1
|
Biselli S, Alencastre I, Tropmann K, Erdmann D, Chen M, Littmann T, Maia AF, Gomez-Lazaro M, Tanaka M, Ozawa T, Keller M, Lamghari M, Buschauer A, Bernhardt G. Fluorescent H 2 Receptor Squaramide-Type Antagonists: Synthesis, Characterization, and Applications. ACS Med Chem Lett 2020; 11:1521-1528. [PMID: 32832018 DOI: 10.1021/acsmedchemlett.0c00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
Fluorescence labeled ligands have been gaining importance as molecular tools, enabling receptor-ligand-binding studies by various fluorescence-based techniques. Aiming at red-emitting fluorescent ligands for the hH2R, a series of squaramides labeled with pyridinium or cyanine fluorophores (19-27) was synthesized and characterized. The highest hH2R affinities in radioligand competition binding assays were obtained in the case of pyridinium labeled antagonists 19-21 (pK i: 7.71-7.76) and cyanine labeled antagonists 23 and 25 (pK i: 7.67, 7.11). These fluorescent ligands proved to be useful tools for binding studies (saturation and competition binding as well as kinetic experiments), using confocal microscopy, flow cytometry, and high content imaging. Saturation binding experiments revealed pK d values comparable to the pK i values. The fluorescent probes 21, 23, and 25 could be used to localize H2 receptors in HEK cells and to determine the binding affinities of unlabeled compounds.
Collapse
Affiliation(s)
- Sabrina Biselli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Inês Alencastre
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Katharina Tropmann
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Daniela Erdmann
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Mengya Chen
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Timo Littmann
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - André F. Maia
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Miho Tanaka
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Bunkyo-ku, Hongo, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Bunkyo-ku, Hongo, Tokyo 113-0033, Japan
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Alachkar A, Latacz G, Siwek A, Lubelska A, Honkisz E, Gryboś A, Łażewska D, Handzlik J, Stark H, Kiec-Kononowicz K, Sadek B. Anticonvulsant evaluation of novel non-imidazole histamine H3R antagonists in different convulsion models in rats. Pharmacol Biochem Behav 2018; 170:14-24. [PMID: 29729290 DOI: 10.1016/j.pbb.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/09/2018] [Accepted: 04/29/2018] [Indexed: 11/26/2022]
Abstract
Novel non-imidazole histamine H3 receptor (H3R) antagonists (2-8) were developed and assessed for in-vitro antagonist binding affinities at the human histamine H1-H4R. These novel H3R antagonists (2-8) were examined in-vivo for anticonvulsant effects in three different convulsion models in male adult rats. Compound 6 significantly and dose-dependently exhibited decreased duration of tonic hind limb extension (THLE) in the maximal electroshock (MES)- and fully protected animals against pentylenetetrazole (PTZ)-induced convulsion, following acute systemic administration (5, 10, and 20 mg/kg, i.p.). Contrary, all compounds 2-8 showed moderate protection in the strychnine (STR)-induced convulsion model following acute pretreatment (10 mg/kg, i.p.). Moreover, the acute systemic administration of H3R antagonist 6 (10 mg/kg, i.p.) significantly prolonged latency time for MES convulsions. Furthermore, the anticonvulsant effect observed with compound 6 in MES-model was entirely abrogated when rats were co-injected with the brain penetrant H1R antagonist pyrilamine (PYR) but not the brain penetrant H2R antagonist zolantidine (ZOL). However, PYR and ZOL failed to abolish the full protection provided by the H3R antagonist 6 in PTZ- and STR-models. No mutagenic or antiproliferative effects or potential metabolic interactions were shown for compound 6 when assessing its antiproliferative activities and metabolic profiling applying in-vitro methods. These findings demonstrate the potential of non-imidazole H3R antagonists as novel antiepileptic drugs (AEDs) either for single use or in addition to currently available epilepsy medications.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Ewelina Honkisz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Gryboś
