1
|
Szafrański PW, Siwek A, Smaga-Maślanka I, Pomierny-Chamioło L, Ilnicki P, Żuchowski G, Nevalainen T, Filip M, Zajdel P, Cegła MT. Synthesis, relative configuration and CB1 receptor affinity studies for a set of 1,2,3-triazole derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
2
|
Zukerman-Schpector J, Dias CDS, Schwab RS, Jotani MM, Tiekink ERT. 4-(4-Acetyl-5-methyl-1 H-1,2,3-triazol-1-yl)benzo-nitrile: crystal structure and Hirshfeld surface analysis. Acta Crystallogr E Crystallogr Commun 2018; 74:1195-1200. [PMID: 30225098 PMCID: PMC6127723 DOI: 10.1107/s2056989018010885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 11/12/2022]
Abstract
The title compound, C12H10N4O, comprises a central 1,2,3-triazole ring (r.m.s. deviation = 0.0030 Å) flanked by N-bound 4-cyano-phenyl and C-bound acetyl groups, which make dihedral angles of 54.64 (5) and 6.8 (3)° with the five-membered ring, indicating a twisted mol-ecule. In the crystal, the three-dimensional architecture is sustained by carbonyl-C=O⋯π(triazo-yl), cyano-C≡N⋯π(triazo-yl) (these inter-actions are shown to be attractive based on non-covalent inter-action plots) and π-π stacking inter-actions [inter-centroid separation = 3.9242 (9) Å]. An analysis of the Hirshfeld surface shows the important contributions made by H⋯H (35.9%) and N⋯H (26.2%) contacts to the overall surface, as well as notable contributions by O⋯H (9.9%), C⋯H (8.7%), C⋯C (7.3%) and C⋯N (7.2%) contacts.
Collapse
Affiliation(s)
- Julio Zukerman-Schpector
- Laboratório de Cristalografia, Esterodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Cássio da S. Dias
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Ricardo S. Schwab
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Mukesh M. Jotani
- Department of Physics, Bhavan’s Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Huang W, Zhu C, Li M, Yu Y, Wu W, Tu Z, Jiang H. TBAI or KI-Promoted Oxidative Coupling of Enamines and N
-Tosylhydrazine: An Unconventional Method toward 1,5- and 1,4,5-Substituted 1,2,3-Triazoles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Minke Li
- Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing; Guangzhou Institutes of Biomedicine and Health; Guangzhou 510530 People's Republic of China
| | - Yue Yu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Zhengchao Tu
- Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing; Guangzhou Institutes of Biomedicine and Health; Guangzhou 510530 People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| |
Collapse
|
4
|
CuO Nanoparticles as An Efficient Heterogeneous Catalyst for the 1,3-Dipolar Cycloaddition of Dicarbonyl Compounds to Azides. ChemistrySelect 2018. [DOI: 10.1002/slct.201800816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today 2017; 22:1572-1581. [PMID: 28676407 DOI: 10.1016/j.drudis.2017.05.014] [Citation(s) in RCA: 434] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 10/25/2022]
Abstract
1,2,3-Triazole is a well-known scaffold that has a widespread occurrence in different compounds characterized by several bioactivities, such as antimicrobial, antiviral, and antitumor effects. Moreover, the structural features of 1,2,3-triazole enable it to mimic different functional groups, justifying its wide use as a bioisostere for the synthesis of new active molecules. Here, we provide an overview of the 1,2,3-triazole ring as a bioisostere for the design of drug analogs, highlighting relevant recent examples.
