1
|
Elsocht M, Giron P, De Grève J, Ballet S. Second generation Spautin-1 analogues targeting EGFR-mutant non-small cell lung cancer cells. Bioorg Med Chem Lett 2023; 79:129066. [PMID: 36410591 DOI: 10.1016/j.bmcl.2022.129066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
Treatment of advanced stage epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) is often complicated by the occurrence of acquired resistance, which emphasizes the need for improved treatment options. Based on a previously reported structure-activity relationship (SAR) study of Spautin-1, which resulted in the discovery of 10a, the search for more potent analogues was envisaged through optimization of the amine substituent. Our search led to the discovery of analogue 15b, harbouring the 2-[4-(4-fluoro-phenoxy)-phenyl]ethylamine substituent, among other potent and original analogues, with nanomolar activity towards EGFR-mutant NSCLC cells. Moreover, this compound 15b showed good selectivity for cancer cells over healthy lung epithelial cells and provides additive effects with food and drug administration (FDA) approved EGFR-tyrosine kinase inhibitors (TKIs), as proven by the co-administration of 15b with Afatinib. Altogether, we report promising lead compounds which show the potential to improve current treatment options.
Collapse
Affiliation(s)
- Mathias Elsocht
- Research Group of Organic Chemistry, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Philippe Giron
- Laboratory of Medical and Molecular Oncology and Center of Medical Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology and Center of Medical Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Steven Ballet
- Research Group of Organic Chemistry, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
2
|
Elsocht M, Giron P, Maes L, Versées W, Gutierrez GJ, De Grève J, Ballet S. Structure-Activity Relationship (SAR) Study of Spautin-1 to Entail the Discovery of Novel NEK4 Inhibitors. Int J Mol Sci 2021; 22:ijms22020635. [PMID: 33435251 PMCID: PMC7827406 DOI: 10.3390/ijms22020635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is one of the most frequently diagnosed cancers accounting for the highest number of cancer-related deaths in the world. Despite significant progress including targeted therapies and immunotherapy, the treatment of advanced lung cancer remains challenging. Targeted therapies are highly efficacious at prolonging life, but not curative. In prior work we have identified Ubiquitin Specific Protease 13 (USP13) as a potential target to significantly enhance the efficacy of mutant EGFR inhibition. The current study aimed to develop lead molecules for the treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) by developing potent USP13 inhibitors initially starting from Spautin-1, the only available USP13 inhibitor. A SAR study was performed which revealed that increasing the chain length between the secondary amine and phenyl group and introducing a halogen capable of inducing a halogen bond at position 4' of the phenyl group, dramatically increased the activity. However, we could not confirm the binding between Spautin-1 (or its analogues) and USP13 using isothermal titration calorimetry (ITC) or thermal shift assay (TSA) but do not exclude binding under physiological conditions. Nevertheless, we found that the anti-proliferative activity displayed by Spautin-1 towards EGFR-mutant NSCLC cells in vitro was at least partially associated with kinase inhibition. In this work, we present N-[2-(substituted-phenyl)ethyl]-6-fluoro-4-quinazolinamines as promising lead compounds for the treatment of NSCLC. These analogues are significantly more effective towards EGFR-mutant NSCLC cells than Spautin-1 and act as potent never in mitosis A related kinase 4 (NEK4) inhibitors (IC50~1 µM) with moderate selectivity over other kinases.
Collapse
Affiliation(s)
- Mathias Elsocht
- Research Group of Organic Chemistry, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Philippe Giron
- Laboratory of Medical and Molecular Oncology and Center of Medical Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.G.); (J.D.G.)
- Laboratory of Pathophysiological Cell Signalling (PACS), Department of Biology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Laila Maes
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium; (L.M.); (W.V.)
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium; (L.M.); (W.V.)
