1
|
Rutherford J, Avad K, Dureja C, Norseeda K, GC B, Wu C, Sun D, Hevener KE, Hurdle JG. Evaluation of Fusobacterium nucleatum Enoyl-ACP Reductase (FabK) as a Narrow-Spectrum Drug Target. ACS Infect Dis 2024; 10:1612-1623. [PMID: 38597503 PMCID: PMC11091888 DOI: 10.1021/acsinfecdis.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Fusobacterium nucleatum, a pathobiont inhabiting the oral cavity, contributes to opportunistic diseases, such as periodontal diseases and gastrointestinal cancers, which involve microbiota imbalance. Broad-spectrum antimicrobial agents, while effective against F. nucleatum infections, can exacerbate dysbiosis. This necessitates the discovery of more targeted narrow-spectrum antimicrobial agents. We therefore investigated the potential for the fusobacterial enoyl-ACP reductase II (ENR II) isoenzyme FnFabK (C4N14_ 04250) as a narrow-spectrum drug target. ENRs catalyze the rate-limiting step in the bacterial fatty acid synthesis pathway. Bioinformatics revealed that of the four distinct bacterial ENR isoforms, F. nucleatum specifically encodes FnFabK. Genetic studies revealed that fabK was indispensable for F. nucleatum growth, as the gene could not be deleted, and silencing of its mRNA inhibited growth under the test conditions. Remarkably, exogenous fatty acids failed to rescue growth inhibition caused by the silencing of fabK. Screening of synthetic phenylimidazole analogues of a known FabK inhibitor identified an inhibitor (i.e., 681) of FnFabK enzymatic activity and F. nucleatum growth, with an IC50 of 2.1 μM (1.0 μg/mL) and a MIC of 0.4 μg/mL, respectively. Exogenous fatty acids did not attenuate the activity of 681 against F. nucleatum. Furthermore, FnFabK was confirmed as the intracellular target of 681 based on the overexpression of FnFabK shifting MICs and 681-resistant mutants having amino acid substitutions in FnFabK or mutations in other genetic loci affecting fatty acid biosynthesis. 681 had minimal activity against a range of commensal flora, and it was less active against streptococci in physiologic fatty acids. Taken together, FnFabK is an essential enzyme that is amenable to drug targeting for the discovery and development of narrow-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Jacob
T. Rutherford
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Kristiana Avad
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chetna Dureja
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Krissada Norseeda
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720, United States
| | - Bibek GC
- Department
of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Chenggang Wu
- Department
of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Dianqing Sun
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720, United States
| | - Kirk E. Hevener
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Julian G. Hurdle
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Dureja C, Rutherford JT, Pavel FB, Norseeda K, Prah I, Sun D, Hevener KE, Hurdle JG. In vivo evaluation of Clostridioides difficile enoyl-ACP reductase II (FabK) inhibition by phenylimidazole unveils a promising narrow-spectrum antimicrobial strategy. Antimicrob Agents Chemother 2024; 68:e0122223. [PMID: 38265216 PMCID: PMC10916379 DOI: 10.1128/aac.01222-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea, which often stems from disruption of the gut microbiota by broad-spectrum antibiotics. The increasing prevalence of antibiotic-resistant C. difficile strains, combined with disappointing clinical trial results for recent antibiotic candidates, underscores the urgent need for novel CDI antibiotics. To this end, we investigated C. difficile enoyl ACP reductase (CdFabK), a crucial enzyme in de novo fatty acid synthesis, as a drug target for microbiome-sparing antibiotics. To test this concept, we evaluated the efficacy and in vivo spectrum of activity of the phenylimidazole analog 296, which is validated to inhibit intracellular CdFabK. Against major CDI-associated ribotypes 296 had an Minimum inhibitory concentration (MIC90) of 2 µg/mL, which was comparable to vancomycin (1 µg/mL), a standard of care antibiotic. In addition, 296 achieved high colonic concentrations and displayed dosed-dependent efficacy in mice with colitis CDI. Mice that were given 296 retained colonization resistance to C. difficile and had microbiomes that resembled the untreated mice. Conversely, both vancomycin and fidaxomicin induced significant changes to mice microbiomes, in a manner consistent with prior reports. CdFabK, therefore, represents a potential target for microbiome-sparing CDI antibiotics, with phenylimidazoles providing a good chemical starting point for designing such agents.
Collapse
Affiliation(s)
- Chetna Dureja
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Jacob T. Rutherford
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Fahad B.A. Pavel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Krissada Norseeda
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, USA
| | - Isaac Prah
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, USA
| | - Kirk E. Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Julian G. Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| |
Collapse
|
3
|
Dureja C, Rutherford JT, Pavel FBA, Norseeda K, Prah I, Sun D, Hevener KE, Hurdle JG. In vivo evaluation of Clostridioides difficile enoyl-ACP reductase II (FabK) Inhibition by phenylimidazole unveils a promising narrow-spectrum antimicrobial strategy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559005. [PMID: 37790427 PMCID: PMC10543012 DOI: 10.1101/2023.09.22.559005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea, which often stem from disruption of the gut microbiota by broad-spectrum antibiotics. The increasing prevalence of antibiotic-resistant C. difficile strains, combined with disappointing clinical trials results for recent antibiotic candidates, underscore the urgent need for novel CDI antibiotics. To this end, we investigated C. difficile enoyl ACP reductase (CdFabK), a crucial enzyme in de novo fatty acid synthesis, as a drug target for microbiome-sparing antibiotics. To test this concept, we evaluated the efficacy and in vivo spectrum of activity of the phenylimidazole analog 296, which is validated to inhibit intracellular CdFabK. Against major CDI-associated ribotypes 296 had an MIC90 of 2 μg/ml, which was comparable to vancomycin (1 μg/ml), a standard of care antibiotic. In addition, 296 achieved high colonic concentrations and displayed dosed-dependent efficacy in mice with colitis CDI. Mice that were given 296 retained colonization resistance to C. difficile and had microbiomes that resembled the untreated mice. Conversely, both vancomycin and fidaxomicin induced significant changes to mice microbiomes, in a manner consistent with prior reports. CdFabK therefore represents a potential target for microbiome-sparing CDI antibiotics, with phenylimidazoles providing a good chemical starting point for designing such agents.
Collapse
Affiliation(s)
- Chetna Dureja
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, Texas 77030, USA
| | - Jacob T. Rutherford
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, Texas 77030, USA
| | - Fahad B. A. Pavel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38105, USA
| | - Krissada Norseeda
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, Hawaii 96720, USA
| | - Isaac Prah
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, Texas 77030, USA
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, Hawaii 96720, USA
| | - Kirk E. Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38105, USA
| | - Julian G. Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, Texas 77030, USA
| |
Collapse
|