Collapse
Affiliation(s)
- Elisa Bonandi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Michael S Christodoulou
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Gaia Fumagalli
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Dario Perdicchia
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Giulio Rastelli
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
6
|
Rohilla S, Patel SS, Jain N. Copper Acetate Catalyzed Regioselective Synthesis of Substituted 1,2,3-Triazoles: A Versatile Azide-Alkene Cycloaddition/Oxidation Approach. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Synthesis and anticancer evaluation of novel triazole linked N-(pyrimidin-2-yl)benzo[d]thiazol-2-amine derivatives as inhibitors of cell survival proteins and inducers of apoptosis in MCF-7 breast cancer cells. Bioorg Med Chem Lett 2015; 25:654-8. [DOI: 10.1016/j.bmcl.2014.11.083] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 11/22/2022]
|
8
|
Li W, Wang J. Lewis Base Catalyzed Aerobic Oxidative Intermolecular Azide-Zwitterion Cycloaddition. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Li W, Wang J. Lewis Base Catalyzed Aerobic Oxidative Intermolecular Azide-Zwitterion Cycloaddition. Angew Chem Int Ed Engl 2014; 53:14186-90. [DOI: 10.1002/anie.201408265] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/06/2014] [Indexed: 01/08/2023]
|
10
|
Rao YJ, Srinivas A. Synthesis of New Hybrid Heterocyclic Compounds Having 1,2,3-Triazole and Isoxazole via Click Chemistry. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Y. Jayaprakash Rao
- Post Graduate College of Science, Saifabad; Osmania University; Hyderabad India 500004
| | - A. Srinivas
- Post Graduate College of Science, Saifabad; Osmania University; Hyderabad India 500004
| |
Collapse
|
11
|
Prospective therapeutic agents for obesity: Molecular modification approaches of centrally and peripherally acting selective cannabinoid 1 receptor antagonists. Eur J Med Chem 2014; 79:298-339. [DOI: 10.1016/j.ejmech.2014.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 01/29/2023]
|
12
|
Quan ZJ, Wang MM, Yang LJ, Da YX, Zhang Z, Wang XC. One-pot three-component synthesis of substituted 2-(1,2,3-triazol-1-yl)pyrimidines from pyrimidin-2-yl sulfonates, sodium azide and active methylene ketones. HETEROCYCL COMMUN 2014. [DOI: 10.1515/hc-2013-0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1309] [Impact Index Per Article: 109.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
14
|
Jin G, Zhang J, Fu D, Wu J, Cao S. One-Pot, Three-Component Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles Starting from Primary Alcohols. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
|
16
|
Wang L, Peng S, Danence LJT, Gao Y, Wang J. Amine-Catalyzed [3+2] Huisgen Cycloaddition Strategy for the Efficient Assembly of Highly Substituted 1,2,3-Triazoles. Chemistry 2012; 18:6088-93. [DOI: 10.1002/chem.201103393] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/14/2012] [Indexed: 11/10/2022]
|
17
|
In silico investigation of interactions between human cannabinoid receptor-1 and its antagonists. J Mol Model 2012; 18:3831-45. [PMID: 22402754 DOI: 10.1007/s00894-012-1381-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/14/2012] [Indexed: 12/28/2022]
Abstract
Cannabinoid receptor-1 (CB(1)) is widely expressed in the central nervous system and plays a vital role in regulating food intake and energy expenditure. CB(1) antagonists such as Rimonabant have been used in clinic to inhibit food intake, and therefore reduce body weight in obese animals and humans. To investigate the binding modes of CB(1) antagonists to the receptor, both receptor- and ligand-based methods were implemented in this study. At first, a pharmacophore model was generated based on 31 diverse CB(1) antagonists collected from literature. A test set validation and a simulated virtual screening evaluation were then performed to verify the reliability and discriminating ability of the pharmacophore. Meanwhile, the homology model of CB(1) receptor was constructed based on the crystal structure of human β (2) adrenergic receptor (β (2)-AR). Several classical antagonists were then docked into the optimized homology model with induced fit docking method. A hydrogen bond between the antagonists and Lys192 on the third transmembrane helix of the receptor was formed in the docking study, which has proven to be critical for receptor-ligand interaction by biological experiments. The structure obtained from induced fit docking was then confirmed to be a reliable model for molecular docking from the result of the simulated virtual screening. The consistency between the pharmacophore and the homology structure further proved the previous observation. The built receptor structure and antagonists' pharmacophore should be useful for the understanding of inhibitory mechanism and development of novel CB(1) antagonists.
Collapse
|
18
|
Papudippu M, Shu H, Izenwasser S, Wade D, Gulasey G, Fournet S, Stevens ED, Lomenzo SA, Trudell ML. Regioselective synthesis and cannabinoid receptor binding affinity of N-alkylated 4,5-diaryl-1,2,3-triazoles. Med Chem Res 2012. [DOI: 10.1007/s00044-012-9991-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Berger O, Kaniti A, van Ba CT, Vial H, Ward SA, Biagini GA, Bray PG, O'Neill PM. Synthesis and antimalarial activities of a diverse set of triazole-containing furamidine analogues. ChemMedChem 2011; 6:2094-108. [PMID: 21905228 DOI: 10.1002/cmdc.201100265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/29/2011] [Indexed: 11/07/2022]
Abstract
Four different series of triazole diamidines have been prepared by the Pinner method from the corresponding triazole dinitriles. Copper-catalyzed "click chemistry" was used for the synthesis of 1,4- and 4,5-substituted triazoles, aryl magnesium acetylide reagents for the 1,5-substituted triazoles, with a thermal dipolar addition reaction employed for the 2,4-substituted triazoles. In vitro antimalarial activity against two different PfCRT-modified parasite lines (Science 2002, 298, 210-213) of Plasmodium falciparum and inhibition of hemozoin formation were determined for each compound. Several diamidines with potent nanomolar antimalarial activities were identified, and selected molecules were resynthesized as their diamidoxime triazole prodrugs. One of these prodrugs, OB216, proved to be highly potent in vivo with an ED50 value of 5 mg kg(-1) (po) and an observed 100 % cure rate (CD100) of just 10 mg kg(-1) by oral (po) administration in mice infected with P. vinckei.
