1
|
Sandhu N, Pandey SK, Tittal RK, Kumar K, Singh AP, Yadav RK, Shrivastava R, Singh AP. Fluorescein dye derivative: Synthesis, characterization, quantum chemical and promising antimicrobial activity studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Navjot Sandhu
- Department of Chemistry Chandigarh University Mohali India
| | - Satish Kumar Pandey
- Department of Biotechnology School of Life Sciences, Mizoram University (Central University) Aizawl India
| | - Ram Kumar Tittal
- Department of Chemistry National Institute of Technology Kurukshetra India
| | - Kamlesh Kumar
- Materials Science and Sensors Applications CSIR‐Central Scientific Instruments Organization Chandigarh India
| | | | - Rajesh K. Yadav
- Department of Applied Science (Chemistry) Madan Mohan Malaviya University of Technology Gorakhpur India
| | | | | |
Collapse
|
2
|
Mostafa GAE, Mahajumi AS, AlRabiah H, Kadi AA, Lu Y, Rahman AFMM. Synthesis and Photophysical Properties of Fluorescein Esters as Potential Organic Semiconductor Materials. J Fluoresc 2021; 31:1489-1502. [PMID: 34287764 DOI: 10.1007/s10895-021-02789-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Fluorescein (1), a known fluorescent tracer in microscopy with high photophysical properties, was esterified to have fluorescein ethyl ester (2) and O-ethyl-fluorescein ethyl ester (3) in excellent yields. All of them were investigated for the photophysical and electrochemical properties as potential organic semiconductor materials. Absorptions and emission spectra were taken in various solvents, compound 2 showed emission maxima at λmax = 545 and compound 3 showed λmax = 550 nm. Optical band gap energy (Eg) was calculated for 1-3 and the values were found in between 2.34 - 2.39 eV. Possibility of shifting emission maxima was studied in various pH (5-9) buffers, and finally the thermal stability was examined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Increasing of conjugation system of 2 and 3 were studied by HOMO and LUMO distributions of 1-3. Experimental results showed that compounds 2 and 3 have excellent photophysical and electrochemical properties hence can be used as excellent organic semiconductor materials.
Collapse
Affiliation(s)
- Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Micro-Analytical Laboratory, Department of Applied Organic Chemistry, National Research Center, Dokki, 12622, Cairo, Egypt
| | - Abu Syed Mahajumi
- Department of Electronic and Electrical Engineering, Southwest Jiaotong University (SWJTU), University of Leeds UK Joint School, XIPU Campus, Chengdu, China
| | - Haitham AlRabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yang Lu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
3
|
Yang F, Gao H, Li SS, An RB, Sun XY, Kang B, Xu JJ, Chen HY. A fluorescent τ-probe: quantitative imaging of ultra-trace endogenous hydrogen polysulfide in cells and in vivo. Chem Sci 2018; 9:5556-5563. [PMID: 30061987 PMCID: PMC6050607 DOI: 10.1039/c8sc01879k] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/26/2018] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) has been recognized as an important endogenous gasotransmitter associated with biological signaling transduction. However, recent biological studies implied that the H2S-related cellular signaling might actually be mediated by hydrogen polysulfides (H2S n , n > 1), not H2S itself. Unraveling such a mystery strongly demanded the quantification of endogenous H2S n in living systems. However, endogenous H2S n has been undetectable thus far, due to its extremely low concentration within cells. Herein, we demonstrated a strategy to detect ultra-trace endogenous H2S nvia a fluorescent τ-probe, through changes of fluorescence lifetime instead of fluorescence intensity. This τ-probe exhibited an ultrasensitive response to H2S n , bringing about the lowest value of the detection limit (2 nM) and a lower limit of quantification (10 nM) to date. With such merits, we quantified and mapped endogenous H2S n within cells and zebrafish. The quantitative information about endogenous H2S n in cells and in vivo may have a significant implication for future research on the role of H2S n in biology. The methodology of the τ-probe established here might provide a general insight into the design and application of any fluorescent probes, beyond the limit of utilizing fluorescence intensity.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China . ;
| | - He Gao
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China . ;
| | - Shan-Shan Li
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China . ;
| | - Rui-Bing An
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China . ;
| | - Xiao-Yang Sun
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China . ;
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China . ;
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China . ;
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , 210023 , China . ;
| |
Collapse
|
4
|
Islam MS, Park S, Song C, Kadi AA, Kwon Y, Rahman AFMM. Fluorescein hydrazones: A series of novel non-intercalative topoisomerase IIα catalytic inhibitors induce G1 arrest and apoptosis in breast and colon cancer cells. Eur J Med Chem 2017; 125:49-67. [PMID: 27654394 DOI: 10.1016/j.ejmech.2016.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
Fluorescein hydrazones (5 and 7) were synthesized in three/four steps with 82-92% yields. All synthesized compounds were evaluated by topoisomerase I (topo I) and topoisomerase IIα (topo IIα)-mediated relaxation and cell viability assays. Among them, most of the compounds showed topo I & IIα inhibitory activity and nineteen compounds showed strong anti-proliferative activity against various cell lines. In brief, 5e inhibited 53% topo IIα (etoposide 29%) at 20 μM and showed excellent antiproliferative activity against DU145 (1.43 ± 0.04 μM), HCT15 (2.4 ± 0.03 μM) and MCF7 (11.4 ± 0.5 μM) cell lines in comparison with adriamycin, etoposide, and camptothecin. Compounds 5e, 5g and 5h were further evaluated to determine their mode of action. Compounds 5e, 5g and 5h functioned as non-intercalative topo IIα catalytic inhibitor with induction of G1 arrest and activation of apoptotic proteins in dose-dependent manner.
