1
|
Savla SR, Prabhavalkar KS, Bhatt LK. Liver X Receptor: a potential target in the treatment of atherosclerosis. Expert Opin Ther Targets 2022; 26:645-658. [PMID: 36003057 DOI: 10.1080/14728222.2022.2117610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Liver X receptors (LXRs) are master regulators of atherogenesis. Their anti-atherogenic potential has been attributed to their role in the inhibition of macrophage-mediated inflammation and promotion of reverse cholesterol transport. Owing to the significance of their anti-atherogenic potential, it is essential to develop and test new generation LXR agonists, both synthetic and natural, to identify potential LXR-targeted therapeutics for the future. AREAS COVERED This review describes the role of LXRs in atherosclerotic development, provides a summary of LXR agonists and future directions for atherosclerosis research. We searched PubMed, Scopus and Google Scholar for relevant reports, from last 10 years, using atherosclerosis, liver X receptor, and LXR agonist as keywords. EXPERT OPINION LXRα has gained widespread recognition as a regulator of cholesterol homeostasis and expression of inflammatory genes. Further research using models of cell type-specific knockout and specific agonist-targeted LXR isoforms is warranted. Enthusiasm for therapeutic value of LXR agonists has been tempered due to LXRα-mediated induction of hepatic lipogenesis. LXRα agonism and LXRβ targeting, gut-specific inverse LXR agonists, investigations combining LXR agonists with other lipogenesis mitigating agents, like IDOL antagonists and synthetic HDL, and targeting ABCA1, M2 macrophages and LXRα phosphorylation, remain as promising possibilities.
Collapse
Affiliation(s)
- Shreya R Savla
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| |
Collapse
|
2
|
Acosta-Quiroga K, Rojas-Peña C, Nerio LS, Gutiérrez M, Polo-Cuadrado E. Spirocyclic derivatives as antioxidants: a review. RSC Adv 2021; 11:21926-21954. [PMID: 35480788 PMCID: PMC9034179 DOI: 10.1039/d1ra01170g] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/22/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, spiro compounds have attracted significant interest in medicinal chemistry due to their numerous biological activities attributed primarily to their versatility and structural similarity to important pharmacophore centers. Currently, the development of drugs with potential antioxidant activities is of great importance since numerous investigations have shown that oxidative stress is involved in the development and progression of numerous diseases such as cancer, senile cataracts, kidney failure, diabetes, high blood pressure, cirrhosis, and neurodegenerative diseases, among others. This article provides an overview of the synthesis and various antioxidant activities found in naturally occurring and synthetic spiro compounds. Among the antioxidant activities reviewed are DPPH, ABTS, FRAP, anti-LPO, superoxide, xanthine oxidase, peroxide, hydroxyl, and nitric oxide tests, among others. Molecules that presented best results for these tests were spiro compounds G14, C12, D41, C18, C15, D5, D11, E1, and C14. In general, most active compounds are characterized for having at least one oxygen atom; an important number of them (around 35%) are phenolic compounds, and in molecules where this functional group was absent, aryl ethers and nitrogen-containing functional groups such as amine and amides could be found. Recent advances in the antioxidant activity profiles of spiro compounds have shown that they have a significant position in discovering drugs with potential antioxidant activities.
Collapse
Affiliation(s)
- Karen Acosta-Quiroga
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Cristian Rojas-Peña
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Luz Stella Nerio
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
3
|
Identifying selective agonists targeting LXRβ from terpene compounds of alismatis rhizoma. J Mol Model 2021; 27:91. [PMID: 33616795 DOI: 10.1007/s00894-021-04699-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Hyperlipidemia is thought of as an important contributor to coronary disease, diabetes, and fatty liver. Liver X receptor β (LXRβ) was considered as a validated target for hyperlipidemia therapy due to its role in regulating cholesterol homeostasis and immunity. However, many current drugs applied in clinics are not selectively targeting LXRβ, and they can also activate LXRα which activates SREBP-1c that worked as an activator of lipogenic genes. Therefore, exploiting agonists selectively targeting LXRβ is urgent. Here, computational tools were used to screen potential agonists selectively targeting LXRβ from 112 terpenes of alismatis rhizoma. Firstly, a structural analysis between selective and nonselective agonists was used to explore key residues of selective binding with LXRβ. Our data indicated that Phe271, Ser278, Met312, His435, and Trp457 were important to compounds binding with LXRβ, suggesting that engaging ligand interaction with these residues may provide directions for the development of ligands with improved selective profiles. Then, ADMET analysis, molecular docking, MD simulations, and calculation of binding free energy and its decomposition were executed to screen the agonists whose bioactivity was favorable from 112 terpenes of alismatis rhizoma. We found that two triterpenes 16-hydroxy-alisol B 23-acetate and alisol M 23-acetate showed favorable ADMET properties and high binding affinity against LXRβ. These compounds could be considered as promising selective agonists targeting LXRβ. Our work provides an alternative strategy for screening agonists selectively targeting LXRβ from alismatis rhizoma for hyperlipidemia disease treatment.
