1
|
Cecchetti S, Bortolomai I, Ferri R, Mercurio L, Canevari S, Podo F, Miotti S, Iorio E. Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma. PLoS One 2015; 10:e0136120. [PMID: 26402860 PMCID: PMC4581859 DOI: 10.1371/journal.pone.0136120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022] Open
Abstract
Purpose The role of phosphatidylcholine-specific phospholipase C (PC-PLC), the enzyme involved in cell differentiation and proliferation, has not yet been explored in tumor initiating cells (TICs). We investigated PC-PLC expression and effects of PC-PLC inhibition in two adherent (AD) squamous carcinoma cell lines (A431 and CaSki), with different proliferative and stemness potential, and in TIC-enriched floating spheres (SPH) originated from them. Results Compared with immortalized non-tumoral keratinocytes (HaCaT) A431-AD cells showed 2.5-fold higher PC-PLC activity, nuclear localization of a 66-kDa PC-PLC isoform, but a similar distribution of the enzyme on plasma membrane and in cytoplasmic compartments. Compared with A431-AD, A431-SPH cells showed about 2.8-fold lower PC-PLC protein and activity levels, but similar nuclear content. Exposure of adherent cells to the PC-PLC inhibitor D609 (48h) induced a 50% reduction of cell proliferation at doses comprised between 33 and 50 μg/ml, without inducing any relevant cytotoxic effect (cell viability 95±5%). In A431-SPH and CaSki-SPH D609 induced both cytostatic and cytotoxic effects at about 20 to 30-fold lower doses (IC50 ranging between 1.2 and 1.6 μg/ml). Furthermore, D609 treatment of A431-AD and CaSki-AD cells affected the sphere-forming efficiency, which dropped in both cells, and induced down-modulation of stem-related markers mRNA levels (Oct4, Nestin, Nanog and ALDH1 in A431; Nestin and ALDH1 in CaSki cells). Conclusions These data suggest that the inhibition of PC-PLC activity may represent a new therapeutic approach to selectively target the most aggressive and tumor promoting sub-population of floating spheres originated from squamous cancer cells possessing different proliferative and stemness potential.
Collapse
Affiliation(s)
- Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Ileana Bortolomai
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Renata Ferri
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Mercurio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Silvana Canevari
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- * E-mail: (FP); (SC)
| | - Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (FP); (SC)
| | - Silvia Miotti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
2
|
Cholinergic differentiation of neural stem cells generated from cell aggregates-derived from Human Bone marrow stromal cells. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
3
|
Huang T, Li X, Hu S, Zhao B, Chen P, Liu X, Ye D, Cheng N. Analysis of fluorescent ceramide and sphingomyelin analogs: a novel approach for in vivo monitoring of sphingomyelin synthase activity. Lipids 2014; 49:1071-9. [PMID: 25108416 DOI: 10.1007/s11745-014-3940-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/24/2014] [Indexed: 02/07/2023]
Abstract
A novel sensitive high-performance liquid chromatography-fluorescence detection (HPLC-FLD) method was developed for real-time monitoring of relative sphingomyelin synthase (SMS) activity based on the measurement of a fluorescent ceramide (Cer) analog and its metabolite, a fluorescent sphingomyelin (CerPCho) analog, in plasma. Analyses were conducted using HPLC-FLD following a protein precipitation procedure. The chromatographic separations were carried out on an Agilent C18 RP column (150 × 4.6 mm, 5 μm) based on a methanol-0.1 % trifluoroacetic acid aqueous solution (88:12, by vol) elution at a flow-rate of 1 mL/min. The limit of quantification in plasma was 0.05 μM for both the fluorescent Cer analog and its metabolite. Significant differences in the fluorescent Cer analog and its metabolite concentration ratio at 5 min were found between vehicle control group and three D2 (a novel SMS inhibitor) dose groups (P < 0.05). Dose-dependent effects (D2 doses: 0, 2.5, 5, 10 mg/kg) were observed. Our method could be used to detect relative SMS activity in biochemical assays and to screen potential SMS inhibitors in vivo. D2 was found to be a potent SMS inhibitor in vivo, and may have a potential antiatherosclerotic effect, which is under further study. D609 was also selected as another model SMS inhibitor to validate our newly developed method.
