1
|
Andrade JCO, do Vale TM, Gomes RLM, Forezi LDSM, de Souza MCBV, Batalha PN, Boechat FDCS. Exploring 4-quinolone-3-carboxamide derivatives: A versatile framework for emerging biological applications. Bioorg Chem 2025; 157:108240. [PMID: 39923393 DOI: 10.1016/j.bioorg.2025.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/11/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
4-Quinolones are a pivotal class of compounds derived from the quinoline core, recognized for their broad therapeutic applications. Originating from the synthesis of chloroquine, their discovery led to nalidixic acid, the first quinolone analog to exhibit antibacterial activity, catalyzing the development of fluoroquinolones. Beyond their role as antibiotics, 4-quinolone derivatives have emerged as versatile scaffolds with demonstrated antitumor, antiviral, and antiparasitic activities, among others. Concurrently, the carboxamide functional group has gained prominence in medicinal chemistry due to its structural versatility and bioisosteric potential. Its unique properties, such as conformational stability and dual hydrogen bond capabilities, enable diverse pharmacodynamic interactions. The combination of these two structural fragments has proven to be a powerful tool for the discovery of new bioactive prototypes. This review consolidates advancements in the exploration of 4-quinolone-3-carboxamide derivatives, emphasizing their multifaceted biological activities and the innovative strategies driving their optimization. Key highlights include their potential as kinase inhibitors, antiviral agents, and anticancer therapeutics. By synthesizing insights from recent studies, this review underscores the relevance of this framework in addressing contemporary medicinal challenges.
Collapse
Affiliation(s)
- Joice C O Andrade
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil.
| | - Thiago M do Vale
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil
| | - Rodrigo L M Gomes
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil
| | - Luana da S M Forezi
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil
| | | | - Pedro N Batalha
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil.
| | | |
Collapse
|
2
|
Huang ZC, Ruan ZL, Xu H, Dai HX. Ring expansion of 3-hydroxyoxindoles to 4-quinolones via palladium-catalyzed C-C(acyl) bond cleavage. Chem Commun (Camb) 2024; 61:109-112. [PMID: 39611758 DOI: 10.1039/d4cc05369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
We report herein the construction of 4-quinolones via palladium-catalyzed regioselective β-acyl elimination of 3-hydroxyoxindoles and a subsequent Camps cyclization process. This protocol is highly efficient and various 4-quinolone derivatives are obtained in high yields. The construction of the core skeleton of the 4-quinolone antibiotics demonstrated the synthetic utility of this method.
Collapse
Affiliation(s)
- Zhi-Cong Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Zhi-Ling Ruan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui-Xiong Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
3
|
Pu X, Zhang Y, He X, Zhang X, Jiang L, Cao R, Kin Tse M, Qiu L. Synthesis of
N
‐Substituted 4‐Quinolones via Palladium‐Catalyzed Enantioselective C−N Coupling and Base‐Promoted Reactions. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Xiaoyun Pu
- School of Chemistry Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Yaqi Zhang
- School of Chemistry Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xiaobo He
- School of Chemistry Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xinhuan Zhang
- School of Chemistry Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Long Jiang
- Instrumental Analysis and Research Centre Sun Yat-sen University Guangzhou 510275 China
| | - Rihui Cao
- School of Chemistry Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Man Kin Tse
- Guangzhou Lee & Man Technology Company Limited 8 Huanshi Avenue South, Nansha Guangzhou 511458 People's Republic of China
| | - Liqin Qiu
- School of Chemistry Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery Sun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
4
|
Liu H, Liu H, Wang E, Li L, Luo Z, Cao J, Chen J, Yang L, Yang X. Hydrogen Bond Assisted Three-Component Tandem Reactions to Access N-Alkyl-4-Quinolones. Molecules 2023; 28:molecules28052304. [PMID: 36903552 PMCID: PMC10005641 DOI: 10.3390/molecules28052304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Hydrogen-bonding catalytic reactions have gained great interest. Herein, a hydrogen-bond-assisted three-component tandem reaction for the efficient synthesis of N-alkyl-4-quinolones is described. This novel strategy features the first proof of polyphosphate ester (PPE) as a dual hydrogen-bonding catalyst and the use of readily available starting materials for the preparation of N-alkyl-4-quinolones. The method provides a diversity of N-alkyl-4-quinolones in moderate to good yields. The compound 4h demonstrated good neuroprotective activity against N-methyl-ᴅ-aspartate (NMDA)-induced excitotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Huanhuan Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Huadan Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Enhua Wang
- Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Liangqun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Zhongsheng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Jiafu Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Jialin Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Lishou Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (L.Y.); (X.Y.)
| | - Xiaosheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (L.Y.); (X.Y.)
