929867331666230907093501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
In recent decades, the world has gained experience of the dangerous effects of pandemic events caused by emerging respiratory viruses. In particular, annual epidemics of influenza are responsible for severe illness and deaths. Even if conventional influenza vaccines represent the most effective tool for preventing virus infections, they are not completely effective in patients with severe chronic disease and immunocompromised and new small molecules have emerged to prevent and control the influenza viruses. Thus, the attention of chemists is continuously focused on the synthesis of new antiviral drugs able to interact with the different molecular targets involved in the virus replication cycle. To date, different classes of influenza viruses inhibitors able to target neuraminidase enzyme, hemagglutinin protein, Matrix-2 (M2) protein ion channel, nucleoprotein or RNAdependent RNA polymerase have been synthesized using several synthetic strategies comprising the chemical modification of currently used drugs. The best results, in terms of inhibitory activity, are in the nanomolar range and have been obtained from the chemical modification of clinically used drugs such as Peramivir, Zanamivir, Oseltamir, Rimantadine, as well as sialylated molecules, and hydroxypyridinone derivatives. The aim of this review is to report, covering the period 2016-2022, the most recent routes related to the synthesis of effective influenza virus inhibitors.
Collapse
Affiliation(s)
- Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Laura Legnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Maria Assunta Chiacchio
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Salvatore V Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Messina, 98166, Italy
| |
Collapse
|
5
|
Al-Sanea MM, Hamdi A, Brogi S, S. Tawfik S, Othman DIA, Elshal M, Ur Rahman H, Parambi DGT, M. Elbargisy R, Selim S, Mostafa EM, Mohamed AAB. Design, synthesis, and biological investigation of oxadiazolyl, thiadiazolyl, and pyrimidinyl linked antipyrine derivatives as potential non-acidic anti-inflammatory agents. J Enzyme Inhib Med Chem 2023; 38:2162511. [PMID: 36633257 PMCID: PMC9848286 DOI: 10.1080/14756366.2022.2162511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A novel series of 12 antipyrine derivatives containing 1,3,4-oxadiazoles (4a-d), 1,3,4-thiadiazoles (6a-d), and pyrimidines (8a-d), was preparedand assessed for its potential in vitro COX-2 inhibitors. Compared to Celecoxib, compounds 4b-d and 8d were the most potent derivatives c with a half-maximal inhibitory concentration range of 53-69 nM. Considering COX-2 selectivity index, compounds 4 b and 4c were chosen among these most potent derivatives for further investigation. The in vivo ability of compounds 4 b and 4c to counteract carrageenan-induced paw edoema has been assessed and their potential underlying mechanisms have been elucidated and the results have been further validated using molecular docking simulations.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia,CONTACT Mohammad M. Al-Sanea Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka72341, Saudi Arabia
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Samar S. Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dina I. A. Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Della G. T. Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Rehab M. Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed A. B. Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt,Ahmed A. B. Mohamed Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| |
Collapse
|
6
|
Akyüz D, Demirbaş Ü, Bekircan O. Metallo‐phthalocyanines Containing 1,3,4‐oxadiazole Substituents: Synthesis, Characterization, Electrochemical and Spectroelectrochemical Properties. ChemistrySelect 2023. [DOI: 10.1002/slct.202204598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Duygu Akyüz
- Department of Chemistry Faculty of Science Gebze Technical University Kocaeli Türkiye
| | - Ümit Demirbaş
- Department of Chemistry Faculty of Science Karadeniz Technical University Trabzon Türkiye
| | - Olcay Bekircan
- Department of Chemistry Faculty of Science Karadeniz Technical University Trabzon Türkiye
| |
Collapse
|
7
|
Sinegubova EO, Kraevaya OA, Volobueva AS, Zhilenkov AV, Shestakov AF, Baykov SV, Troshin PA, Zarubaev VV. Water-Soluble Fullerene C 60 Derivatives Are Effective Inhibitors of Influenza Virus Replication. Microorganisms 2023; 11:microorganisms11030681. [PMID: 36985255 PMCID: PMC10053623 DOI: 10.3390/microorganisms11030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
The influenza virus genome features a very high mutation rate leading to the rapid selection of drug-resistant strains. Due to the emergence of drug-resistant strains, there is a need for the further development of new potent antivirals against influenza with a broad activity spectrum. Thus, the search for a novel, effective broad-spectrum antiviral agent is a top priority of medical science and healthcare systems. In this paper, derivatives based on fullerenes with broad virus inhibiting activities in vitro against a panel of influenza viruses were described. The antiviral properties of water-soluble fullerene derivatives were studied. It was demonstrated that the library of compounds based on fullerenes has cytoprotective activity. Maximum virus-inhibiting activity and minimum toxicity were found with compound 2, containing residues of salts of 2-amino-3-cyclopropylpropanoic acid (CC50 > 300 µg/mL, IC50 = 4.73 µg/mL, SI = 64). This study represents the initial stage in a study of fullerenes as anti-influenza drugs. The results of the study lead us conclude that five leading compounds (1-5) have pharmacological prospects.
Collapse
Affiliation(s)
| | - Olga A Kraevaya
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
| | | | - Alexander V Zhilenkov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
| | - Alexander F Shestakov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
- Faculty of Fundamental Physics & Chemical Engineering, Lomonosov Moscow State University, GSP 1, 1-51 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Pavel A Troshin
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
- Zhengzhou Research Institute, Harbin Institute of Technology, Longyuan East 7th 26, Jinshui District, Zhengzhou 450003, China
- Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin 150001, China
| | - Vladimir V Zarubaev
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 St. Petersburg, Russia
| |
Collapse
|
8
|
Datar M, Dhanwad R, Javeed M, Gunavanthrao Yernale N, Suliphuldevara Mathada B. Synthesis, Structural Investigations, DFT Calculations, and Molecular Docking Studies of Novel 2-(Substituted-Aryloxymethyl)-5-(Pyridin-4-yl)-1, 3, 4-Oxadiazoles: Highly Potential InhA and Cytochrome c Peroxidase Inhibitors. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2174997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Madhura Datar
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Bengaluru, Karnataka, India
| | - Ramagopal Dhanwad
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Bengaluru, Karnataka, India
| | - Mohammad Javeed
- P.G. Department and Research Studies in Chemistry, Nrupatunga University, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
9
|
Wang JJ, Sun W, Jia WD, Bian M, Yu LJ. Research progress on the synthesis and pharmacology of 1,3,4-oxadiazole and 1,2,4-oxadiazole derivatives: a mini review. J Enzyme Inhib Med Chem 2022; 37:2304-2319. [PMID: 36000176 PMCID: PMC9423840 DOI: 10.1080/14756366.2022.2115036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Oxadiazole is a five-membered heterocyclic compound containing two nitrogen atoms and one oxygen atom. The 1,3,4-oxadiazole and 1,2,4-oxadiazole have favourable physical, chemical, and pharmacokinetic properties, which significantly increase their pharmacological activity via hydrogen bond interactions with biomacromolecules. In recent years, oxadiazole has been demonstrated to be the biologically active unit in a number of compounds. Oxadiazole derivatives exhibit antibacterial, anti-inflammatory, anti-tuberculous, anti-fungal, anti-diabetic and anticancer activities. In this paper, we report a series of compounds containing oxadiazole rings that have been published in the last three years only (2020-2022) as there was no report or their activities described in any article in 2019, which will be useful to scientists in research fields of organic synthesis, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wen Sun
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wei-Dong Jia
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Ming Bian
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Li-Jun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| |
Collapse
|