Collapse
Affiliation(s)
- Taomin Huang
- School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ghorbanian MT, Tiraihi T, Mesbah-Namin SA, Fathollahi Y. Selegiline is an efficient and potent inducer for bone marrow stromal cell differentiation into neuronal phenotype. Neurol Res 2013; 32:185-93. [PMID: 19422735 DOI: 10.1179/174313209x409016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohammad Taghi Ghorbanian
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat, Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
5
|
Gusain A, Hatcher JF, Adibhatla RM, Wesley UV, Dempsey RJ. Anti-proliferative effects of tricyclodecan-9-yl-xanthogenate (D609) involve ceramide and cell cycle inhibition. Mol Neurobiol 2012; 45:455-64. [PMID: 22415444 DOI: 10.1007/s12035-012-8254-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 12/14/2022]
Abstract
Tricyclodecan-9-yl-xanthogenate (D609) inhibits phosphatidylcholine (PC)-phospholipase C (PLC) and/or sphingomyelin (SM) synthase (SMS). Inhibiting SMS can increase ceramide levels, which can inhibit cell proliferation. Here, we examined how individual inflammatory and glia cell proliferation is altered by D609. Treatment with 100-μM D609 significantly attenuated the proliferation of RAW 264.7 macrophages, N9 and BV-2 microglia, and DITNC(1) astrocytes, without affecting cell viability. D609 significantly inhibited BrdU incorporation in BV-2 microglia and caused accumulation of cells in G(1) phase with decreased number of cells in the S phase. D609 treatment for 2 h significantly increased ceramide levels in BV-2 microglia, which, following a media change, returned to control levels 22 h later. This suggests that the effect of D609 may be mediated, at least in part, through ceramide increase via SMS inhibition. Western blots demonstrated that 2-h treatment of BV-2 microglia with D609 increased expression of the cyclin-dependent kinase (Cdk) inhibitor p21 and down-regulated phospho-retinoblastoma (Rb), both of which returned to basal levels 22 h after removal of D609. Exogenous C8-ceramide also inhibited BV-2 microglia proliferation without loss of viability and decreased BrdU incorporation, supporting the involvement of ceramide in D609-mediated cell cycle arrest. Our current data suggest that D609 may offer benefit after stroke (Adibhatla and Hatcher, Mol Neurobiol 41:206-217, 2010) through ceramide-mediated cell cycle arrest, thus restricting glial cell proliferation.
Collapse
Affiliation(s)
- Anchal Gusain
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | | | | | | | | |
Collapse
|
6
|
Adibhatla RM, Hatcher JF, Gusain A. Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 2011; 37:671-9. [PMID: 22101393 DOI: 10.1007/s11064-011-0659-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/14/2011] [Accepted: 11/10/2011] [Indexed: 12/21/2022]
Abstract
Tricyclodecan-9-yl-xanthogenate (D609) is known for its antiviral and antitumor properties. D609 actions are widely attributed to inhibiting phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). D609 also inhibits sphingomyelin synthase (SMS). PC-PLC and/or SMS inhibition will affect lipid second messengers 1,2-diacylglycerol (DAG) and/or ceramide. Evidence indicates either PC-PLC and/or SMS inhibition affected the cell cycle and arrested proliferation, and stimulated differentiation in various in vitro and in vivo studies. Xanthogenate compounds are also potent antioxidants and D609 reduced Aß-induced toxicity, attributed to its antioxidant properties. Zn²⁺ is necessary for PC-PLC enzymatic activity; inhibition by D609 might be attributed to its Zn²⁺ chelation. D609 has also been proposed to inhibit acidic sphingomyelinase or down-regulate hypoxia inducible factor-1α; however these are down-stream events related to PC-PLC inhibition. Characterization of the mammalian PC-PLC is limited to inhibition of enzymatic activity (frequently measured using Amplex red assay with bacterial PC-PLC as a standard). The mammalian PC-PLC has not been cloned; sequenced and structural information is unavailable. D609 showed promise in cancer studies, reduced atherosclerotic plaques (inhibition of PC-PLC) and cerebral infarction after stroke (PC-PLC or SMS). D609 actions as an antagonist to pro-inflammatory cytokines have been attributed to PC-PLC. The purpose of this review is to comprehensively evaluate the literature and summarize the findings and relevance to cell cycle and CNS pathologies.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, Clinical Science Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|