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gustavo J. Gutierrez
- Laboratory of Pathophysiological Cell Signalling (PACS), Department of Biology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology and Center of Medical Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.G.); (J.D.G.)
| | - Steven Ballet
- Research Group of Organic Chemistry, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
- Correspondence: ; Tel.: +32-2-6293292
| |
Collapse
|
3
|
Hossam M, Lasheen DS, Ismail NSM, Esmat A, Mansour AM, Singab ANB, Abouzid KAM. Discovery of anilino-furo[2,3-d]pyrimidine derivatives as dual inhibitors of EGFR/HER2 tyrosine kinase and their anticancer activity. Eur J Med Chem 2017; 144:330-348. [PMID: 29275232 DOI: 10.1016/j.ejmech.2017.12.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
Being responsible for the development of many cancer types, EGFR (Epidermal Growth Factor Receptor) and HER2 (Human Epidermal growth factor Receptor 2) were the focus of this study where a series of novel 4-anilino-furo[2,3-d]pyrimidine derivatives was designed, synthesized and biologically evaluated. Modification of the solvent accessible 5-position side chain greatly affected the in-vitro EGFR/HER2 inhibitory activity. Three derivatives bearing 5-carboxylic acid side chain, namely the 3-chloroanilino derivative (8c), the 3-bromoaniline (8d) and the lapatinib analogue (10) demonstrated the most significant submicromolar EGFR inhibition. Surprisingly, the in-vitro assay of the ester 7h and its acid analogue 10 showed a significant variation of results between the antiproliferative activity against A549 cell line (IC50 0.5 and 21.4 μM) respectively and EGFR inhibitory activity (18% and 100%) respectively, suggesting that 7h might be a prodrug for 10. This assumption was also affirmed by the in-vivo results, where the in-vivo antitumor assessment against EAC (Ehrlich Ascites Carcinoma) solid tumor model revealed that 7h and 8d (10 mg/kg dose) exhibited antitumor activity comparable to that of gefitinib at the same dose, exhibiting TGI% of 67%, 71% and 70%, respectively. This effect could be explained, at least partly, via activation of apoptosis, where 7h and 8d caused more than 2-fold increase of caspase 3 and cytochrome c expression than the control group which is comparable to that of gefitinib-treated group. Finally, 7h was the most effective apoptotic inducer, resulting in a significant elevation in annexin V-FITC-positive apoptotic cells (both early and late apoptosis) by 25 and 79-folds, respectively, compared to control, which is higher than that of gefitinib (22 and 61-folds, respectively).
Collapse
Affiliation(s)
- Monia Hossam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt; Center for Drug Discovery and Development Research, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt; Center for Drug Discovery and Development Research, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Nasser S M Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt; Center for Drug Discovery and Development Research, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abdel Nasser B Singab
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt; Center for Drug Discovery and Development Research, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt; Center for Drug Discovery and Development Research, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| |
Collapse
|
4
|
Mphahlele MJ, Paumo HK, Choong YS. Synthesis and In Vitro Cytotoxicity of the 4-(Halogenoanilino)-6-bromoquinazolines and Their 6-(4-Fluorophenyl) Substituted Derivatives as Potential Inhibitors of Epidermal Growth Factor Receptor Tyrosine Kinase. Pharmaceuticals (Basel) 2017; 10:ph10040087. [PMID: 29156606 PMCID: PMC5748644 DOI: 10.3390/ph10040087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Series of the 2-unsubstituted and 2-(4-chlorophenyl)–substituted 4-anilino-6-bromoquinazolines and their 6-(4-fluorophenyl)–substituted derivatives were evaluated for in vitro cytotoxicity against MCF-7 and HeLa cells. The 2-unsubstituted 4-anilino-6-bromoquinazolines lacked activity, whereas most of their 2-(4-chlorophenyl) substituted derivatives were found to exhibit significant cytotoxicity and selectivity against HeLa cells. Replacement of bromine with 4-fluorophenyl group for the 2-unsubstituted 4-anilinoquinazolines resulted in superior activity against HeLa cells compared to Gefitinib. The presence of a 4-fluorophenyl group in the 2-(4-chlorophenyl) substituted derivatives led to increased cytotoxicity against HeLa cells, except for the 3-chloroanilino derivative. The most active compounds, namely, 3g, 3l, and 4l, were found to exhibit a moderate to significant inhibitory effect against epidermal growth factor receptor tyrosine kinase (EGFR-TK). The EGFR molecular docking model suggested that these compounds are nicely bound to the region of EGFR.