| |
Collapse
|
5
|
Gill MSA, Azzman N, Hassan SS, Shah SAA, Ahemad N. A green and efficient synthetic methodology towards the synthesis of 1-allyl-6-chloro-4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives. BMC Chem 2022; 16:111. [PMID: 36482476 PMCID: PMC9733071 DOI: 10.1186/s13065-022-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Quinolone is a privileged scaffold in medicinal chemistry and 4-Quinolone-3-Carboxamides have been reported to harbor vast therapeutic potential. However, conversion of N-1 substituted 4-Quinolone 3-Carboxylate to its corresponding carbamates is highly restrictive. This motivated us to adopt a much simpler, scalable and efficient methodology for the synthesis of highly pure N-1 substituted 4- Quinolone-3-Carboxamides with excellent yields. Our adopted methodology not only provides a robust pathway for the convenient synthesis of N-1 substituted 4- Quinolone-3-Carboxamides which can then be explored for their therapeutic potential, this may also be adaptable for the derivatization of other such less reactive carboxylate species.
Collapse
Affiliation(s)
- Muhammad Shoaib Ali Gill
- grid.440425.30000 0004 1798 0746School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor DE Malaysia ,grid.412967.f0000 0004 0609 0799Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani, Out Fall Road, Lahore, Pakistan
| | - Nursyuhada Azzman
- grid.440425.30000 0004 1798 0746School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor DE Malaysia ,grid.412259.90000 0001 2161 1343Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang Kampus Bertam, 13200 Kepala Batas, Pulau Pinang Malaysia
| | - Sharifah Syed Hassan
- grid.440425.30000 0004 1798 0746Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor DE Malaysia
| | - Syed Adnan Ali Shah
- grid.412259.90000 0001 2161 1343Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor DE Malaysia
| | - Nafees Ahemad
- grid.440425.30000 0004 1798 0746School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor DE Malaysia ,grid.440425.30000 0004 1798 0746Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor DE Malaysia
| |
Collapse
|
6
|
Zhang Z, Liu Y, Wang S, Zhang C, Lin J. Efficient Synthesis of 7
H
‐Chromeno[3,2‐c]quinolin‐5‐ium Salts and Quinolin‐4‐ones through Acid‐Promoted Cascade Reaction of 3‐Formylchromones and Anilines. ChemistrySelect 2022. [DOI: 10.1002/slct.202104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhong‐Wei Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Yue‐Ying Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Si‐Yu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Cong‐Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
7
|
Fritzsche S, Blenk P, Christian J, Castiglione K, Becker AM. Inhibitory properties of crude microalgal extracts on the in vitro replication of cyprinid herpesvirus 3. Sci Rep 2021; 11:23134. [PMID: 34848777 PMCID: PMC8633293 DOI: 10.1038/s41598-021-02542-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Microalgae are possible sources of antiviral substances, e.g. against cyprinid herpesvirus 3 (CyHV-3). Although this virus leads to high mortalities in aquacultures, there is no treatment available yet. Hence, ethanolic extracts produced with accelerated solvent extraction from six microalgal species (Arthrospira platensis, Chlamydomonas reinhardtii, Chlorella kessleri, Haematococcus pluvialis, Nostoc punctiforme and Scenedesmus obliquus) were examined in this study. An inhibition of the in vitro replication of CyHV-3 could be confirmed for all six species, with the greatest effect for the C. reinhardtii and H. pluvialis crude extracts. At still non-cytotoxic concentrations, viral DNA replication was reduced by over 3 orders of magnitude each compared to the untreated replication controls, while the virus titers were even below the limit of detection (reduction of 4 orders of magnitude). When pre-incubating both cells and virus with C. reinhardtii and H. pluvialis extracts before inoculation, the reduction of viral DNA was even stronger (> 4 orders of magnitude) and no infectious viral particles were detected. Thus, the results of this study indicate that microalgae and cyanobacteria are a promising source of natural bioactive substances against CyHV-3. However, further studies regarding the isolation and identification of the active components of the extracts are needed.