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Katarzyna Kiec-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Alachkar A, Łażewska D, Kieć-Kononowicz K, Sadek B. The Histamine H3 Receptor Antagonist E159 Reverses Memory Deficits Induced by Dizocilpine in Passive Avoidance and Novel Object Recognition Paradigm in Rats. Front Pharmacol 2017; 8:709. [PMID: 29075190 PMCID: PMC5643952 DOI: 10.3389/fphar.2017.00709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/21/2017] [Indexed: 11/30/2022] Open
Abstract
The involvement of histamine H3 receptors (H3Rs) in memory is well known, and the potential of H3R antagonists in therapeutic management of neuropsychiatric diseases, e.g., Alzheimer disease (AD) is well established. Therefore, the effects of histamine H3 receptor (H3R) antagonist E159 (2.5–10 mg/kg, i.p.) in adult male rats on dizocilpine (DIZ)-induced memory deficits were studied in passive avoidance paradigm (PAP) and in novel object recognition (NOR) using pitolisant (PIT) and donepezil (DOZ) as standard drugs. Upon acute systemic pretreatment of E159 at three different doses, namely 2.5, 5, and 10 mg/kg, i.p., 2.5 and 5 but not 10 mg/kg of E159 counteracted the DIZ (0.1 mg)-induced memory deficits, and this E159 (2.5 mg)-elicited memory-improving effects in DIZ-induced amnesic model were moderately abrogated after acute systemic administration of scopolamine (SCO), H2R antagonist zolantidine (ZOL), but not with H1R antagonist pyrilamine to the animals. Moreover, the observed memory-enhancing effects of E159 (2.5 mg/kg, i.p.) were strongly abrogated when animals were administered with a combination of SCO and ZOL. Furthermore, the E159 (2.5 mg)-provided significant memory-improving effect of in DIZ-induced short-term memory (STM) impairment in NOR was comparable to the DOZ-provided memory-enhancing effect, and was abolished when animals were injected with the CNS-penetrant histamine H3R agonist R-(α)-methylhistamine (RAMH). However, E159 at a dose of 2.5 mg/kg failed to exhibit procognitive effect on DIZ-induced long-term memory (LTM) in NOR. Furthermore, the results observed revealed that E159 (2.5 mg/kg) did not alter anxiety levels and locomotor activity of animals naive to elevated-plus maze (EPM), demonstrating that improved performances with E159 (2.5 mg/kg) in PAP or NOR are unrelated to changes in emotional responding or in spontaneous locomotor activity. These results provide evidence for the potential of drugs targeting H3Rs for the treatment of neuropsychiatric disorders, e.g., AD.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Sadek B, Saad A, Latacz G, Kuder K, Olejarz A, Karcz T, Stark H, Kieć-Kononowicz K. Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3879-3898. [PMID: 27932863 PMCID: PMC5135077 DOI: 10.2147/dddt.s116192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of twelve novel non-imidazole-based ligands (3–14) was developed and evaluated for its in vitro binding properties at the human histamine H3 receptor (hH3R). The novel ligands were investigated for their in vivo protective effects in different seizure models in male adult rats. Among the H3R ligands (3–14) tested, ligand 14 showed significant and dose-dependent reduction in the duration of tonic hind limb extension in maximal electroshock (MES)-induced seizure model subsequent to acute systemic administration (5, 10, and 20 mg/kg, intraperitoneally), whereas ligands 4, 6, and 7 without appreciable protection in MES model were most promising in pentylenetetrazole (PTZ) model. Moreover, the protective effect observed for ligand 14 in MES model was lower than that observed for the reference drug phenytoin and was entirely abrogated when rats were co-administered with the brain-penetrant H1R antagonist pyrilamine (PYR) but not the brain-penetrant H2R antagonist zolantidine (ZOL), demonstrating that histaminergic neurotransmission by activation of postsynaptically located H1Rs seems to be involved in the protective action. On the contrary, PYR and ZOL failed to abrogate the full protection provided by 4 in PTZ model and the moderate protective effect by 14 in strychnine (STR) model. Moreover, the experimental and in silico estimation of properties such as metabolism was performed for five selected test compounds. Also, lipophilicity using planar reversed-phase thin-layer chromatography method was included for better understanding of the molecular properties of the tested compounds. Additionally, the absorption, distribution, metabolism, and elimination and toxicity parameters were evaluated for the most promising compounds 2, 4, 6, 7, and 14 utilizing in vitro methods. These interesting results highlight the potential of H3R ligands as new antiepileptic drugs or as adjuvants to available epilepsy medications.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Olejarz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Holger Stark
