1
|
Pala N, Esposito F, Tramontano E, Singh PK, Sanna V, Carcelli M, Haigh LD, Satta S, Sechi M. Development of a Raltegravir-based Photoaffinity-Labeled Probe for Human Immunodeficiency Virus-1 Integrase Capture. ACS Med Chem Lett 2020; 11:1986-1992. [PMID: 33062183 DOI: 10.1021/acsmedchemlett.0c00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022] Open
Abstract
Photoaffinity labeling (PAL) is one of the upcoming and powerful tools in the field of molecular recognition. It includes the determination of dynamic parameters, such as the identification and localization of the target protein and the site of drug binding. In this study, a photoaffinity-labeled probe for full-length human immunodeficiency virus-1 integrase (HIV-1 IN) capture was designed and synthesized, following the structure of the FDA-approved drug Raltegravir. This photoprobe was found to retain the HIV IN inhibitory potential in comparison with its parent molecule and demonstrates the ability to label the HIV-1 IN protein. Putative photoprobe/inhibitor binding sites near the catalytic site were then identified after protein digestion coupled to mass and molecular modeling analyses.
Collapse
Affiliation(s)
- Nicolino Pala
- Department of Chemistry and Pharmacy, Laboratory of Drug Design and Nanomedicine, University of Sassari, Sassari 07100, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09042, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09042, Italy
| | - Pankaj Kumar Singh
- Department of Chemistry and Pharmacy, Laboratory of Drug Design and Nanomedicine, University of Sassari, Sassari 07100, Italy
| | - Vanna Sanna
- Nanomater s.r.l., c/o Porto Conte Ricerche, Alghero 07041, Italy
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Lisa D. Haigh
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Sandro Satta
- Centre for Pharmacology & Therapeutics, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Mario Sechi
- Department of Chemistry and Pharmacy, Laboratory of Drug Design and Nanomedicine, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
2
|
Wei Y, Li W, Du T, Hong Z, Lin J. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method. Int J Mol Sci 2019; 20:ijms20143572. [PMID: 31336592 PMCID: PMC6678913 DOI: 10.3390/ijms20143572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus type-1 and hepatitis C virus (HIV/HCV) coinfection occurs when a patient is simultaneously infected with both human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV), which is common today in certain populations. However, the treatment of coinfection is a challenge because of the special considerations needed to ensure hepatic safety and avoid drug–drug interactions. Multitarget inhibitors with less toxicity may provide a promising therapeutic strategy for HIV/HCV coinfection. However, the identification of one molecule that acts on multiple targets simultaneously by experimental evaluation is costly and time-consuming. In silico target prediction tools provide more opportunities for the development of multitarget inhibitors. In this study, by combining Naïve Bayes (NB) and support vector machine (SVM) algorithms with two types of molecular fingerprints, MACCS and extended connectivity fingerprints 6 (ECFP6), 60 classification models were constructed to predict compounds that were active against 11 HIV-1 targets and four HCV targets based on a multiple quantitative structure–activity relationships (multiple QSAR) method. Five-fold cross-validation and test set validation were performed to measure the performance of the 60 classification models. Our results show that the 60 multiple QSAR models appeared to have high classification accuracy in terms of the area under the ROC curve (AUC) values, which ranged from 0.83 to 1 with a mean value of 0.97 for the HIV-1 models and from 0.84 to 1 with a mean value of 0.96 for the HCV models. Furthermore, the 60 models were used to comprehensively predict the potential targets of an additional 46 compounds, including 27 approved HIV-1 drugs, 10 approved HCV drugs and nine selected compounds known to be active against one or more targets of HIV-1 or HCV. Finally, 20 hits, including seven approved HIV-1 drugs, four approved HCV drugs, and nine other compounds, were predicted to be HIV/HCV coinfection multitarget inhibitors. The reported bioactivity data confirmed that seven out of nine compounds actually interacted with HIV-1 and HCV targets simultaneously with diverse binding affinities. The remaining predicted hits and chemical-protein interaction pairs with the potential ability to suppress HIV/HCV coinfection are worthy of further experimental investigation. This investigation shows that the multiple QSAR method is useful in predicting chemical-protein interactions for the discovery of multitarget inhibitors and provides a unique strategy for the treatment of HIV/HCV coinfection.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Wei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
- Platform of Pharmaceutical Intelligence, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Tengfei Du
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
- Platform of Pharmaceutical Intelligence, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
3
|
Zhao XZ, Métifiot M, Kiselev E, Kessl JJ, Maddali K, Marchand C, Kvaratskhelia M, Pommier Y, Burke TR. HIV-1 Integrase-Targeted Short Peptides Derived from a Viral Protein R Sequence. Molecules 2018; 23:molecules23081858. [PMID: 30049955 PMCID: PMC6222646 DOI: 10.3390/molecules23081858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/28/2023] Open
Abstract
HIV-1 integrase (IN) inhibitors represent a new class of highly effective anti-AIDS therapeutics. Current FDA-approved IN strand transfer inhibitors (INSTIs) share a common mechanism of action that involves chelation of catalytic divalent metal ions. However, the emergence of IN mutants having reduced sensitivity to these inhibitors underlies efforts to derive agents that antagonize IN function by alternate mechanisms. Integrase along with the 96-residue multifunctional accessory protein, viral protein R (Vpr), are both components of the HIV-1 pre-integration complex (PIC). Coordinated interactions within the PIC are important for viral replication. Herein, we report a 7-mer peptide based on the shortened Vpr (69–75) sequence containing a biotin group and a photo-reactive benzoylphenylalanyl residue, and which exhibits low micromolar IN inhibitory potency. Photo-crosslinking experiments have indicated that the peptide directly binds IN. The peptide does not interfere with IN-DNA interactions or induce higher-order, aberrant IN multimerization, suggesting a mode of action for the peptide that is distinct from clinically used INSTIs and developmental allosteric IN inhibitors. This compact Vpr-derived peptide may serve as a valuable pharmacological tool to identify a potential new pharmacologic site.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center of Cancer Research, Frederick, MD 21702, USA.