Collapse
Affiliation(s)
- Stefanie Fritzsche
- grid.5330.50000 0001 2107 3311Department of Chemical and Biological Engineering, Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052 Erlangen, Germany
| | - Patrik Blenk
- grid.5330.50000 0001 2107 3311Department of Chemical and Biological Engineering, Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052 Erlangen, Germany
| | - Jürgen Christian
- grid.414279.d0000 0001 0349 2029Bavarian Health and Food Safety Authority, Institute for Animal Health II, Eggenreuther Weg 43, 91058 Erlangen, Germany
| | - Kathrin Castiglione
- grid.5330.50000 0001 2107 3311Department of Chemical and Biological Engineering, Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052 Erlangen, Germany
| | - Anna Maria Becker
- Department of Chemical and Biological Engineering, Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
8
|
Alaaeldin R, Mustafa M, Abuo-Rahma GEDA, Fathy M. In vitro inhibition and molecular docking of a new ciprofloxacin-chalcone against SARS-CoV-2 main protease. Fundam Clin Pharmacol 2021; 36:160-170. [PMID: 34268806 PMCID: PMC8444764 DOI: 10.1111/fcp.12708] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Background/Aim SARS‐CoV‐2 is one of the coronavirus families that emerged at the end of 2019. It infected the respiratory system and caused a pandemic worldwide. Fluoroquinolones (FQs) have been safely used as antibacterial agents for decades. The antiviral activity of FQs was observed. Moreover, substitution on the C‐7 position of ciprofloxacin enhanced its antiviral activity. Therefore, this study aims to investigate the antiviral activity of 7‐(4‐(N‐substituted‐carbamoyl‐methyl)piperazin‐1yl)‐chalcone in comparison with ciprofloxacin against SARS‐CoV‐2 main protease (Mpro). Materials and methods Vero cells were infected with SARS‐CoV‐2. After treatment with ciprofloxacin and the chalcone at the concentrations of 1.6, 16, 160 nmol/L for 48 h, SARS‐CoV‐2 viral load was detected using real‐time qPCR, SARS‐CoV‐2 infectivity was determined using plaque assay, and the main protease enzyme activity was detected using in vitro 3CL‐protease inhibition assay. The activity of the chalcone was justified through molecular docking within SARS‐CoV‐2 Mpro, in comparison with ciprofloxacin. Results The new chalcone significantly inhibited viral load replication where the EC50 was 3.93 nmol/L, the plaque formation ability of the virus was inhibited to 86.8% ± 2.47. The chalcone exhibited a significant inhibitory effect against SARS‐CoV‐2 Mpro in vitro in a dose‐dependent manner. The docking study into SARS‐CoV‐2 Mpro active site justified the importance of adding a substitution to the parent drug. Additionally, the assessment of the drug‐likeness properties indicated that the chalcone might have acceptable ADMET properties. Conclusion The new chalcone might be useful and has new insights for the inhibition of SARS‐CoV‐2 Mpro.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Muhamad Mustafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt.,Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Mansha M, Taha M, Hassane Anouar E, Ullah N. The design of fluoroquinolone-based cholinesterase inhibitors: Synthesis, biological evaluation and in silico docking studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Rao MS, Hussain S. DABCO-mediated decarboxylative cyclization of isatoic anhydride with aroyl/heteroaroyl/alkoylacetonitriles under microwave conditions: Strategy for the synthesis of substituted 4-quinolones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Viegas DJ, da Silva VD, Buarque CD, Bloom DC, Abreu PA. Antiviral activity of 1,4-disubstituted-1,2,3-triazoles against HSV-1 in vitro. Antivir Ther 2021; 25:399-410. [PMID: 33705354 DOI: 10.3851/imp3387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1) affects a large part of the adult population. Anti-HSV-1 drugs, such as acyclovir, target thymidine kinase and viral DNA polymerase. However, the emerging of resistance of HSV-1 alerts for the urgency in developing new antivirals with other therapeutic targets. Thus, this study evaluated a series of 1,4-disubstituted-1,2,3-triazole derivatives against HSV-1 acute infection and provided deeper insights into the possible mechanisms of action. METHODS Human fibroblast cells (HFL-1) were infected with HSV-1 17syn+ and treated with the triazole compounds at 50 μM for 24 h. The 50% effective drug concentration (EC50) was determined for the active compounds. Their cytotoxicity was also evaluated in HFL-1 with the 50% cytotoxic concentration (CC50) determined using CellTiter-Glo® solution. The most promising compounds were evaluated by virucidal activity and influence on virus egress, DNA replication and transcription, and effect on an acyclovir-resistant HSV-1 strain. RESULTS Compounds 3 ((E)-4-methyl-N'-(2-(4-(phenoxymethyl)-1H-1,2,3-triazol1yl)benzylidene)benzenesulfonohydrazide) and 4 (2,2'-(4,4'-((1,3-phenylenebis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1 diyl)) dibenzaldehyde) were the most promising, with an EC50 of 16 and 21 μM and CC50 of 285 and 2,593 μM, respectively. Compound 3 was able to inhibit acyclovir-resistant strain replication and to interfere with virus egress. Both compounds did not affect viral DNA replication, but inhibited significantly the expression of ICP0, ICP4 and gC. Compound 4 also affected the transcription of UL30 and ICP34.5. CONCLUSIONS Our findings demonstrated that these compounds are promising antiviral candidates with different mechanisms of action from acyclovir and further studies are merited.