Collapse
Affiliation(s)
- Malose Jack Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Hugues K Paumo
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
5
|
Synthesis and In Vitro Cytotoxic Properties of Polycarbo-Substituted 4-(Arylamino)quinazolines. Molecules 2016; 21:molecules21101366. [PMID: 27754446 PMCID: PMC6274161 DOI: 10.3390/molecules21101366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 11/29/2022] Open
Abstract
Herein, we describe the synthesis of novel unsymmetrical polycarbo-substituted 4-anilinoquinazolines derived from the 2-aryl-6-bromo-8-iodoquinazolines via one-pot three-step reaction sequences involving initial amination and subsequent double cross-coupling (bis-Suzuki, Sonogashira/Stille or Sonogashira/Suzuki-Miyaura) reactions with different cross coupling partners for the two carbon–carbon bond formation steps. The 4-anilinoquinazolines were evaluated for potential cytotoxicity against three cancer cell lines, namely, human breast adenocarcinoma (MCF-7) cells, human cervical cancer (HeLa) and human lung cancer (A549) cells. The most active compounds, 2b, 2c, 3c, 4a, 4c and 5a, were found to be more selective against the MCF-7 and HeLa cell lines than the human lung carcinoma (A549) cells. We selected compounds 2c, 3c and 7a as representatives for further evaluation for potential to induce apoptosis and/or necrotic properties in the three cancer cell lines. Compound 2c induced apoptosis of MCF-7 cells through cell membrane alteration. Treatment of Hela and A549 cell lines with compounds 3c and 7a, respectively, led to caspase-3 activation in both cell lines. Compound 3c, on the other hand, caused more necrosis than apoptosis induction in the membrane alteration assay.
Collapse
|
6
|
N-Alkylpyrido[1',2':1,5]pyrazolo-[4,3-d]pyrimidin-4-amines: A new series of negative allosteric modulators of mGlu1/5 with CNS exposure in rodents. Bioorg Med Chem Lett 2016; 26:1894-900. [PMID: 26988308 DOI: 10.1016/j.bmcl.2016.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/20/2022]
Abstract
Selective negative allosteric modulators (NAMs) of each of the group I metabotropic glutamate receptors (mGlu1 and mGlu5) have been well characterized in the literature and offer potential as therapeutics in several disorders of the central nervous system (CNS). Still, compounds that are potent mGlu1/5 NAMs with selectivity versus the other six members of the mGlu family as well as the balance of properties required for use in vivo are lacking. A medicinal chemistry effort centered on the identification of a lead series with the potential of delivering such compounds is described in this Letter. Specifically, a new class of pyrido[1',2':1,5]pyrazolo[4,3-d]pyrimidin-4-amines was designed as a novel isosteric replacement for 4-aminoquinazolines, and compounds from within this chemotype exhibited dual NAM activity at both group I mGlus. One compound, VU0467558 (29), demonstrated near equipotent activity at both receptors, selectivity versus other mGlus, a favorable ancillary pharmacology profile, and CNS exposure in rodents.
Collapse
|
7
|
Mihov Y, Hasler G. Negative Allosteric Modulators of Metabotropic Glutamate Receptors Subtype 5 in Addiction: a Therapeutic Window. Int J Neuropsychopharmacol 2016; 19:pyw002. [PMID: 26802568 PMCID: PMC4966271 DOI: 10.1093/ijnp/pyw002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/08/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Abundant evidence at the anatomical, electrophysiological, and molecular levels implicates metabotropic glutamate receptor subtype 5 (mGluR5) in addiction. Consistently, the effects of a wide range of doses of different mGluR5 negative allosteric modulators (NAMs) have been tested in various animal models of addiction. Here, these studies were subjected to a systematic review to find out if mGluR5 NAMs have a therapeutic potential that can be translated to the clinic. METHODS Literature on consumption/self-administration and reinstatement of drug seeking as outcomes of interest published up to April 2015 was retrieved via PubMed. The review focused on the effects of systemic (i.p., i.v., s.c.) administration of the mGluR5 NAMs 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP) on paradigms with cocaine, ethanol, nicotine, and food in rats. RESULTS MTEP and MPEP were found to reduce self-administration of cocaine, ethanol, and nicotine at doses ≥1mg/kg and 2.5mg/kg, respectively. Dose-response relationship resembled a sigmoidal curve, with low doses not reaching statistical significance and high doses reliably inhibiting self-administration of drugs of abuse. Importantly, self-administration of cocaine, ethanol, and nicotine, but not food, was reduced by MTEP and MPEP in the dose range of 1 to 2mg/kg and 2.5 to 3.2mg/kg, respectively. This dose range corresponds to approximately 50% to 80% mGluR5 occupancy. Interestingly, the limited data found in mice and monkeys showed a similar therapeutic window. CONCLUSION Altogether, this review suggests a therapeutic window for mGluR5 NAMs that can be translated to the treatment of substance-related and addictive disorders.