| | - Mathieu Métifiot
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Evgeny Kiselev
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jacques J Kessl
- College of Pharmacy and Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Kasthuraiah Maddali
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mamuka Kvaratskhelia
- College of Pharmacy and Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Terrence R Burke
- Chemical Biology Laboratory, Center of Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
4
|
Molecular Tattoo: Subcellular Confinement of Drug Effects. ACTA ACUST UNITED AC 2015; 22:548-558. [DOI: 10.1016/j.chembiol.2015.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 01/23/2023]
|
5
|
Dettori MA, Fabbri D, Pisano M, Rozzo C, Palmieri G, Dess A, Dallocchio R, Delogu G. 4-Substituted-2-Methoxyphenol: Suitable Building Block to Prepare New Bioactive Natural-like Hydroxylated Biphenyls. LETT DRUG DES DISCOV 2014; 12:131-139. [PMID: 26074750 PMCID: PMC4462845 DOI: 10.2174/1570180811666140915222343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022]
Abstract
A small collection of eugenol- and curcumin-analog hydroxylated biphenyls was prepared by straightforward methods starting from natural 4-substituted-2-methoxyphenols and their antitumoral activity was evaluated in vitro. Two curcumin-biphenyl derivatives showed interesting growth inhibitory activities on different malignant melanoma cell lines with IC50 ranging from 13 to 1 µM. Preliminary molecular modeling studies were carried out to evaluate conformations and dihedral angles suitable for antiproliferative activity in hydroxylated biphenyls bearing a side aliphatic chain.
Collapse
Affiliation(s)
- Maria Antonietta Dettori
- CNR-Istituto di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, 07100 Sassari-Baldinca Italy
| | - Davide Fabbri
- CNR-Istituto di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, 07100 Sassari-Baldinca Italy
| | - Marina Pisano
- CNR-Istituto di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, 07100 Sassari-Baldinca Italy
| | - Carla Rozzo
- CNR-Istituto di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, 07100 Sassari-Baldinca Italy
| | - Giuseppe Palmieri
- CNR-Istituto di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, 07100 Sassari-Baldinca Italy
| | - Alessandro Dess
- CNR-Istituto di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, 07100 Sassari-Baldinca Italy
| | - Roberto Dallocchio
- CNR-Istituto di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, 07100 Sassari-Baldinca Italy
| | - Giovanna Delogu
- CNR-Istituto di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, 07100 Sassari-Baldinca Italy
| |
Collapse
|
6
|
Gu WG, Liu BN, Yuan JF. Virtual-screening targeting Human Immunodeficiency Virus type 1 integrase-lens epithelium-derived growth factor/p75 interaction for drug development. J Drug Target 2014; 23:134-9. [DOI: 10.3109/1061186x.2014.959020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Xuan S, Wu Y, Chen X, Liu J, Yan A. Prediction of bioactivity of HIV-1 integrase ST inhibitors by multilinear regression analysis and support vector machine. Bioorg Med Chem Lett 2013; 23:1648-55. [PMID: 23395655 DOI: 10.1016/j.bmcl.2013.01.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/05/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
In this study, four computational quantitative structure-activity relationship models were built to predict the biological activity of HIV-1 integrase strand transfer (ST) inhibitors. 551 Inhibitors whose bioactivities were detected by radiolabeling method were collected. The molecules were represented with 20 selected MOE descriptors. All inhibitors were divided into a training set and a test set with two methods: (1) by a Kohonen's self-organizing map (SOM); (2) by a random selection. For every training set and test set, a multilinear regression (MLR) analysis and a support vector machine (SVM) were used to establish models, respectively. For the test set divided by SOM, the correlation coefficients (rs) were over 0.91, and for the test set split randomly, the rs were over 0.86.