Collapse
Affiliation(s)
- Daiane J Viegas
- LAMCIFAR, Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Verônica D da Silva
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camilla D Buarque
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David C Bloom
- College of Medicine, Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, FL, USA
| | - Paula A Abreu
- LAMCIFAR, Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Batalha PN, da S M Forezi L, Tolentino NMDC, Sagrillo FS, de Oliveira VG, de Souza MCBV, da C S Boechat F. 4-Oxoquinoline Derivatives as Antivirals: A Ten Years Overview. Curr Top Med Chem 2020; 20:244-255. [PMID: 31995008 DOI: 10.2174/1568026620666200129100219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 11/22/2022]
Abstract
4-Oxoquinoline derivatives constitute an important family of biologically important substances, associated with different bioactivities, which can be synthesized by different synthetic methods, allowing the design and preparation of libraries of substances with specific structural variations capable of modulating their pharmacological action. Over the last years, these substances have been extensively explored by the scientific community in efforts to develop new biologically active agents, with greater efficiency for the treatment of a variety of diseases. Viral infections have been one of the targets of these studies, although to a lesser extent than other diseases such as cancer and bacterial infections. Nevertheless, the literature provides examples that corroborate with the fact that these substances may act on different pharmacological targets in different viral pathogens. This review provides a compilation of some of the major studies published in recent years showing the discovery and/or development of new antiviral oxoquinoline agents, highlighting, whenever possible, their mechanisms of action.
Collapse
Affiliation(s)
- Pedro N Batalha
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Baptista, 24020-141 Niteroi, RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Baptista, 24020-141 Niteroi, RJ, Brazil
| | - Nathalia M de C Tolentino
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Baptista, 24020-141 Niteroi, RJ, Brazil
| | - Fernanda S Sagrillo
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Baptista, 24020-141 Niteroi, RJ, Brazil
| | - Vanessa G de Oliveira
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Baptista, 24020-141 Niteroi, RJ, Brazil
| | - Maria Cecília B V de Souza
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Baptista, 24020-141 Niteroi, RJ, Brazil
| | - Fernanda da C S Boechat
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Baptista, 24020-141 Niteroi, RJ, Brazil
| |
Collapse
|
13
|
Peeters S, Berntsen LN, Rongved P, Bonge-Hansen T. Cyclopropanation–ring expansion of 3-chloroindoles with α-halodiazoacetates: novel synthesis of 4-quinolone-3-carboxylic acid and norfloxacin. Beilstein J Org Chem 2019; 15:2156-2160. [PMID: 31579067 PMCID: PMC6753669 DOI: 10.3762/bjoc.15.212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/28/2019] [Indexed: 11/23/2022] Open
Abstract
We present a short and efficient way of synthesizing two synthetically versatile 4-quinolone-3-carboxylate building blocks by cyclopropanation-ring expansion of 3-chloroindoles with α-halodiazoacetates as the key step. This novel transformation was applied towards the synthesis of the antibiotic drug norfloxacin.
Collapse
Affiliation(s)
- Sara Peeters
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Linn Neerbye Berntsen
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Pål Rongved
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316, Oslo, Norway
| | - Tore Bonge-Hansen
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
14
|
A visible-light-irradiated electron donor-acceptor complex-promoted radical reaction system for the C H perfluoroalkylation of quinolin-4-ols. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Shaik A, Angira D, Thiruvenkatam V. Insights into supramolecular assembly formation of diethyl aryl amino methylene malonate (DAM) derivatives assisted via non-covalent interactions. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Gore BS, Lee CC, Lee J, Wang J. Copper‐Catalyzed Synthesis of Substituted 4‐Quinolones using Water as a Benign Reaction Media: Application for the Construction of Oxolinic Acid and BQCA. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Babasaheb Sopan Gore
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Chein Chung Lee
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Jessica Lee
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Jeh‐Jeng Wang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Hospital No. 100, Tzyou 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
17
|
Liu Y, Tian Y, Su K, Wang P, Guo X, Chen B. Rhodium(iii)-catalyzed [3 + 3] annulation reactions of N-nitrosoanilines and cyclopropenones: an approach to functionalized 4-quinolones. Org Chem Front 2019. [DOI: 10.1039/c9qo01250h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report Rh(iii)-catalyzed [3 + 3] annulation reactions for the preparation of functionalized 4-quinolones from available N-nitrosoanilines and cyclopropenones.
Collapse
Affiliation(s)
- Yafeng Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Yuan Tian
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Kexin Su
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Peigen Wang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Xin Guo
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| |
Collapse
|
18
|
Chen XB, Gong JW, Zhang XD, Liu XL, Liu W, Wang YC. Catalyst-free concise synthesis of multi-functional 3-cyano-4-quinolinone derivatives from cyanoacetylenaminones and DMF-DMA. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Ubiquitous Nature of Fluoroquinolones: The Oscillation between Antibacterial and Anticancer Activities. Antibiotics (Basel) 2017; 6:antibiotics6040026. [PMID: 29112154 PMCID: PMC5745469 DOI: 10.3390/antibiotics6040026] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Fluoroquinolones are synthetic antibacterial agents that stabilize the ternary complex of prokaryotic topoisomerase II enzymes (gyrase and Topo IV), leading to extensive DNA fragmentation and bacteria death. Despite the similar structural folds within the critical regions of prokaryotic and eukaryotic topoisomerases, clinically relevant fluoroquinolones display a remarkable selectivity for prokaryotic topoisomerase II, with excellent safety records in humans. Typical agents that target human topoisomerases (such as etoposide, doxorubicin and mitoxantrone) are associated with significant toxicities and secondary malignancies, whereas clinically relevant fluoroquinolones are not known to exhibit such propensities. Although many fluoroquinolones have been shown to display topoisomerase-independent antiproliferative effects against various human cancer cells, those that are significantly active against eukaryotic topoisomerase show the same DNA damaging properties as other topoisomerase poisons. Empirical models also show that fluoroquinolones mediate some unique immunomodulatory activities of suppressing pro-inflammatory cytokines and super-inducing interleukin-2. This article reviews the extended roles of fluoroquinolones and their prospects as lead for the unmet needs of "small and safe" multimodal-targeting drug scaffolds.