Collapse
Affiliation(s)
- Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Chanju Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
5
|
Hammers MD, Taormina MJ, Cerda MM, Montoya LA, Seidenkranz DT, Parthasarathy R, Pluth MD. A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy. J Am Chem Soc 2015; 137:10216-23. [PMID: 26061541 PMCID: PMC4543995 DOI: 10.1021/jacs.5b04196] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems.
Collapse
Affiliation(s)
- Matthew D Hammers
- †Department of Chemistry and Biochemistry, ‡Department of Physics, §Institute of Molecular Biology, ∥Materials Science Institute. University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael J Taormina
- †Department of Chemistry and Biochemistry, ‡Department of Physics, §Institute of Molecular Biology, ∥Materials Science Institute. University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Matthew M Cerda
- †Department of Chemistry and Biochemistry, ‡Department of Physics, §Institute of Molecular Biology, ∥Materials Science Institute. University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Leticia A Montoya
- †Department of Chemistry and Biochemistry, ‡Department of Physics, §Institute of Molecular Biology, ∥Materials Science Institute. University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Daniel T Seidenkranz
- †Department of Chemistry and Biochemistry, ‡Department of Physics, §Institute of Molecular Biology, ∥Materials Science Institute. University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Raghuveer Parthasarathy
- †Department of Chemistry and Biochemistry, ‡Department of Physics, §Institute of Molecular Biology, ∥Materials Science Institute. University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D Pluth
- †Department of Chemistry and Biochemistry, ‡Department of Physics, §Institute of Molecular Biology, ∥Materials Science Institute. University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
6
|
Miao Z, Reisz JA, Mitroka SM, Pan J, Xian M, King SB. A selective phosphine-based fluorescent probe for nitroxyl in living cells. Bioorg Med Chem Lett 2015; 25:16-9. [PMID: 25465170 PMCID: PMC4355083 DOI: 10.1016/j.bmcl.2014.11.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/31/2022]
Abstract
A novel fluorescein-based fluorescent probe for nitroxyl (HNO) based on the reductive Staudinger ligation of HNO with an aromatic phosphine was prepared. This probe reacts with HNO derived from Angeli's salt and 4-bromo Piloty's acid under physiological conditions without interference by other biological redox species. Confocal microscopy demonstrates this probe detects HNO by fluorescence in HeLa cells and mass spectrometric analysis of cell lysates confirms this probe detects HNO following the proposed mechanism.