7
|
|
8
|
Adibhatla RM, Hatcher JF. Protection by D609 through cell-cycle regulation after stroke. Mol Neurobiol 2010; 41:206-17. [PMID: 20148315 DOI: 10.1007/s12035-010-8100-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/08/2010] [Indexed: 12/13/2022]
Abstract
Expressions of cell-cycle regulating proteins are altered after stroke. Cell-cycle inhibition has shown dramatic reduction in infarction after stroke. Ceramide can induce cell-cycle arrest by up-regulation of cyclin-dependent kinase (Cdk) inhibitors p21 and p27 through activation of protein phosphatase 2A (PP2A). Tricyclodecan-9-yl-xanthogenate (D609)-increased ceramide levels after transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR) probably by inhibiting sphingomyelin synthase (SMS). D609 significantly reduced cerebral infarction and up-regulated Cdk inhibitor p21 and down-regulated phospho-retinoblastoma (pRb) expression after tMCAO in rat. Others have suggested bFGF-induced astrocyte proliferation is attenuated by D609 due to an increase in ceramide by SMS inhibition. D609 also reduced the formation of oxidized phosphatidylcholine (OxPC) protein adducts. D609 may attenuate generation of reactive oxygen species and formation of OxPC by inhibiting microglia/macrophage proliferation after tMCAO (please also see note added in proof: D609 may prevent mature neurons from entering the cell cycle at the early reperfusion, however may not interfere with later proliferation of microglia/ macrophages that are the source of brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) in offering protection). It has been proposed that D609 provides benefit after tMCAO by attenuating hypoxia-inducible factor-1alpha and Bcl2/adenovirus E1B 19 kDa interacting protein 3 expressions. Our data suggest that D609 provides benefit after stoke through inhibition of SMS, increased ceramide levels, and induction of cell-cycle arrest by up-regulating p21 and causing hypophosphorylation of Rb (through increased protein phosphatase activity and/or Cdk inhibition).
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3232, USA.
| | | |
Collapse
|
9
|
Schuchman EH. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. J Inherit Metab Dis 2007; 30:654-63. [PMID: 17632693 DOI: 10.1007/s10545-007-0632-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 01/17/2023]
Abstract
Patients with types A and B Niemann-Pick disease (NPD) have an inherited deficiency of acid sphingomyelinase (ASM) activity. The clinical spectrum of this disorder ranges from the infantile, neurological form that results in death by 3 years of age (type A NPD) to the non-neurological form (type B NPD) that is compatible with survival into adulthood. Intermediate cases also have been reported, and the disease is best thought of as a single entity with a spectrum of phenotypes. ASM deficiency is panethnic, but appears to be more frequent in individuals of Middle Eastern and North African descent. Current estimates of the disease incidence range from approximately 0.5 to 1 per 100,000 births. However, these approximations likely under estimate the true frequency of the disorder since they are based solely on cases referred to biochemical testing laboratories for enzymatic confirmation. The gene encoding ASM (SMPD1) has been studied extensively; it resides within an imprinted region on chromosome 11, and is preferentially expressed from the maternal chromosome. Over 100 SMPD1 mutations causing ASM-deficient NPD have been described, and some useful genotype-phenotype correlations have been made. Based on these findings, DNA-based carrier screening has been implemented in the Ashkenazi Jewish community. ASM 'knockout' mouse models also have been constructed and used to investigate disease pathogenesis and treatment. Based on these studies in the mouse model, an enzyme replacement therapy clinical trial has recently begun in adult patients with non-neurological ASM-deficient NPD.