Collapse
|
20
|
Minami H, Okamoto N, Sueda T, Sakaguchi T, Ishikura M, Yanada R. Reaction of 2-propargylphenylcarbamates with diphenyliodonium salts via Meyer-Schuster rearrangement. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Toviwek B, Suphakun P, Choowongkomon K, Hannongbua S, Gleeson MP. Synthesis and evaluation of the NSCLC anti-cancer activity and physical properties of 4-aryl- N -phenylpyrimidin-2-amines. Bioorg Med Chem Lett 2017; 27:4749-4754. [DOI: 10.1016/j.bmcl.2017.08.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/19/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
|
22
|
Hasan P, Aneja B, Masood M, Ahmad MB, Yadava U, Daniliuc CG, Abid M. Efficient synthesis of novel N-substituted 2-carboxy-4-quinolones via lithium bis(trimethylsilyl)amide (LiHMDS)-induced in situ cyclocondensation reaction. RSC Adv 2017. [DOI: 10.1039/c6ra28631c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Efficient synthesis ofN-aryl-2-carboxy-substituted 4-quinolones with broad substrate scope and high regioselectivity.
Collapse
Affiliation(s)
- Phool Hasan
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi 110025
- India
| | - Babita Aneja
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi 110025
- India
| | - Mir M. Masood
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi 110025
- India
| | - Md. Belal Ahmad
- Department of Chemistry
- TNB College
- TM Bhagalpur University
- Bhagalpur 812007
- India
| | - Umesh Yadava
- Department of Physics
- Deen Dayal Upadhyay Gorakhpur University
- Gorakhpur
- India
| | | | - Mohammad Abid
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi 110025
- India
| |
Collapse
|
23
|
Mphahlele MJ. 2,6,8-Triaryl-3-iodoquinolin-4(1 H)-ones as Substrates for the Synthesis of 2,3,6,8-Tetraarylquinolin-4(1 H)-ones and the 2-Substituted 4,6,8-Triaryl-1 H-furo[3,2- c]quinolines. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology; University of South Africa; P.O. Box 392 Pretoria 0003 South Africa
| |
Collapse
|
24
|
Mochalov SS, Fedotov AN, Trofimova EV, Zefirov NS. Transformations of N-(2-acylaryl)benzamides and their analogs under the Camps cyclization conditions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2016. [DOI: 10.1134/s107042801607006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Iguchi D, Erra-Balsells R, Bonesi SM. Photo-Fries rearrangement of aryl acetamides: regioselectivity induced by the aqueous micellar green environment. Photochem Photobiol Sci 2016; 15:105-16. [DOI: 10.1039/c5pp00349k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR spectroscopy shows the location of acetanilides within the shells and hydrophobic cores in micellar solutions. Irradiation of acetanilides in aqueous micellar solutions involves C–N homolytic cleavage to yield singlet radical pairs that selectively provide 2-aminoacetophenone derivatives.
Collapse
Affiliation(s)
- Daniela Iguchi
- CIHIDECAR – CONICET
- Departamento de Química Orgánica
- FCEyN
- University of Buenos Aires
- Pabellón 2
| | - Rosa Erra-Balsells
- CIHIDECAR – CONICET
- Departamento de Química Orgánica
- FCEyN
- University of Buenos Aires
- Pabellón 2
| | - Sergio M. Bonesi
- CIHIDECAR – CONICET
- Departamento de Química Orgánica
- FCEyN
- University of Buenos Aires
- Pabellón 2
| |
Collapse
|
26
|
|
27
|
Vasudevan N, Jachak GR, Reddy DS. Breaking and Making of Rings: A Method for the Preparation of 4-Quinolone-3-carboxylic Acid Amides and the Expensive Drug Ivacaftor. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Vidyacharan S, Chaitra NC, Sagar A, Sharada DS. One-Pot Palladium-Catalyzed Ligand- and Metal-Oxidant-Free Aerobic Oxidative Isocyanide Insertion Leading to 2-Amino-substituted-4(3H)-quinazolinones. SYNTHETIC COMMUN 2015. [DOI: 10.1080/00397911.2014.992076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shinde Vidyacharan
- Department of Chemistry, Indian Institute of Technology, Hyderabad, India
| | - N. C. Chaitra
- Department of Chemistry, Indian Institute of Technology, Hyderabad, India
| | - A. Sagar
- Department of Chemistry, Indian Institute of Technology, Hyderabad, India
| | - Duddu S. Sharada
- Department of Chemistry, Indian Institute of Technology, Hyderabad, India
| |
Collapse
|
29
|
Vidyacharan S, Sagar A, Sharada DS. A new route for the synthesis of highly substituted 4-aminoquinoline drug like molecules via aza hetero–Diels–Alder reaction. Org Biomol Chem 2015; 13:7614-8. [DOI: 10.1039/c5ob01023c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new route has been developed for the synthesis of 4-aminoquinoline drug like moleculesviaaza hetero–Diels–Alder reaction starting from 2H-indazole as a diene for the first time.