Collapse
Affiliation(s)
- Yoan Mihov
- Division of Molecular Psychiatry, Translational Research Center, Psychiatric University Hospital, University of Bern, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, Psychiatric University Hospital, University of Bern, Switzerland
| |
Collapse
|
8
|
Bates BS, Rodriguez AL, Felts AS, Morrison RD, Venable DF, Blobaum AL, Byers FW, Lawson KP, Daniels JS, Niswender CM, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. Discovery of VU0431316: a negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorg Med Chem Lett 2014; 24:3307-14. [PMID: 24969015 DOI: 10.1016/j.bmcl.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
Development of SAR in an aryl ether series of mGlu5 NAMs leading to the identification of pyrazine analog VU0431316 is described in this Letter. VU0431316 is a potent and selective non-competitive antagonist of mGlu5 that binds at a known allosteric binding site. VU0431316 demonstrates an attractive DMPK profile, including moderate clearance and good bioavailability in rats. Intraperitoneal (IP) dosing of VU0431316 in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists and other anxiolytics, produced dose proportional effects.
Collapse
Affiliation(s)
- Brittney S Bates
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daryl F Venable
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kera P Lawson
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Discovery of VU0409106: A negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorg Med Chem Lett 2013; 23:5779-85. [PMID: 24074843 DOI: 10.1016/j.bmcl.2013.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Abstract
Development of SAR in an aryl ether series of mGlu5 NAMs leading to the identification of tool compound VU0409106 is described in this Letter. VU0409106 is a potent and selective negative allosteric modulator of mGlu5 that binds at the known allosteric binding site and demonstrates good CNS exposure following intraperitoneal dosing in mice. VU0409106 also proved efficacious in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists as well as clinically efficacious anxiolytics.
Collapse
|
10
|
Amato RJ, Felts AS, Rodriguez AL, Venable DF, Morrison RD, Byers FW, Daniels JS, Niswender CM, Conn PJ, Lindsley CW, Jones CK, Emmitte KA. Substituted 1-Phenyl-3-(pyridin-2-yl)urea negative allosteric modulators of mGlu5: discovery of a new tool compound VU0463841 with activity in rat models of cocaine addiction. ACS Chem Neurosci 2013; 4:1217-28. [PMID: 23682684 DOI: 10.1021/cn400070k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cocaine is a powerful and highly addictive stimulant that disrupts the normal reward circuitry in the central nervous system (CNS), producing euphoric effects. Cocaine use can lead to acute and life threatening emergencies, and abuse is associated with increased risk for contracting infectious diseases. Though certain types of behavioral therapy have proven effective for treatment of cocaine addiction, relapse remains high, and there are currently no approved medications for the treatment of cocaine abuse. Evidence has continued to accumulate that indicates a critical role for the metabotropic glutamate receptor subtype 5 (mGlu5) in the modulation of neural circuitry associated with the addictive properties of cocaine. While the small molecule mGlu5 negative allosteric modulator (NAM) field is relatively advanced, investigation into the potential of small molecule mGlu5 NAMs for the treatment of cocaine addiction remains an area of high interest. Herein we describe the discovery and characterization of a potent and selective compound 29 (VU0463841) with good CNS exposure in rats. The utility of 29 (VU0463841) was demonstrated by its ability to attenuate drug seeking behaviors in relevant rat models of cocaine addiction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Carrie K. Jones
- Tennessee
Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, Tennessee 37212, United States
| | | |
Collapse
|
11
|
Gregory KJ, Noetzel MJ, Rook JM, Vinson PN, Stauffer SR, Rodriguez AL, Emmitte KA, Zhou Y, Chun AC, Felts AS, Chauder BA, Lindsley CW, Niswender CM, Conn PJ. Investigating metabotropic glutamate receptor 5 allosteric modulator cooperativity, affinity, and agonism: enriching structure-function studies and structure-activity relationships. Mol Pharmacol 2012; 82:860-75. [PMID: 22863693 PMCID: PMC3477233 DOI: 10.1124/mol.112.080531] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 08/02/2012] [Indexed: 11/22/2022] Open
Abstract