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Sadek B, Saad A, Schwed JS, Weizel L, Walter M, Stark H. Anticonvulsant effects of isomeric nonimidazole histamine H 3 receptor antagonists. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3633-3651. [PMID: 27853355 PMCID: PMC5106240 DOI: 10.2147/dddt.s114147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%–80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and reversed when rats were pretreated with the selective H3R agonist R-(α)-methyl-histamine. Comparisons of the observed antagonistic in vitro affinities among the ligands 1–6 revealed profound stereoselectivity at human H3Rs with varying preferences for this receptor subtype. Moreover, the in vivo anticonvulsant effects observed in this study for ligands 1–6 showed stereoselectivity in different convulsion models in male adult rats.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Johannes Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Miriam Walter
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Holger Stark
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Sadek B, Saad A, Subramanian D, Shafiullah M, Łażewska D, Kieć-Kononowiczc K. Anticonvulsant and procognitive properties of the non-imidazole histamine H3 receptor antagonist DL77 in male adult rats. Neuropharmacology 2015; 106:46-55. [PMID: 26525191 DOI: 10.1016/j.neuropharm.2015.10.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
It has become clear that histamine H3 receptors (H3Rs) are implicated in modulating epilepsy and memory in laboratory animals. The new non-imidazole H3R antagonist DL77 has excellent selectivity profile and shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 values of 2.1 ± 0.2 mg/kg and 8.4 ± 1.3 [nM], respectively. In the present study, the anticonvulsant effects of DL77 on maximal electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced seizure models were investigated. Moreover, the procognitive properties of DL77 were tested on acquisition, consolidation and retrieval processes in a one-trial inhibitory avoidance task in male Wistar rats. The results indicate that DL77 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently reduced MES-induced seizure duration, whereas no protection was observed in PTZ- or STR-induced seizures. Importantly, the protective action observed for DL77 in MES-induced seizure was comparable to that of the reference antiepileptic drug (AED) phenytoin (PHT), and was also reversed when rats were pretreated with the CNS penetrant pyrilamine (PYR) (10 mg/kg, i.p.), or with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg, i.p.). Furthermore, the procognitive studies indicate that acute pre-training systemic administration of DL77 (2.5 mg/kg, i.p.) facilitated acquisition, whereas pre-testing acute administration of DL77 (5 and 10 mg/kg, i.p.) improved retrieval. Interestingly, the procognitive effect of DL77 on retrieval was completely abrogated when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL) but not the centrally acting H1R antagonist PYR, indicating that histaminergic pathways through activation of H2Rs appear to be participating in neuronal circuits involved in retrieval processes. Taken together, our results show that DL77 demonstrates anticonvulsant properties in the MES-induced seizure model and improves cognitive performance through actions on different memory stages. Therefore, H3Rs may have implications for the treatment of degenerative disorders associated with impaired memory function and may represent a novel therapeutic pharmacological target to tackle cognitive problems associated with the chronic use of antiepileptic drugs. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Ali Saad
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dhanasekaran Subramanian
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Shafiullah
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łażewska
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowiczc
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| |
Collapse
|