Collapse
Affiliation(s)
- Shinde Vidyacharan
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Telangana
- Hyderabad
- India
| | - A. Sagar
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Telangana
- Hyderabad
- India
| | - Duddu S. Sharada
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Telangana
- Hyderabad
- India
| |
Collapse
|
30
|
Design, synthesis, molecular docking, and antibacterial evaluation of some novel flouroquinolone derivatives as potent antibacterial agent. ScientificWorldJournal 2014; 2014:897187. [PMID: 25574496 PMCID: PMC4276283 DOI: 10.1155/2014/897187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/22/2022] Open
Abstract
Objective. Quinolone moiety is an important class of nitrogen containing heterocycles widely used as key building blocks for medicinal agents. It exhibits a wide spectrum of pharmacophores and has bactericidal, antiviral, antimalarial, and anticancer activities. In view of the reported antimicrobial activity of various fluoroquinolones, the importance of the C-7 substituents is that they exhibit potent antimicrobial activities. Our objective was to synthesize newer quinolone analogues with increasing bulk at C-7 position of the main 6-fluoroquinolone scaffold to produce the target compounds which have potent antimicrobial activity. Methods. A novel series of 1-ethyl-6-fluoro-4-oxo-7-{4-[2-(4-substituted phenyl)-2-(substituted)-ethyl]-1-piperazinyl}-1,4-dihydroquinoline-3-carboxylic acid derivatives were synthesized. To understand the interaction of binding sites with bacterial protein receptor, the docking study was performed using topoisomerase II DNA gyrase enzymes (PDB ID: 2XCT) by Schrodinger's Maestro program. In vitro antibacterial activity of the synthesized compounds was studied and the MIC value was calculated by the broth dilution method. Results. Among all the synthesized compounds, some compounds showed potent antimicrobial activity. The compound 8g exhibited good antibacterial activity. Conclusion. This investigation identified the potent antibacterial agents against certain infections.
Collapse
|
31
|
Facchinetti V, Guimarães FA, de Souza MVN, Gomes CRB, de Souza MCBV, Wardell JL, Wardell SMSV, Vasconcelos TRA. Synthesis of Novel Ethyl (substituted)phenyl-4-oxothiazolidin-3-yl)-1-ethyl-4-oxo-1,4-dihydroquinoline-3-Carboxylates as Potential Anticancer Agents. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Victor Facchinetti
- Universidade Federal Fluminense; Instituto de Química, Programa de Pós-Graduação em Química; Outeiro de São João Batista, s/nº, Centro Niterói 24020-141 RJ Brazil
- Fundação Oswaldo Cruz; Instituto de Tecnologia em Fármacos - Farmanguinhos; Rua Sizenando Nabuco 100, Manguinhos Rio de Janeiro 21041-250 RJ Brazil
| | - Felipe A. Guimarães
- Universidade Federal Fluminense; Instituto de Química, Programa de Pós-Graduação em Química; Outeiro de São João Batista, s/nº, Centro Niterói 24020-141 RJ Brazil
| | - Marcus Vinícius N. de Souza
- Fundação Oswaldo Cruz; Instituto de Tecnologia em Fármacos - Farmanguinhos; Rua Sizenando Nabuco 100, Manguinhos Rio de Janeiro 21041-250 RJ Brazil
| | - Claudia Regina B. Gomes
- Fundação Oswaldo Cruz; Instituto de Tecnologia em Fármacos - Farmanguinhos; Rua Sizenando Nabuco 100, Manguinhos Rio de Janeiro 21041-250 RJ Brazil
| | - Maria Cecília B. V. de Souza
- Universidade Federal Fluminense; Instituto de Química, Programa de Pós-Graduação em Química; Outeiro de São João Batista, s/nº, Centro Niterói 24020-141 RJ Brazil
| | - James L. Wardell
- Fundação Oswaldo Cruz; Centro de Desenvolvimento Tecnológico em Saúde (CDTS) - Casa Amarela; Av. Brasil, 4365, Manguinhos Rio de Janeiro 21040-900 RJ Brazil
- University of Aberdeen; Department of Chemistry; Aberdeen AB24 3UE Scotland
| | | | - Thatyana R. A. Vasconcelos
- Universidade Federal Fluminense; Instituto de Química, Programa de Pós-Graduação em Química; Outeiro de São João Batista, s/nº, Centro Niterói 24020-141 RJ Brazil
| |
Collapse
|
32
|
Seppänen O, Muuronen M, Helaja J. Gold-Catalyzed Conversion of Aryl- and Alkyl-Substituted 1-(o-Aminophenyl)-2-propyn-1-ones to the Corresponding 2-Substituted 4-Quinolones. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402224] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Gupta S, Ghosh P, Dwivedi S, Das S. Synthesis of 6-aryl substituted 4-quinolones via Suzuki cross coupling. RSC Adv 2014. [DOI: 10.1039/c3ra45056b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
Lin JP, Long YQ. Transition metal-free one-pot synthesis of 2-substituted 3-carboxy-4-quinolone and chromone derivatives. Chem Commun (Camb) 2013; 49:5313-5. [PMID: 23640202 DOI: 10.1039/c3cc41690a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel one-pot synthesis of the 2-substituted 3-carboxy-4-quinolone/chromone derivatives from readily available 3-oxo-3-arylpropanoates and amides/acyl chlorides is reported, without any transition metal aid.