Collapse
Affiliation(s)
- Shouyi Xuan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, PO Box 53, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing 100029, PR China
| | | | | | | | | |
Collapse
|
8
|
Loizidou EZ, Zeinalipour-Yazdi CD, Christofides T, Kostrikis LG. Analysis of binding parameters of HIV-1 integrase inhibitors: correlates of drug inhibition and resistance. Bioorg Med Chem 2009; 17:4806-18. [PMID: 19450984 DOI: 10.1016/j.bmc.2009.04.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 12/19/2022]
Abstract
This study undertook an exploratory data analysis of the binding parameters of HIV-1 integrase inhibitors. The study group involved inhibitors in preclinical development from the diketo acid, pyrroloquinoline and naphthyridine carboxamide families and the most advanced inhibitors Raltegravir and Elvitegravir. Distinct differences were observed in the energetics of binding between the studied classes of inhibitors that also correlated with drug resistant patterns. Quantitative-property-activity-relationships correlated experimental IC(50) values to the binding energy and the logarithm of the partition coefficient between n-octanol and water (clogP). The approach followed here serves as an improved basis for the development of 'second generation' integrase inhibitors.
Collapse
Affiliation(s)
- Eriketi Z Loizidou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| | | | | | | |
Collapse
|
9
|
Zhao XZ, Semenova EA, Liao C, Nicklaus M, Pommier Y, Burke TR. Biotinylated biphenyl ketone-containing 2,4-dioxobutanoic acids designed as HIV-1 integrase photoaffinity ligands. Bioorg Med Chem 2006; 14:7816-25. [PMID: 16908168 DOI: 10.1016/j.bmc.2006.07.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/28/2006] [Accepted: 07/29/2006] [Indexed: 10/24/2022]
Abstract
The diketo acid (DKA) class of HIV-1 integrase inhibitors are thought to function by chelating divalent metal ions within the enzyme catalytic center. However, differences in mutations conferring resistance among sub-families of DKA inhibitors suggest that multiple binding orientations may exist. In order to facilitate identification of DKA-binding sites, biotin-tagged biphenyl ketone-containing 2,4-dioxobutanoic acids were prepared as DKA photoaffinity probes. Introduction of biotin was obtained by means of Huisgen [3+2] cycloaddition 'click chemistry.' Two photoprobes, 5a and 5b, were prepared bearing short and long linker segments, respectively, between the biotin and DKA nucleus. The greatest inhibitory potency was shown by 5b, which inhibited 3'-processing and strand transfer reactions with IC50 values of > 333 microM and 12.4 microM, respectively. In cross-linking assays designed to measure disruption of substrate DNA binding, the photoprobes behaved similarly to a reference DKA inhibitor. Analogues 5a and 5b represent novel photoaffinity ligands, which may be useful in clarifying the HIV-1 binding interactions of DKA inhibitors.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Laboratory of Medicinal Chemistry, CCR, NCI, NIH, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
10
|
Maurin C, Bailly F, Mbemba G, Mouscadet JF, Cotelle P. Design, synthesis, and anti-integrase activity of catechol–DKA hybrids. Bioorg Med Chem 2006; 14:2978-84. [PMID: 16412645 DOI: 10.1016/j.bmc.2005.12.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/24/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
Following the discovery of diketoacid-containing compounds as HIV-1 integrase (IN) inhibitors, a plethora of new molecules have been published leading to four drugs under clinical trial. In an attempt to rationally design new dimeric diketoacids (DKAs) targeting two divalent metal ions on the active site of IN, potent inhibitors against purified IN were found with varied selectivity for strand transfer. In this context, we designed and synthesized a new series of catechol-DKA hybrids. These compounds presented micromolar anti-integrase activities with moderate antiviral properties.
Collapse
Affiliation(s)
- Cédric Maurin
- Laboratoire de Chimie Organique et Macromoléculaire, UMR CNRS 8009, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
11
|
Abstract
The integration of viral cDNA into the host genome is an essential step in the HIV-1-life cycle and is mediated by the virally encoded enzyme, integrase (IN). Inhibition of this process provides an attractive strategy for antiviral drug design. The discovery of beta-diketo acid inhibitors played a major role in validating IN as a legitimate antiretroviral drug target. Over a decade of research, a plethora of IN inhibitors have been discovered and some showed antiviral activity consistent with their effect on IN. To date, at least two compounds have been tested in human but none are close to the FDA approval. In this review, we provide a comprehensive report of all small-molecule IN inhibitors discovered during the years 2003 and 2004. Compilation of such data will prove beneficial in developing QSAR, virtual screening, pharmacophore hypothesis generation, and validation.
Collapse
Affiliation(s)
- Raveendra Dayam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, USA
| | | | | |
Collapse
|
12
|
Abstract
HIV integrase is a rational target for treating HIV infection and preventing AIDS. It took approximately 12 years to develop clinically usable inhibitors of integrase, and Phase I clinical trials of integrase inhibitors have just begun. This review focuses on the molecular basis and rationale for developing integrase inhibitors. The main classes of lead compounds are also described, as well as the concept of interfacial inhibitors of protein-nucleic-acid interactions that might apply to the clinically used strand-transfer inhibitors.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|