7
|
Bahi A, Sadek B, Nurulain SM, Łażewska D, Kieć-Kononowicz K. The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice. Physiol Behav 2015; 151:189-97. [PMID: 26169446 DOI: 10.1016/j.physbeh.2015.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/28/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022]
Abstract
It has become clear that histamine H3 receptors (H3R) have been implicated in modulating ethanol intake and preference in laboratory animals. The novel non-imidazole H3R antagonist DL77 with excellent selectivity profile shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 of 2.1 ± 0.2 mg/kg and pKi=8.08, respectively. In the present study, and applying an unlimited access two-bottle choice procedure, the anti-alcohol effects of the H3R antagonist, DL77 (0, 3, 10 and 30 mg/kg; i.p.), were investigated in adult mice. In this C57BL/6 line, effects of DL77 on voluntary alcohol intake and preference, as well as on total fluid intake were evaluated. Results have shown that DL77, dose-dependently, reduced both ethanol intake and preference. These effects were very selective as both saccharin and quinine, used to control for taste sensitivity, and intakes were not affected following DL77 pre-application. More importantly, systemic administration of DL77 (10 mg/kg) during acquisition inhibited ethanol-induced conditioned-place preference (EtOH-CPP) as measured using an unbiased protocol. The anti-alcohol activity observed for DL77 was abrogated when mice were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg), or with the CNS penetrant H1R antagonist pyrilamine (PYR) (10mg/kg). These results suggest that DL77 has a predominant role in two in vivo effects of ethanol. Therefore, signaling via H3R is essential for ethanol-related consumption and conditioned reward and may represent a novel therapeutic pharmacological target to tackle ethanol abuse and alcoholism.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Syed M Nurulain
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łażewska
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| |
Collapse
|
8
|
Sadek B, Schreeb A, Schwed JS, Weizel L, Stark H. Drug-likeness approach of 2-aminopyrimidines as histamine H3 receptor ligands. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1499-513. [PMID: 25278747 PMCID: PMC4179762 DOI: 10.2147/dddt.s66179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A small series of compounds containing derivatives of 2,4-diamino- and 2,4,6-triaminopyrimidine (compounds 2–7) was synthesized and tested for binding affinity to human histamine H3 receptors (hH3Rs) stably expressed in HEK-293 cells and human H4Rs (hH4Rs) co-expressed with Gαi2 and Gβ1γ2 subunits in Sf9 cells. Working in part from the lead compound 6-(4-methylpiperazin-1-yl)-N4-(3-(piperidin-1-yl)propyl)pyrimidine-2,4-diamine (compound 1) with unsatisfactory affinity and selectivity to hH3Rs, our structure-activity relationship studies revealed that replacement of 4-methylpiperazino by N-benzylamine and substitution of an amine group at the 2-position of the 2-aminopyrimidine core structure with 3-piperidinopropoxyphenyl moiety as an hH3R pharmacophore resulted in N4-benzyl-N2-(4-(3-(piperidin-1-yl)propoxy)phenyl)pyrimidine-2,4-diamine (compound 5) with high hH3R affinity (ki =4.49±1.25 nM) and H3R receptor subtype selectivity of more than 6,500×. Moreover, initial metric analyses were conducted based on their target-oriented drug-likeness for predictively quantifying lipophilicity, ligand efficiency, lipophilicity-dependent ligand efficiency, molecular size-independent efficiency, and topological molecular polar surface. As to the development of potential H3R ligands, results showed that integration of the hH3R pharmacophore in hH4R-affine structural scaffolds resulted in compounds with high hH3R affinity (4.5–650 nM), moderate to low hH4R affinity (4,500–30,000 nM), receptor subtype selectivity (ratio hH4R/hH3R; 8–6,500), and promising calculated drug-likeness properties.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Annemarie Schreeb
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany
| | - Johannes Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany ; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
9
|