Collapse
Affiliation(s)
- Jian-Ping Lin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | | |
Collapse
|
35
|
Moshtaghi Zonouz A, Raeisolsadati Oskouei M. Combinatorial Library Synthesis of N-arylquinoline Derivatives in Aqueous Medium. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201200359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Microwave-induced CAN promoted atom-economic synthesis of 1H-benzo[b]xanthene and 4H-benzo[g]chromene derivatives of N-allyl quinolone and their antimicrobial activity. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0301-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Oxoquinoline acyclonucleoside phosphonate analogues as a new class of specific inhibitors of human immunodeficiency virus type 1. Bioorg Med Chem Lett 2012; 22:5055-8. [DOI: 10.1016/j.bmcl.2012.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/02/2012] [Accepted: 06/04/2012] [Indexed: 11/22/2022]
|
38
|
Okamoto N, Takeda K, Ishikura M, Yanada R. One-Pot Approach to 2,3-Disubstituted-2,3-dihydro-4-quinolones from 2-Alkynylbenzamides. J Org Chem 2011; 76:9139-43. [DOI: 10.1021/jo201636a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Noriko Okamoto
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan
- Department of Synthetic Organic Chemistry, Graduate School of Medical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Kei Takeda
- Department of Synthetic Organic Chemistry, Graduate School of Medical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Minoru Ishikura
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Reiko Yanada
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| |
Collapse
|
39
|
Chopde HN, Pagadala R, Meshram JS, Jetti V. Synthesis, characterization, antibacterial and antifungal activity of 2-(aryl)-3-(3-((8-hydroxyquinolin-5-yl)diazenyl)phenyl)thiazolidin-4-ones. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Mugnaini C, Falciani C, De Rosa M, Brizzi A, Pasquini S, Corelli F. Regioselective functionalization of quinolin-4(1H)-ones via sequential palladium-catalyzed reactions. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Jordão AK, Ferreira VF, Souza TML, Faria GGDS, Machado V, Abrantes JL, de Souza MCBV, Cunha AC. Synthesis and anti-HSV-1 activity of new 1,2,3-triazole derivatives. Bioorg Med Chem 2011; 19:1860-5. [PMID: 21376603 DOI: 10.1016/j.bmc.2011.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 11/19/2022]
Abstract
In this work, a new series of arysulfonylhydrazine-1H-1,2,3-triazole derivatives were synthesized, and their ability to inhibit the in vitro replication of HSV-1 was evaluated. Among the 1,2,3-triazole derivatives, 1-[(5″-methyl-1″-(4‴-fluorophenylamino)-1H-1,2,3-triazol-4″-yl)carbonyl]-2-(4'-methylphenylsulfonyl)hydrazine and 1-[(5'-methyl-1'-(2″,5″-dichlorophenylamino)-1H-1,2,3-triazol-4'-yl)carbonyl]-2-(phenylsulfonyl)hydrazine, with IC(50) values of 1.30 and 1.26 μM, respectively, displayed potent activity against HSV-1. Because these compounds have low cytotoxicity, their selectivity indices are high. Under the assay conditions, they have better performance than does the reference compound acyclovir. The structures of all of the compounds were confirmed by one- and two-dimensional NMR techniques ((1)H, (13)C-APT, COSY-(1)H×(1)H and HETCOR (1)J(CH)) and by elemental analysis.
