1
|
Abdou MM. Synopsis of recent synthetic methods and biological applications of phosphinic acid derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
2
|
Feng Y, Park J, Li SG, Boutin R, Viereck P, Schilling MA, Berghuis AM, Tsantrizos YS. Chirality-Driven Mode of Binding of α-Aminophosphonic Acid-Based Allosteric Inhibitors of the Human Farnesyl Pyrophosphate Synthase (hFPPS). J Med Chem 2019; 62:9691-9702. [PMID: 31577901 DOI: 10.1021/acs.jmedchem.9b01104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thienopyrimidine-based allosteric inhibitors of the human farnesyl pyrophosphate synthase (hFPPS), characterized by a chiral α-aminophosphonic acid moiety, were synthesized as enantiomerically enriched pairs, and their binding mode was investigated by X-ray crystallography. A general consensus in the binding orientation of all (R)- and (S)-enantiomers was revealed. This finding is a prerequisite for establishing a reliable structure-activity relationship (SAR) model.
Collapse
Affiliation(s)
- Yuting Feng
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Jaeok Park
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada.,Department of Biochemistry , McGill University , 3649 Promenade Sir William Osler , Montreal , Quebeck H3G 0B1 , Canada
| | - Shi-Guang Li
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Rebecca Boutin
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Peter Viereck
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Matthew A Schilling
- Department of Biochemistry , McGill University , 3649 Promenade Sir William Osler , Montreal , Quebeck H3G 0B1 , Canada
| | - Albert M Berghuis
- Department of Biochemistry , McGill University , 3649 Promenade Sir William Osler , Montreal , Quebeck H3G 0B1 , Canada
| | - Youla S Tsantrizos
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada.,Department of Biochemistry , McGill University , 3649 Promenade Sir William Osler , Montreal , Quebeck H3G 0B1 , Canada
| |
Collapse
|
3
|
Abdou MM, O'Neill PM, Amigues E, Matziari M. Phosphinic acids: current status and potential for drug discovery. Drug Discov Today 2019; 24:916-929. [PMID: 30481556 DOI: 10.1016/j.drudis.2018.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 01/17/2023]
Abstract
Phosphinic acid derivatives exhibit diverse biological activities and a high degree of structural diversity, rendering them a versatile tool in the development of new medicinal agents. Pronounced recent progress, coupled with previous research findings, highlights the impact of this moiety in medicinal chemistry. Here, we highlight the most important breakthroughs made with phosphinates with a range of pharmacological activities against many diseases, including anti-inflammatory, anti-Alzheimer, antiparasitic, antihepatitis, antiproliferative, anti-influenza, anti-HIV, antimalarial, and antimicrobial agents. We also provide the current status of the corresponding prodrugs, drug-delivery systems, and drug applications of phosphinic acids in the clinical stage.
Collapse
Affiliation(s)
- Moaz M Abdou
- Egyptian Petroleum Research Institute, Nasr City, PO 11727, Cairo, Egypt; Department of Chemistry, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, PR China; Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK; Department of Pharmacology, School of Biomedical Sciences, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Eric Amigues
- Department of Chemistry, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, PR China
| | - Magdalini Matziari
- Department of Chemistry, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
4
|
Liverton NJ. Evolution of HCV NS3/4a Protease Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1007/7355_2018_39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Wu W, Lin Z, Zhu C, Chen P, Li J, Jiang H. Transition-Metal-Free [3+2] Cycloaddition of Dehydroaminophosphonates and N-Tosylhydrazones: Access to Aminocyclopropanephosphonates with Adjacent Quaternary-Tetrasubstituted Carbon Centers. J Org Chem 2017; 82:12746-12756. [DOI: 10.1021/acs.joc.7b01862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wanqing Wu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Lin
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pengquan Chen
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawei Li
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Midura WH, Rzewnicka A. Asymmetric synthesis of (R)-[2,2-]-1-aminocyclopropane-1-phosphonic acid (ACPP derivative) conformationally constrained ACC analogue using a chiral sulfinyl auxiliary. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Goulioukina NS, Makukhin NN, Beletskaya IP. 1,3-Dipolar cycloaddition of diazoalkanes onto dimethyl 1-(formylamino)ethylenephosphonate: a new route to 1-aminocyclopropanephosphonic acids and 3-phosphorylated pyrazoles. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Demmer CS, Krogsgaard-Larsen N, Bunch L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem Rev 2011; 111:7981-8006. [PMID: 22010799 DOI: 10.1021/cr2002646] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Charles S Demmer
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
9
|
Li X, Zhang YK, Liu Y, Zhang S, Ding CZ, Zhou Y, Plattner JJ, Baker SJ, Liu L, Bu W, Kazmierski WM, Wright LL, Smith GK, Jarvest RL, Duan M, Ji JJ, Cooper JP, Tallant MD, Crosby RM, Creech K, Ni ZJ, Zou W, Wright J. Synthesis of new acylsulfamoyl benzoxaboroles as potent inhibitors of HCV NS3 protease. Bioorg Med Chem Lett 2010; 20:7493-7. [DOI: 10.1016/j.bmcl.2010.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
|
10
|
Abstract
Hepatitis C virus (HCV) causes significant morbidity and mortality worldwide with nearly 3% of the world population infected by this virus. Fortunately, this virus does not establish latency, and hence it may be possible to eradicate it. HCV is strongly associated with liver cirrhosis and hepatocellular carcinoma and is currently treated with pegylated interferon-alpha (peg-IFN-alpha) and ribavirin. Unfortunately, these limited treatment options often produce significant side effects, and currently, complete eradication of virus with combined drug modalities has not yet been achieved for the majority of chronically HCV-infected individuals. Restricted treatment options, lack of a universal cure for HCV and the link between chronic infection, liver cirrhosis and hepatocellular carcinoma necessitate design of novel drugs and treatment options. Understanding the relationship between the immune response, viral clearance and inhibition of viral replication with pharmacology-based design can ultimately allow for complete eradication of HCV. This review focuses upon significant novel preclinical and clinical specifically targeted antiviral therapy (STAT-C) drugs under development, highlights their mechanism of action, and discusses their impact on systemic viral loads and permanent clearance of infection.
Collapse
Affiliation(s)
- R F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Veterans Affairs Medical Center/Emory University School of Medicine, Atlanta, GA, USA.
| | | | | |
Collapse
|
11
|
Pompei M, Di Francesco ME, Pesci S, Koch U, Vignetti SE, Veneziano M, Pace P, Summa V. Novel P2-P4 macrocyclic inhibitors of HCV NS3/4A protease by P3 succinamide fragment depeptidization strategy. Bioorg Med Chem Lett 2009; 20:168-74. [PMID: 19932966 DOI: 10.1016/j.bmcl.2009.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/01/2009] [Accepted: 11/03/2009] [Indexed: 01/17/2023]
Abstract
Hepatitis C represents a serious worldwide health-care problem. Recently, we have disclosed a novel class of P2-P4 macrocyclic inhibitors of NS3/4A protease containing a carbamate functionality as capping group at the P3 N-terminus. Herein we report our work aimed at further depeptidizing the P3 region by replacement of the urethane function with a succinamide motif. This peptidomimetic approach has led to the discovery of novel P2-P4 macrocyclic inhibitors of HCV NS3/4A protease with sub-nanomolar enzyme affinities. In addition to being potent inhibitors of HCV subgenomic replication, optimized analogues within this series have also presented attractive PK properties and showed promising liver levels in rat following oral administration.
Collapse
|