Lipani L, Odadzic D, Weizel L, Schwed JS, Sadek B, Stark H. Studies on molecular properties prediction and histamine H3 receptor affinities of novel ligands with uracil-based motifs. Eur J Med Chem 2014; 86:578-88. [PMID: 25218907 DOI: 10.1016/j.ejmech.2014.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/16/2014] [Accepted: 09/04/2014] [Indexed: 11/25/2022]
Abstract
The histamine H3 receptor (H3R) plays a role in cognitive and memory processes and is involved in different neurological disorders, including Alzheimer's disease, schizophrenia, and narcolepsy. Therefore, several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. However, many other promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity accompanied with low solubility. Analysis of previous potential H3R selective antagonists/inverse agonists, e.g. pitolisant, revealed promising results concerning physicochemical properties and drug-likeness. Herein, a series of new hH3R ligands 8-20 consisting of piperidin-1-yl or piperidin-1-yl-propoxyphenyl coupled to different uracil, thymine, and 5,6-dimethyluracil related moieties, were synthesized, evaluated on their binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties. Due to the coupling to various positions at pyrimidine-2,4-(1H,3H)-dione, affinity at hH3Rs and drug-likeness parameters have been improved. For instance, compound 9 showed in addition to high affinity at the hH3R (pKi (hH3R) = 8.14) clog S, clog P, LE, LipE, and drug-likeness score values of -4.36, 3.47, 0.34, 4.63, and 1.54, respectively. Also, the methyl substituted analog 17 (pKi (hH3R) = 8.15) revealed LE, LipE and drug-likeness score values of -3.29, 2.47, 0.49, 5.52, and 1.76, respectively.
Collapse
Affiliation(s)
- Luca Lipani
- Department of Drug Sciences, University of Catania, Viale A. Doria, 6, I-95125 Catania, Italy; Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Dalibor Odadzic
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Johannes-Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, United Arab Emirates.
| | - Holger Stark
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
10
|
Wingen K, Schwed JS, Isensee K, Weizel L, Zivković A, Odadzic D, Odazic D, Stark H. Benzylpiperidine variations on histamine H3 receptor ligands for improved drug-likeness. Bioorg Med Chem Lett 2014; 24:2236-9. [PMID: 24745967 DOI: 10.1016/j.bmcl.2014.03.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
Several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. Nevertheless, many promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity and their dibasic character. Analysis of previously, as potential PET ligands synthesized compounds (ST-889, ST-928) revealed promising results concerning physicochemical properties and drug-likeness. Herein, the synthesis, the evaluation of the binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties of further novel benzylpiperidine variations on H3R antagonists is described. Due to the introduction of various small hydrophilic moieties in the structure, drug-likeness parameters have been improved. For instance, compound 12 (ST-1032) showed in addition to high affinity at the H3R (pKi (hH3R)=9.3) clogS, clogP, LE, LipE, and LELP values of -2.48, 2.18, 0.44, 7.14, and 4.95, respectively. Also, the keto derivative 5 (ST-1703, pKi (hH3R)=8.6) revealed LipE and LELP values of 5.25 and 6.84, respectively.
Collapse
Affiliation(s)
- Kerstin Wingen
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - J Stephan Schwed
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Kathleen Isensee
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Lilia Weizel
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Aleksandra Zivković
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | | | - Dalibor Odazic
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Holger Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
11
|
Sadek B, Schwed JS, Subramanian D, Weizel L, Walter M, Adem A, Stark H. Non-imidazole histamine H3 receptor ligands incorporating antiepileptic moieties. Eur J Med Chem 2014; 77:269-79. [PMID: 24650714 DOI: 10.1016/j.ejmech.2014.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/23/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022]
Abstract