Drug discovery programs increasingly are focusing on allosteric modulators as a means to modify the activity of G protein-coupled receptor (GPCR) targets. Allosteric binding sites are topographically distinct from the endogenous ligand (orthosteric) binding site, which allows for co-occupation of a single receptor with the endogenous ligand and an allosteric modulator that can alter receptor pharmacological characteristics. Negative allosteric modulators (NAMs) inhibit and positive allosteric modulators (PAMs) enhance the affinity and/or efficacy of orthosteric agonists. Established approaches for estimation of affinity and efficacy values for orthosteric ligands are not appropriate for allosteric modulators, and this presents challenges for fully understanding the actions of novel modulators of GPCRs. Metabotropic glutamate receptor 5 (mGlu(5)) is a family C GPCR for which a large array of allosteric modulators have been identified. We took advantage of the many tools for probing allosteric sites on mGlu(5) to validate an operational model of allosterism that allows quantitative estimation of modulator affinity and cooperativity values. Affinity estimates derived from functional assays fit well with affinities measured in radioligand binding experiments for both PAMs and NAMs with diverse chemical scaffolds and varying degrees of cooperativity. We observed modulation bias for PAMs when we compared mGlu(5)-mediated Ca(2+) mobilization and extracellular signal-regulated kinase 1/2 phosphorylation data. Furthermore, we used this model to quantify the effects of mutations that reduce binding or potentiation by PAMs. This model can be applied to PAM and NAM potency curves in combination with maximal fold-shift data to derive reliable estimates of modulator affinities.
Collapse
Affiliation(s)
- Karen J Gregory
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lindsley CW, Bates BS, Menon UN, Jadhav SB, Kane AS, Jones CK, Rodriguez AL, Conn PJ, Olsen CM, Winder DG, Emmitte KA. (3-Cyano-5-fluorophenyl)biaryl negative allosteric modulators of mGlu(5): Discovery of a new tool compound with activity in the OSS mouse model of addiction. ACS Chem Neurosci 2011; 2:471-482. [PMID: 21927650 DOI: 10.1021/cn100099n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Glutamate is the major excitatory transmitter in the mammalian CNS, exerting its effects through both ionotropic and metabotropic glutamate receptors. The metabotropic glutamate receptors (mGlus) belong to family C of the G-protein-coupled receptors (GPCRs). The eight mGlus identified to date are classified into three groups based on their structure, preferred signal transduction mechanisms, and pharmacology (Group I: mGlu(1) and mGlu(5); Group II: mGlu(2) and mGlu(3); Group III: mGlu(4), mGlu(6), mGlu(7), and mGlu(8)). Non-competitive antagonists, also known as negative allosteric modulators (NAMs), of mGlu(5) offer potential therapeutic applications in diseases such as pain, anxiety, gastroesophageal reflux disease (GERD), Parkinson's disease (PD), fragile X syndrome, and addiction. The development of SAR in a (3-cyano-5-fluorophenyl)biaryl series using our functional cell-based assay is described in this communication. Further characterization of a selected compound, 3-fluoro-5-(2-methylbenzo[d]thiazol-5-yl)benzonitrile, in additional cell based assays as well as in vitro assays designed to measure its metabolic stability and protein binding indicated its potential utility as an in vivo tool. Subsequent evaluation of the same compound in a pharmacokinetic study using intraperitoneal dosing in mice showed good exposure in both plasma and brain samples. The compound was efficacious in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu(5) antagonists. A new operant model of addiction termed operant sensation seeking (OSS) was chosen as a second behavioral assay. The compound also proved efficacious in the OSS model and constitutes the first reported example of efficacy with a small molecule mGlu(5) NAM in this novel assay.
Collapse
Affiliation(s)
| | | | | | | | | | - Carrie K. Jones
- Tennesse Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, Tennessee 37212, United States
| | | | | | | | | | | |
Collapse
|
13
|
Emmitte KA. Recent advances in the design and development of novel negative allosteric modulators of mGlu(5). ACS Chem Neurosci 2011; 2:411-432. [PMID: 21927649 DOI: 10.1021/cn2000266] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu(5)) have remained attractive to researchers as potential therapies for a number of central nervous system related diseases, including anxiety, pain, gastroesophageal reflux disease (GERD), addiction, Parkinson's disease (PD), and fragile X syndrome (FXS). In addition to the many publications with supportive preclinical data with key tool molecules, recent positive reports from the clinic have bolstered the confidence in this approach. During the two year time span from 2009 through 2010, a number of new mGlu(5) NAM chemotypes have been disclosed and discussed in the primary and patent literature. A summary of several efforts representing many diverse chemotypes are presented here, along with a discussion of representative structure activity relationships (SAR) and synthetic approaches to the templates where possible.