Collapse
Affiliation(s)
- Zhengrui Miao
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Julie A. Reisz
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Susan M. Mitroka
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jia Pan
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - S. Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
7
|
Rahman AFMM, Park SE, Kadi AA, Kwon Y. Fluorescein hydrazones as novel nonintercalative topoisomerase catalytic inhibitors with low DNA toxicity. J Med Chem 2014; 57:9139-51. [PMID: 25333701 DOI: 10.1021/jm501263m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluorescein hydrazones (3a-3l) were synthesized in three steps with 86-91% overall yields. Topo I- and IIα-mediated relaxation and cell viability assay were evaluated. 3d inhibited 47% Topo I (camptothecin, 34%) and 20% Topo II (etoposide 24%) at 20 μM. 3l inhibited 61% Topo II (etoposide 24%) at 20 μM. 3d and 3l were further evaluated to determine their mode of action with diverse methods of kDNA decatenation, DNA-Topo cleavage complex, comet, DNA intercalating/unwinding, and Topo IIα-mediated ATP hydrolysis assays. 3d functioned as a nonintercalative dual inhibitor against the catalytic activities of Topo I and Topo IIα. 3l acted as a Topo IIα specific nonintercalative catalytic inhibitor. 3d activated apoptotic proteins as it increased the level of cleaved capase-3 and cleaved PARP in a dose- and time-dependent manner. The dose- and time-dependent increase of G1 phase population was observed by treatment of 3d along with the increase of p27(kip1) and the decrease of cyclin D1 expression.
Collapse
Affiliation(s)
- A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University , Riyadh 11451, Saudi Arabia
| | | | | | | |
Collapse
|
8
|
Hitomi Y, Takeyasu T, Kodera M. Development of Green-Emitting Iron Complex-Based Fluorescent Probes for Intracellular Hydrogen Peroxide Imaging. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20140055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry, Doshisha University
| | | | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Doshisha University
| |
Collapse
|
9
|
Smith EL, Bertozzi CR, Beatty KE. An expanded set of fluorogenic sulfatase activity probes. Chembiochem 2014; 15:1101-5. [PMID: 24764280 PMCID: PMC4084507 DOI: 10.1002/cbic.201400032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 01/08/2023]
Abstract
Fluorogenic probes that are activated by an enzymatic transformation are ideally suited for profiling enzyme activities in biological systems. Here, we describe two fluorogenic enzyme probes, 3-O-methylfluorescein-sulfate and resorufin-sulfate, that can be used to detect sulfatases in mycobacterial lysates. Both probes were validated with a set of commercial sulfatases and used to reveal species-specific sulfatase banding patterns in a gel-resolved assay of mycobacterial lysates. The fluorogenic probes described here are suitable for various assays and provide a starting point for creating new sulfatase probes with improved selectivity for mycobacterial sulfatases.
Collapse
Affiliation(s)
- Elizabeth L. Smith
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, B84 Hildebrand Hall, #1460, Berkeley, CA 94720 (USA)
| | - Carolyn R. Bertozzi
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, B84 Hildebrand Hall, #1460, Berkeley, CA 94720 (USA)
| | - Kimberly E. Beatty
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L334, Portland, OR 97239 (USA)
| |
Collapse
|
10
|
Mohamady S, Taylor SD. Synthesis of nucleoside 5'-tetraphosphates containing terminal fluorescent labels via activated cyclic trimetaphosphate. J Org Chem 2014; 79:2308-13. [PMID: 24552623 DOI: 10.1021/jo500051y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2'-Deoxynucleotide 5'-tetraphosphates in which a fluorescent label is attached to the terminal phosphate are used as key reagents in high-throughput DNA sequencing techniques and in single nucleotide polymorphism typing assays. We demonstrate that this class of compounds can be prepared by reacting fluorophores such as 7-hydroxy-4-methylcoumarin, methylfluorescein, fluorescein and resorufin with an activated form of cyclic trimetaphosphate to give intermediate 11. Reaction of 11 with 2'-deoxynucleoside 5'-monophosphates or a nucleoside 5'-monophosphate gave the target compounds in good yield.
Collapse
Affiliation(s)
- Samy Mohamady
- Department of Chemistry, University of Waterloo , 200 University Avenue West, Waterloo, Ontario, Canada
| | | |
Collapse
|
11
|
Abstract
The early detection of many human diseases is crucial if they are to be treated successfully. Therefore, the development of imaging techniques that can facilitate early detection of disease is of high importance. Changes in the levels of enzyme expression are known to occur in many diseases, making their accurate detection at low concentrations an area of considerable active research. Activatable fluorescent probes show immense promise in this area. If properly designed they should exhibit no signal until they interact with their target enzyme, reducing the level of background fluorescence and potentially endowing them with greater sensitivity. The mechanisms of fluorescence changes in activatable probes vary. This review aims to survey the field of activatable probes, focusing on their mechanisms of action as well as illustrating some of the in vitro and in vivo settings in which they have been employed.