A small series of histamine H3 receptor (H3R) ligands (1-5) incorporating different antiepileptic structural motifs has been newly synthesized. All compounds exhibited moderate to high in vitro hH3R affinities up to a sub-nanomolar concentration range with pKi values in the range of 6.25-9.62 with varying preferences for this receptor subtype. The compounds (1-5) were further investigated in vivo on anticonvulsant effects against maximum electroshock (MES)-induced and pentylenetetrazole (PTZ)-kindled convulsions in rats having phenytoin (PHT) as the reference antiepileptic drug (AED). Surprisingly, animals pretreated with 1 mg/kg, i.p. of 5,5-diphenyl-3-(3-(piperidin-1-yl)propyl)imidazolidine-2,4-dione (4) were only moderately protected and no protection was observed for compounds 1-3 and 5 in three different doses (1 mg, 5 mg, and 10 mg/kg i.p.). Compound 4 (1 mg/kg, i.p.) failed to modify PTZ-kindled convulsion. However, a dose of 10 mg/kg significantly reduced convulsions in both models. In contrast, 5,5-diphenyl-3-(4-(3-(piperidin-1-yl)propoxy)benzyl)imidazolidine-2,4-dione (5) (1, 5, and 10 mg/kg, i.p.) showed proconvulsant effects in the MES model with further confirmation of these results in the PTZ model as no protection was observed against convulsion in the doses tested (1 and 10 mg/kg). In addition, compound 4 (10 mg/kg, i.p.) significantly prolonged myoclonic latency time and shortened total convulsion duration when compared to control, PHT or standard H3R inverse agonist/antagonist pitolisant (PIT). Our results showed that H3R pharmacophores could successfully be structurally combined to antiepileptic moieties, especially phenytoin partial structures, maintaining the H3R affinity. However, the new derivatives for multiple-target approaches in epilepsy models are complex and show that pharmacophore elements are not easily pharmacologically combinable.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, P.O. Box 17666, Al Ain 0097, United Arab Emirates University, United Arab Emirates.
| | - Johannes Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Dhanasekaran Subramanian
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, P.O. Box 17666, Al Ain 0097, United Arab Emirates University, United Arab Emirates
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Miriam Walter
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, P.O. Box 17666, Al Ain 0097, United Arab Emirates University, United Arab Emirates
| | - Holger Stark
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
12
|
Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:15-33. [PMID: 24055822 PMCID: PMC3926105 DOI: 10.1016/j.bbamem.2013.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022]
Abstract
G protein coupled receptors are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remain unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes that can be difficult to extract from X-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of G protein coupled receptors and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in G protein coupled receptors. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Rajashri Sridharan
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Jeffrey Zuber
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth Mathew
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, P.O. Box 777, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
13
|
Funke U, Vugts DJ, Janssen B, Spaans A, Kruijer PS, Lammertsma AA, Perk LR, Windhorst AD. 11C-labeled and18F-labeled PET ligands for subtype-specific imaging of histamine receptors in the brain. J Labelled Comp Radiopharm 2013; 56:120-9. [DOI: 10.1002/jlcr.3038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 12/13/2022]
Affiliation(s)
| | - Danielle J. Vugts
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | - Bieneke Janssen
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | | | - Perry S. Kruijer
- BV Cyclotron VU; De Boelelaan 1081; 1081; HV; Amsterdam; The Netherlands
| | - Adriaan A. Lammertsma
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | - Lars R. Perk
- BV Cyclotron VU; De Boelelaan 1081; 1081; HV; Amsterdam; The Netherlands
| | - Albert D. Windhorst
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| |
Collapse
|
14
|
Taketoshi A, Beh XN, Kuwabara J, Koizumi TA, Kanbara T. Aerobic oxidative dehydrogenation of benzyl alcohols to benzaldehydes by using a cyclometalated ruthenium catalyst. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Selivanova SV, Honer M, Combe F, Isensee K, Stark H, Krämer SD, Schubiger PA, Ametamey SM. Radiofluorinated histamine H3 receptor antagonist as a potential probe for in vivo PET imaging: Radiosynthesis and pharmacological evaluation. Bioorg Med Chem 2012; 20:2889-96. [DOI: 10.1016/j.bmc.2012.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 01/16/2023]