Collapse
Affiliation(s)
- Kyle A. Emmitte
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, and Department of Chemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
14
|
Healy A, Rush R, Ocain T. Fragile X syndrome: an update on developing treatment modalities. ACS Chem Neurosci 2011; 2:402-10. [PMID: 22860169 DOI: 10.1021/cn200019z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/22/2011] [Indexed: 11/28/2022] Open
Abstract
Intellectual disability (ID; mental retardation) is considered an immutable condition. Current medical practices are aimed at relieving symptoms and not at altering the underlying cognitive deficits. Scientific advancements from the past decade have led to the exciting possibility that ID may now be treatable. Moreover, pharmaceutical therapies targeting the most common form of inherited ID, Fragile X syndrome (FXS), may become the new benchmark for central nervous system (CNS) drug discovery: seeking cures for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aileen Healy
- Seaside Therapeutics, 840 Memorial Drive, Cambridge, Masssachusetts 02139, United States
| | - Roger Rush
- Seaside Therapeutics, 840 Memorial Drive, Cambridge, Masssachusetts 02139, United States
| | - Timothy Ocain
- Seaside Therapeutics, 840 Memorial Drive, Cambridge, Masssachusetts 02139, United States
| |
Collapse
|
15
|
Efficacy switching SAR of mGluR5 allosteric modulators: Highly potent positive and negative modulators from one chemotype. Bioorg Med Chem Lett 2011; 21:3407-10. [DOI: 10.1016/j.bmcl.2011.03.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 11/23/2022]
|
16
|
Urwyler S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 2011; 63:59-126. [PMID: 21228259 DOI: 10.1124/pr.109.002501] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Allosteric receptor modulation is an attractive concept in drug targeting because it offers important potential advantages over conventional orthosteric agonism or antagonism. Allosteric ligands modulate receptor function by binding to a site distinct from the recognition site for the endogenous agonist. They often have no effect on their own and therefore act only in conjunction with physiological receptor activation. This article reviews the current status of allosteric modulation at family C G-protein coupled receptors in the light of their specific structural features on the one hand and current concepts in receptor theory on the other hand. Family C G-protein-coupled receptors are characterized by a large extracellular domain containing the orthosteric agonist binding site known as the "venus flytrap module" because of its bilobal structure and the dynamics of its activation mechanism. Mutational analysis and chimeric constructs have revealed that allosteric modulators of the calcium-sensing, metabotropic glutamate and GABA(B) receptors bind to the seven transmembrane domain, through which they modify signal transduction after receptor activation. This is in contrast to taste-enhancing molecules, which bind to different parts of sweet and umami receptors. The complexity of interactions between orthosteric and allosteric ligands is revealed by a number of adequate biochemical and electrophysiological assay systems. Many allosteric family C GPCR modulators show in vivo efficacy in behavioral models for a variety of clinical indications. The positive allosteric calcium sensing receptor modulator cinacalcet is the first drug of this type to enter the market and therefore provides proof of principle in humans.
Collapse
Affiliation(s)
- Stephan Urwyler
- Department of Chemistry and Biochemistry, University of Berne, P/A Weissensteinweg 3, CH-3303 Jegenstorf, Berne, Switzerland.
| |
Collapse
|
17
|
3-Cyano-5-fluoro-N-arylbenzamides as negative allosteric modulators of mGlu(5): Identification of easily prepared tool compounds with CNS exposure in rats. Bioorg Med Chem Lett 2010; 20:4390-4. [PMID: 20598884 DOI: 10.1016/j.bmcl.2010.06.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 11/21/2022]
Abstract
Development of SAR in a 3-cyano-5-fluoro-N-arylbenzamide series of non-competitive antagonists of mGlu(5) using a functional cell-based assay is described in this Letter. Further characterization of selected potent compounds in in vitro assays designed to measure their metabolic stability and protein binding is also presented. Subsequent evaluation of two new compounds in pharmacokinetic studies using intraperitoneal dosing in rats demonstrated good exposure in both plasma and brain samples.
Collapse
|