Collapse
Affiliation(s)
- Olivier Berger
- Department of Chemistry, University of Liverpool, Crown street, Liverpool, L69 3BX UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Agalave SG, Maujan SR, Pore VS. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem Asian J 2011; 6:2696-718. [DOI: 10.1002/asia.201100432] [Citation(s) in RCA: 907] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Indexed: 12/16/2022]
|
21
|
Paliwal SK, Verma AN, Paliwal S. Neglected disease - african sleeping sickness: recent synthetic and modeling advances. Sci Pharm 2011; 79:389-428. [PMID: 21886894 PMCID: PMC3163371 DOI: 10.3797/scipharm.1012-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/10/2011] [Indexed: 01/21/2023] Open
Abstract
Human African Trypanosomiasis (HAT) also called sleeping sickness is caused by subspecies of the parasitic hemoflagellate Trypanosoma brucei that mostly occurs in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which have been developed more than 30 years ago, have undesirable toxic side effects and most of them show drug-resistance. Though development of new anti-trypanosomal drugs seems to be a priority area research in this area has lagged far behind. The given review mainly focus upon the recent synthetic and computer based approaches made by various research groups for the development of newer anti-trypanosomal analogues which may have improved efficacy and oral bioavailability than the present ones. The given paper also attempts to investigate the relationship between the various physiochemical parameters and anti-trypanosomal activity that may be helpful in development of potent anti-trypanosomal agents against sleeping sickness.
Collapse
|
22
|
|
23
|
Synthesis and cytotoxicity evaluation of novel 1,4-disubstituted 1,2,3-triazoles via CuI catalysed 1,3-dipolar cycloaddition. Eur J Med Chem 2010; 45:5044-50. [DOI: 10.1016/j.ejmech.2010.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 11/20/2022]
|
24
|
Singh N, Pandey SK, Tripathi RP. Regioselective [3+2] cycloaddition of chalcones with a sugar azide: easy access to 1-(5-deoxy-D-xylofuranos-5-yl)-4,5-disubstituted-1H-1,2,3-triazoles. Carbohydr Res 2010; 345:1641-8. [PMID: 20579636 DOI: 10.1016/j.carres.2010.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 04/15/2010] [Accepted: 04/21/2010] [Indexed: 11/18/2022]
Abstract
[3+2] Cycloaddition of 5-azido-5-deoxy-1,2-O-isopropylidene-alpha-d-xylofuranose with 1,3-diphenyl-prop-3-enones, followed by oxidation of the intermediate triazolines in a tandem manner, led to the regioselective formation of 4-benzoyl-1-(5-deoxy-1,2-O-isopropylidene-alpha-d-xylofuranos-5-yl)-5-phenyl-1H-1,2,3-triazoles in moderate to good yields.
Collapse
Affiliation(s)
- Nimisha Singh
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226 001, CSIR, India
| | | | | |
Collapse
|
25
|
Bakunov SA, Bakunova SM, Wenzler T, Ghebru M, Werbovetz KA, Brun R, Tidwell RR. Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles. J Med Chem 2010; 53:254-72. [PMID: 19928900 PMCID: PMC3113660 DOI: 10.1021/jm901178d] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Novel dicationic triazoles 1-60 were synthesized by the Pinner method from the corresponding dinitriles, prepared via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The type and the placement of cationic moieties as well as the nature of aromatic substituents influenced in vitro antiprotozoal activities of compounds 1-60 against Trypanosoma brucei rhodesiense, Plasmodium falciparum, and Leishmania donovani and their cytotoxicity for mammalian cells. Eight congeners displayed antitrypanosomal IC(50) values below 10 nM. Thirty-nine dications were more potent against P. falciparum than pentamidine (IC(50) = 58 nM), and eight analogues were more active than artemisinin (IC(50) = 6 nM). Diimidazoline 60 exhibited antiplasmodial IC(50) value of 0.6 nM. Seven congeners administered at 4 x 5 mg/kg by the intraperitoneal route cured at least three out of four animals in the acute mouse model of African trypanosomiasis. At 4 x 1 mg/kg, diamidine 46 displayed better antitrypanosomal efficacy than melarsoprol, curing all infected mice.
Collapse
Affiliation(s)
- Stanislav A. Bakunov
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599–7525
| | - Svetlana M. Bakunova
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599–7525
| | - Tanja Wenzler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, CH-4002 Basel, Switzerland
| | - Maedot Ghebru
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210
| | - Reto Brun
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, CH-4002 Basel, Switzerland
| | - Richard R. Tidwell
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599–7525
| |
Collapse
|