Collapse
Affiliation(s)
- Alessandro K Jordão
- Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Baptista, 24020-141 Niterói, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abreu PA, da Silva VAGG, Santos FC, Castro HC, Riscado CS, de Souza MT, Ribeiro CP, Barbosa JE, dos Santos CCC, Rodrigues CR, Lione V, Correa BAM, Cunha AC, Ferreira VF, de Souza MCBV, Paixão ICNP. Oxoquinoline Derivatives: Identification and Structure–Activity Relationship (SAR) Analysis of New Anti-HSV-1 Agents. Curr Microbiol 2011; 62:1349-54. [DOI: 10.1007/s00284-010-9860-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 01/27/2023]
|
43
|
Lange J, Bissember AC, Banwell MG, Cade IA. Synthesis of 2,3-Dihydro-4(1H)-quinolones and the Corresponding 4(1H)-Quinolones via Low-Temperature Fries Rearrangement of N-Arylazetidin-2-ones. Aust J Chem 2011. [DOI: 10.1071/ch10465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
N-Arylazetidin-2-ones of the general form 1, which are readily prepared by Goldberg–Buchwald-type copper-catalyzed coupling of N-unsubstituted azetidin-2-ones with the relevant aryl halide or using Mitsunobu cyclization processes, undergo smooth Fries-rearrangement in triflic acid at 0–18°C to give the isomeric 2,3-dihydro-4(1H)-quinolones (2). Dehydrogenation of the latter compounds using 10% Pd on C in 1.0 M aqueous sodium hydroxide/propan-2-ol mixtures at ca. 82°C provides the corresponding 4(1H)-quinolones (3).
Collapse
|
44
|
Patel N, Patel S, Patel J, Patel J, Gorgamwala Y. Synthesis and Antibacterial Activity of Thioureido Amide of Fluoroquinolone. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijbc.2011.37.45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Synthesis and structure-activity relationships of antimalarial 4-oxo-3-carboxyl quinolones. Bioorg Med Chem 2010; 18:2756-66. [PMID: 20206533 DOI: 10.1016/j.bmc.2010.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/05/2010] [Accepted: 02/06/2010] [Indexed: 10/19/2022]
Abstract
Malaria is endemic in tropical and subtropical regions of Africa, Asia, and the Americas. The increasing prevalence of multi-drug-resistant Plasmodium falciparum drives the ongoing need for the development of new antimalarial drugs. In this light, novel scaffolds to which the parasite has not been exposed are of particular interest. Recently, workers at the Swiss Tropical Institute discovered two novel 4-oxo-3-carboxyl quinolones active against the intra-erythrocytic stages of P. falciparum while carrying out rationally directed low-throughput screening of potential antimalarial agents as part of an effort directed by the World Health Organization. Here we report the design, synthesis, and preliminary pharmacologic characterization of a series of analogues of 4-oxo-3-carboxyl quinolones. These studies indicate that the series has good potential for preclinical development.
Collapse
|
46
|
Ilangovan A, Kumar R. 2,2-Bis(ethoxycarbonyl)vinyl (BECV) as a Versatile Amine Protecting Group for Selective Functional-Group Transformations. Chemistry 2010; 16:2938-43. [DOI: 10.1002/chem.200902054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Zhao T, Xu B. Palladium-Catalyzed Tandem Amination Reaction for the Synthesis of 4-Quinolones. Org Lett 2009; 12:212-5. [PMID: 20000580 DOI: 10.1021/ol902626d] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tiankun Zhao
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| |
Collapse
|
48
|
Patel NB, Patel SD. Synthesis and antimicrobial activity of 2-phenyl-3-{1-cyclopropyl-6-fluoro-7-[4-methylpiperazin-1-yl]-4-quinolone}carboxamido-3-thiazolidin-4-ones. Pharm Chem J 2009. [DOI: 10.1007/s11094-009-0300-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
da C Santos F, Batalha PN, Cunha AC, Alão RA, Ferreira VF, de Souza MCBV, Santos S. (E)-1-Ethyl-4-oxo-N'-(4-pyridylmethyl-ene)-1,4-dihydroquinoline-3-carbo-hydrazide. Acta Crystallogr Sect E Struct Rep Online 2009; 65:o2476-7. [PMID: 21577928 PMCID: PMC2970413 DOI: 10.1107/s160053680903654x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/09/2009] [Indexed: 12/02/2022]
Abstract
In the title compound, C18H16N4O2, the plane defined by the ethyl C atoms and the attached N atom is inclined to the adjacent pyridine ring at an angle of 67.87 (16)°. The dihedral angle between the two heterocyclic rings is 3.33 (16)°. The molecular conformation is stabilized by an intramolecular N—H⋯O hydrogen bond and the crystal structure by intermolecular C—H⋯O hydrogen bonds, forming a one-dimensional structure.
Collapse
|
50
|
Santos FDC, Abreu P, Castro HC, Paixão IC, Cirne-Santos CC, Giongo V, Barbosa JE, Simonetti BR, Garrido V, Bou-Habib DC, Silva DDO, Batalha PN, Temerozo JR, Souza TM, Nogueira CM, Cunha AC, Rodrigues CR, Ferreira VF, de Souza MC. Synthesis, antiviral activity and molecular modeling of oxoquinoline derivatives. Bioorg Med Chem 2009; 17:5476-81. [DOI: 10.1016/j.bmc.2009.06.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|