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Bronchoalveolar Lavage
- Disease Models, Animal
- Enzyme Inhibitors/therapeutic use
- Genetic Testing
- Genetic Therapy
- Genotype
- Humans
- Mice
- Mice, Knockout
- Mutation
- Niemann-Pick Disease, Type A/diagnosis
- Niemann-Pick Disease, Type A/enzymology
- Niemann-Pick Disease, Type A/ethnology
- Niemann-Pick Disease, Type A/genetics
- Niemann-Pick Disease, Type A/therapy
- Niemann-Pick Disease, Type B/diagnosis
- Niemann-Pick Disease, Type B/enzymology
- Niemann-Pick Disease, Type B/ethnology
- Niemann-Pick Disease, Type B/genetics
- Niemann-Pick Disease, Type B/therapy
- Phenotype
- Recombinant Proteins/therapeutic use
- Sphingomyelin Phosphodiesterase/deficiency
- Sphingomyelin Phosphodiesterase/genetics
- Sphingomyelin Phosphodiesterase/therapeutic use
- Splenectomy
Collapse
Affiliation(s)
- E H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 14-20A, New York, NY 10029, USA.
| |
Collapse
|
10
|
Larsen EC, Hatcher JF, Adibhatla RM. Effect of tricyclodecan-9-yl potassium xanthate (D609) on phospholipid metabolism and cell death during oxygen-glucose deprivation in PC12 cells. Neuroscience 2007; 146:946-61. [PMID: 17434680 PMCID: PMC2041837 DOI: 10.1016/j.neuroscience.2007.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 02/02/2023]
Abstract
Alterations in lipid metabolism play an integral role in neuronal death in cerebral ischemia. Here we used an in vitro model, oxygen-glucose deprivation (OGD) of rat pheochromocytoma (PC12) cells, and analyzed changes in phosphatidylcholine (PC) and sphingomyelin (SM) metabolism. OGD (4-8 h) of PC12 cells triggered a dramatic reduction in PC and SM levels, and a significant increase in ceramide. OGD also caused increases in phosphatidylcholine-phospholipase C (PC-PLC) and phospholipase D (PLD) activities and PLD2 protein expression, and reduction in cytidine triphosphate:phosphocholine cytidylyltransferase-alpha (CCTalpha, the rate-limiting enzyme in PC synthesis) protein expression and activity. Phospholipase A2 activity and expression were unaltered during OGD. Increased neutral sphingomyelinase activity during OGD could account for SM loss and increased ceramide. Surprisingly, treatment with PC-PLC inhibitor tricyclodecan-9-yl potassium xanthate (D609) aggravated cell death in PC12 cells during OGD. D609 was cytotoxic only during OGD; cell death could be prevented by inclusion of sera, glucose or oxygen. During OGD, D609 caused further loss of PC and SM, depletion of 1,2-diacylglycerol (DAG), increase in ceramide and free fatty acids (FFA), cytochrome c release from mitochondria, increases in intracellular Ca2+ ([Ca2+]i), poly-ADP ribose polymerase (PARP) cleavage and phosphatidylserine externalization, indicative of apoptotic cell death. Exogenous PC during OGD in PC12 cells with D609 attenuated PC, SM loss, restored DAG, attenuated ceramide levels, decreased cytochrome c release, PARP cleavage, annexin V binding, attenuated the increase in [Ca2+]i, FFA release, and significantly increased cell viability. Exogenous PC may have elicited these effects by restoring membrane PC levels. A tentative scheme depicting the mechanism of action of D609 (inhibiting PC-PLC, SM synthase, PC synthesis at the CDP-choline-1,2-diacylglycerol phosphocholine transferase (CPT) step and causing mitochondrial dysfunction) has been proposed based on our observations and literature.