|
16
|
Coruzzi G, Adami M, Pozzoli C, de Esch IJP, Smits R, Leurs R. Selective histamine H₃ and H₄ receptor agonists exert opposite effects against the gastric lesions induced by HCl in the rat stomach. Eur J Pharmacol 2011; 669:121-7. [PMID: 21839070 DOI: 10.1016/j.ejphar.2011.07.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/11/2011] [Accepted: 07/24/2011] [Indexed: 10/17/2022]
Abstract
The present study investigated the role of histamine H(3) and H(4) receptors in gastric mucosal defense, by the use of selective ligands. Firstly, the affinities of several histaminergic agonists for the rat histamine H(3) and H(4) receptors were checked in HEK 293T cells transfected with either receptor subtype. Next, functional activities were determined in conscious rat against the ulcerogenic effect of 0.6N HCl. Radioligand binding studies showed that immethridine and methimepip were the most selective agonists at rat H(3) receptors, whereas VUF10460 displayed approximately a 50-fold selectivity for the rat H(4) receptor over the H(3) receptor. In conscious rats, immethridine and methimepip significantly reduced (66% and 48% inhibition, respectively) the gastric lesions induced by HCl; the effect of immethridine was antagonized by the H(3) receptor antagonist A-331440, but not by the H(4) receptor antagonist JNJ7777120. The mixed H(3)/H(4) receptor agonist immepip induced a significant aggravation of HCl damage, which was prevented by JNJ7777120; HCl-induced lesions were also significantly enhanced by the H(4) receptor agonists VUF10460 and VUF8430; however, this effect was not modified by JNJ7777120. Overall, this study indicates that, whereas the histamine H(3) receptor is involved in the protection of rat stomach against concentrated HCl, the functional role of the H(4) receptor is still to be defined, although selective agonists induce proulcerogenic effects under HCl challenge. Finally, the species-dependent variations in affinity and receptor selectivity observed for most ligands need to be carefully addressed in the pharmacological characterization of histamine H(3) and H(4) receptor functions in vivo.
Collapse
Affiliation(s)
- Gabriella Coruzzi
- Department of Human Anatomy, Pharmacology and Forensic Medicine, Section of Pharmacology, University of Parma, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Rossbach K, Nassenstein C, Gschwandtner M, Schnell D, Sander K, Seifert R, Stark H, Kietzmann M, Bäumer W. Histamine H1, H3 and H4 receptors are involved in pruritus. Neuroscience 2011; 190:89-102. [PMID: 21689731 DOI: 10.1016/j.neuroscience.2011.06.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 12/12/2022]
Abstract
Histamine has long been recognised as a classical inducer of pruritus. However, the specific mechanism of histamine-induced itch has still not been fully understood. The H1 and H4 receptor appear to be key components in the induction of itch. The specific role of the H3 receptor in histamine-induced itch remains unclear. The aim of our study was to investigate the role of the four known histamine receptors (H1-4) in acute itch in mice. Intradermal injection of the selective H3R inverse agonist pitolisant induced strong itch in mice. Pitolisant (50 nmol/injection)-induced pruritus could be completely blocked by a combined treatment with the H1R antagonist cetirizine (15 mg/kg) and the H4R antagonist JNJ 7777120 (15 mg/kg), whereas the H2R antagonist ranitidine (15 mg/kg) failed to inhibit the scratch response. Next, expression and function of histamine receptors on sensory neurons isolated from dorsal root ganglia of mice were investigated. As the itch sensation results from the excitation of sensory nerves in the skin, we further focused on skin specific sensory neurons. Therefore, neurons were retrograde labelled from the skin by means of a fluorescent tracer. Expression of H1R, H3R and H4R on skin innervating sensory neurons was detected. By single-cell calcium imaging, it was demonstrated that histamine induces a calcium increase in a subset of (skin-specific) sensory neurons via activation of the H1R and H4R as well as inhibition of the H3R. It is assumed that the decreased threshold in response to H3R antagonism activates H1R and H4R on sensory neurons, which in turn results in the excitation of histamine-sensitive afferents and therefore elicits the sensation of itch.