Collapse
Affiliation(s)
- Christopher R Drake
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, Box 0946, San Francisco, CA, 94107, USA
| | | | | |
Collapse
|
12
|
Lavis LD, Chao TY, Raines RT. Synthesis and utility of fluorogenic acetoxymethyl ethers. Chem Sci 2011; 2:521-530. [PMID: 21394227 PMCID: PMC3049939 DOI: 10.1039/c0sc00466a] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phenolic fluorophores such as fluorescein, Tokyo Green, resorufin, and their derivatives are workhorses of biological science. Acylating the phenolic hydroxyl group(s) in these fluorophores masks their fluorescence. The ensuing ester is a substrate for cellular esterases, which can restore fluorescence. These esters are, however, notoriously unstable to hydrolysis, severely compromising their utility. The acetoxymethyl (AM) group is an esterase-sensitive motif that can mask polar functionalities in small molecules. Here, we report on the use of AM ether groups to mask phenolic fluorophores. The resulting profluorophores have a desirable combination of low background fluorescence, high chemical stability, and high enzymatic reactivity, both in vitro and in cellulo. These simple phenyl ether-based profluorophores could supplement or supplant the use of phenyl esters for imaging biochemical and biological systems.
Collapse
Affiliation(s)
- Luke D. Lavis
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn VA 20147, USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Tzu-Yuan Chao
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
13
|
Dickinson BC, Huynh C, Chang CJ. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J Am Chem Soc 2010; 132:5906-15. [PMID: 20361787 DOI: 10.1021/ja1014103] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a new family of fluorescent probes with varying emission colors for selectively imaging hydrogen peroxide (H(2)O(2)) generated at physiological cell signaling levels. This structurally homologous series of fluorescein- and rhodol-based reporters relies on a chemospecific boronate-to-phenol switch to respond to H(2)O(2) over a panel of biologically relevant reactive oxygen species (ROS) with tunable excitation and emission maxima and sensitivity to endogenously produced H(2)O(2) signals, as shown by studies in RAW264.7 macrophages during the phagocytic respiratory burst and A431 cells in response to EGF stimulation. We further demonstrate the utility of these reagents in multicolor imaging experiments by using one of the new H(2)O(2)-specific probes, Peroxy Orange 1 (PO1), in conjunction with the green-fluorescent highly reactive oxygen species (hROS) probe, APF. This dual-probe approach allows for selective discrimination between changes in H(2)O(2) and hypochlorous acid (HOCl) levels in live RAW264.7 macrophages. Moreover, when macrophages labeled with both PO1 and APF were stimulated to induce an immune response, we discovered three distinct types of phagosomes: those that generated mainly hROS, those that produced mainly H(2)O(2), and those that possessed both types of ROS. The ability to monitor multiple ROS fluxes simultaneously using a palette of different colored fluorescent probes opens new opportunities to disentangle the complex contributions of oxidation biology to living systems by molecular imaging.
Collapse
Affiliation(s)
- Bryan C Dickinson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
14
|
Taki M, Iyoshi S, Ojida A, Hamachi I, Yamamoto Y. Development of Highly Sensitive Fluorescent Probes for Detection of Intracellular Copper(I) in Living Systems. J Am Chem Soc 2010; 132:5938-9. [DOI: 10.1021/ja100714p] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Masayasu Taki
- Graduate School of Human and Environmental Studies and Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, and Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shohei Iyoshi
- Graduate School of Human and Environmental Studies and Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, and Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akio Ojida
- Graduate School of Human and Environmental Studies and Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, and Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Human and Environmental Studies and Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, and Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yukio Yamamoto
- Graduate School of Human and Environmental Studies and Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, and Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Daugaard AE, Hvilsted S, Hansen TS, Larsen NB. Conductive Polymer Functionalization by Click Chemistry. Macromolecules 2008. [DOI: 10.1021/ma702731k] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Wang S, Kim YK, Chang YT. Diversity-Oriented Fluorescence Library Approach (DOFLA) to the Discovery of Chymotrypsin Sensor. ACTA ACUST UNITED AC 2008; 10:460-5. [DOI: 10.1021/cc700189b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shenliang Wang
- Department of Chemistry, New York University, New York, New York 10003, Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, National University of Singapore, Singapore 117543, and Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138667
| | - Yun Kyung Kim
- Department of Chemistry, New York University, New York, New York 10003, Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, National University of Singapore, Singapore 117543, and Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138667
| | - Young-Tae Chang
- Department of Chemistry, New York University, New York, New York 10003, Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, National University of Singapore, Singapore 117543, and Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138667
| |
Collapse
|