Collapse
Affiliation(s)
- E. C. Larsen
- Department of Neurological Surgery, University of Wisconsin, Madison, WI
| | - J. F. Hatcher
- Department of Neurological Surgery, University of Wisconsin, Madison, WI
| | - Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI
- Cardiovascular Research Center, University of Wisconsin, Madison, WI
- Neuroscience Training Program, University of Wisconsin, Madison, WI
- Veterans Administration Hospital, Madison, WI
- To whom correspondence should be addressed: Dr. Rao Muralikrishna Adibhatla, Department of Neurological Surgery, H4-330, Clinical Science Center, 600 Highland Avenue, University of Wisconsin-Madison, Madison, WI 53792-3232, Tel: 608-263-1791, Fax: 608-263-1409,
| |
Collapse
|
11
|
Su L, Zhao B, Lv X, Wang N, Zhao J, Zhang S, Miao J. Safrole oxide induces neuronal apoptosis through inhibition of integrin beta4/SOD activity and elevation of ROS/NADPH oxidase activity. Life Sci 2007; 80:999-1006. [PMID: 17188719 DOI: 10.1016/j.lfs.2006.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/10/2006] [Accepted: 11/21/2006] [Indexed: 01/28/2023]
Abstract
Neuronal apoptosis is a very important event in the development of the central nervous system (CNS), but the underlying mechanisms remain to be elucidated. We have previously shown that safrole oxide, a small molecule, induces integrin beta4 expression and promotes apoptosis in vascular endothelial cells. In this study, the effects of safrole oxide on cell growth and apoptosis have been examined in primary cultures of mouse neurons. Safrole oxide was found to significantly inhibit neuronal cell growth and to induce apoptosis. The inhibitory and apoptotic activities of safrole oxide followed a dose- and time-dependent manner. Interestingly, the expression of integrin beta4 was significantly inhibited with safrole oxide treatment. Furthermore, safrole oxide dramatically increases the level of intracellular reactive oxygen species (ROS) and the activity of NADPH oxidase. Moreover, manganese-dependent superoxide dismutase (MnSOD) activity was decreased significantly with safrole oxide treatment. Our study thus demonstrates that safrole oxide induces neuronal apoptosis through integrin beta4, ROS, NADPH, and MnSOD.
Collapse
Affiliation(s)
- Le Su
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhao J, Zhao B, Wang W, Huang B, Zhang S, Miao J. Phosphatidylcholine-specific phospholipase C and ROS were involved in chicken blastodisc differentiation to vascular endothelial cells. J Cell Biochem 2007; 102:421-8. [PMID: 17393430 DOI: 10.1002/jcb.21301] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To find the key factors that were involved in the survival and vascular endothelial differentiation of chick blatodisc induced by fibroblast growth factor 2 (FGF-2), we built a chick vasculogenesis model in vitro. Subsequently, the activities of phosphatidylcholine-specific phospholipase C (PC-PLC), including Ca(2+)-dependent and -independent PC-PLC, and the level of reactive oxygen species (ROS) were evaluated during the endothelial differentiation of chick blastodisc. The results showed that Ca(2+)-indepentent PC-PLC underwent a remarkable increase in 24 h (P < 0.01), then it decreased gradually with the cell differentiation, while the Ca(2+)-depentent PC-PLC was nearly not changed in the whole process. At the same time, ROS level dramatically decreased during the cell differentiation. To understand the role of PC-PLC and how it performs its function in the vascular endothelial differentiation induced by FGF-2, we suppressed PC-PLC activity by its specific inhibitor D609 (tricyclodecan-9-yl potassium xanthate) at 24 h during the cell differentiation. As a result, the cell differentiation could not progress and the intracellular level of ROS was elevated. The data suggested that PC-PLC and ROS were involved in chicken blastodisc differentiation to vascular endothelial cells. PC-PLC was an important factor in the blastodisc cell survival and differentiation, and it might perform its function associated with ROS.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shangdong 250100, China
| | | | | | | | | | | |
Collapse
|