Collapse
Affiliation(s)
- K Rossbach
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sander K, Kottke T, Weizel L, Stark H. Kojic acid derivatives as histamine H(3) receptor ligands. Chem Pharm Bull (Tokyo) 2011; 58:1353-61. [PMID: 20930404 DOI: 10.1248/cpb.58.1353] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The histamine H(3) receptor (H(3)R) is a promising target in the development of new compounds for the treatment of mainly centrally occurring diseases. However, emerging novel therapeutic concepts have been introduced and some indications in the H(3)R field, e.g. migraine, pain or allergic rhinitis, might take advantage of peripherally acting ligands. In this work, kojic acid-derived structural elements were inserted into a well established H(3)R antagonist/inverse agonist scaffold to investigate the bioisosteric potential of γ-pyranones with respect to the different moieties of the H(3)R pharmacophore. The most affine compounds showed receptor binding in the low nanomolar concentration range. Evaluation and comparison of kojic acid-containing ligands and their corresponding phenyl analogues (3-7) revealed that the newly integrated scaffold greatly influences chemical properties (S Log P, topological polar surface area (tPSA)) and hence, potentially modifies the pharmacokinetic profile of the different derivatives. Benzyl-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)methanamine ligands 3 and 4 belong to the centrally acting diamine-based class of H(3)R antagonist/inverse agonist, whereas kojic acid analogues 6 and 7 might act peripherally. The latter compounds state promising lead structures in the development of H(3)R ligands with a modified profile of action.
Collapse
Affiliation(s)
- Kerstin Sander
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, ZAFES/CMP/ICNF, Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
19
|
Walter M, von Coburg Y, Isensee K, Sander K, Ligneau X, Camelin JC, Schwartz JC, Stark H. Azole derivatives as histamine H3 receptor antagonists, Part I: Thiazol-2-yl ethers. Bioorg Med Chem Lett 2010; 20:5879-82. [DOI: 10.1016/j.bmcl.2010.07.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/23/2010] [Accepted: 07/25/2010] [Indexed: 11/29/2022]
|
20
|
Azole derivatives as histamine H3 receptor antagonists, Part 2: C–C and C–S coupled heterocycles. Bioorg Med Chem Lett 2010; 20:5883-6. [DOI: 10.1016/j.bmcl.2010.07.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/23/2010] [Accepted: 07/25/2010] [Indexed: 11/24/2022]
|
21
|
Sander K, Kottke T, Hoffend C, Walter M, Weizel L, Camelin JC, Ligneau X, Schneider EH, Seifert R, Schwartz JC, Stark H. First Metal-Containing Histamine H3 Receptor Ligands. Org Lett 2010; 12:2578-81. [DOI: 10.1021/ol100419y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kerstin Sander
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Tim Kottke
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Claas Hoffend
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Miriam Walter
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Lilia Weizel
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jean-Claude Camelin
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Xavier Ligneau
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Erich H. Schneider
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Roland Seifert
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jean-Charles Schwartz
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Holger Stark
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
22
|
Sander K, von Coburg Y, Camelin JC, Ligneau X, Rau O, Schubert-Zsilavecz M, Schwartz JC, Stark H. Acidic elements in histamine H(3) receptor antagonists. Bioorg Med Chem Lett 2010; 20:1581-4. [PMID: 20138762 DOI: 10.1016/j.bmcl.2010.01.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
Antagonists of the human histamine H(3) receptor (hH(3)R) often contain a second basic moiety, which is well known to boost affinity on this histamine receptor subtype. Here, we prepared compounds with acidic moieties of different pK(a) values to figure out that the hH(3)R tolerates these functionalities when added to a common pharmacophore blueprint. Depending on the acidic, electronic and steric features the designed ligands showed hH(3)R affinities in the nanomolar concentration range. Additionally, selected ligands were tested but failed as dual acting hH(3)R/hPPAR (human peroxisome proliferator-activated receptor) ligands.
Collapse
Affiliation(s)
- Kerstin Sander
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, ZAFES/LiFF/CMP, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The Role of Fluorine in the Discovery and Optimization of CNS Agents. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2010. [DOI: 10.1016/s0065-7743(10)45026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|