Collapse
|
4
|
Buñay J, Fouache A, Trousson A, de Joussineau C, Bouchareb E, Zhu Z, Kocer A, Morel L, Baron S, Lobaccaro JMA. Screening for liver X receptor modulators: Where are we and for what use? Br J Pharmacol 2020; 178:3277-3293. [PMID: 33080050 DOI: 10.1111/bph.15286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor superfamily that are canonically activated by oxidized derivatives of cholesterol. Since the mid-90s, numerous groups have identified LXRs as endocrine receptors that are involved in the regulation of various physiological functions. As a result, when their expression is genetically modified in mice, phenotypic analyses reveal endocrine disorders ranging from infertility to diabetes and obesity, nervous system pathologies such Alzheimer's or Parkinson's disease, immunological disturbances, inflammatory response, and enhancement of tumour development. Based on such findings, it appears that LXRs could constitute good pharmacological targets to prevent and/or to treat these diseases. This review discusses the various aspects of LXR drug discovery, from the tools available for the screening of potential LXR modulators to the current situational analysis of the drugs in development. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Julio Buñay
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Erwan Bouchareb
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Zhekun Zhu
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Silvere Baron
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
5
|
Ranking strategies to support toxicity prediction: A case study on potential LXR binders. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Li Y, Wang L, Liu Z, Li C, Xu J, Gu Q, Xu J. Predicting selective liver X receptor β agonists using multiple machine learning methods. MOLECULAR BIOSYSTEMS 2015; 11:1241-50. [DOI: 10.1039/c4mb00718b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The classification models for predicting selective LXRβ agonists were firstly established using multiple machine learning methods. The top models can predict selective LXRβ agonists with chemical structure diversity.
Collapse
Affiliation(s)
- Yali Li
- Research Center for Drug Discovery & Institute of Human Virology
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Ling Wang
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Zhihong Liu
- Research Center for Drug Discovery & Institute of Human Virology
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Chanjuan Li
- Research Center for Drug Discovery & Institute of Human Virology
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Jiake Xu
- Centre for Orthopaedic Research
- School of Surgery
- The University of Western Australia
- Perth
- Australia
| | - Qiong Gu
- Research Center for Drug Discovery & Institute of Human Virology
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Jun Xu
- Research Center for Drug Discovery & Institute of Human Virology
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| |
Collapse
|
7
|
Tice CM, Noto PB, Fan KY, Zhuang L, Lala DS, Singh SB. The Medicinal Chemistry of Liver X Receptor (LXR) Modulators. J Med Chem 2014; 57:7182-205. [PMID: 24832115 DOI: 10.1021/jm500442z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Colin M. Tice
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Paul B. Noto
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Kristi Yi Fan
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Linghang Zhuang
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Deepak S. Lala
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Suresh B. Singh
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| |
Collapse
|
8
|
Identification of tertiary sulfonamides as RORc inverse agonists. Bioorg Med Chem Lett 2014; 24:2182-7. [DOI: 10.1016/j.bmcl.2014.03.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/19/2022]
|
9
|
Loren J, Huang Z, Laffitte BA, Molteni V. Liver X receptor modulators: a review of recently patented compounds (2009 - 2012). Expert Opin Ther Pat 2013; 23:1317-35. [PMID: 23826715 DOI: 10.1517/13543776.2013.814640] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The development of small molecule agonists of the liver X receptors (LXRs) has been an area of interest for over a decade, given the critical role of those receptors in cholesterol metabolism, glucose homeostasis, inflammation, innate immunity and lipogenesis. Many potential indications have been characterized over time including atherosclerosis, diabetes, inflammation, Alzheimer's disease and cancer. However, concerns about the lipogenic effects of full LXRα/β agonists have required extensive efforts aimed at identifying LXRβ agonist with limited activity on the LXRα receptor to increase the safety margins. AREAS COVERED This review includes a summary of the LXR agonists that have reached the clinic and summarizes the patent applications for LXR modulators from September 2009 to December 2012 with emphasis on chemical matters, biological data associated with selected analogs and therapeutic indications. EXPERT OPINION As LXR agonists have the potential to be useful for many indications, the scientific community, despite setbacks due to on-target side effects, has maintained interest and devised strategies to overcome safety hurdles. While a clinical proof of concept still remains elusive, the recent advancement of compounds into the clinic highlights that acceptable safety margins in preclinical species have been achieved.
Collapse
Affiliation(s)
- Jon Loren
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive, San Diego, CA 92121 , USA +001 858 332 4736 ;
| | | | | | | |
Collapse
|
10
|
Biological Roles of Liver X Receptors in Immune Cells. Arch Immunol Ther Exp (Warsz) 2012; 60:235-49. [DOI: 10.1007/s00005-012-0179-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
|
11
|
Zhao W, Gu Q, Wang L, Ge H, Li J, Xu J. Three-Dimensional Pharmacophore Modeling of Liver-X Receptor Agonists. J Chem Inf Model 2011; 51:2147-55. [DOI: 10.1021/ci100511v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenxia Zhao
- Research Center for Drug Discovery and Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou, China 510006
| | - Qiong Gu
- Research Center for Drug Discovery and Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou, China 510006
| | - Ling Wang
- Research Center for Drug Discovery and Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou, China 510006
| | - Hu Ge
- Research Center for Drug Discovery and Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou, China 510006
| | - Jiabo, Li
- Accelrys, Inc., 10188 Telesis Ct # 100, San Diego, California 92121-4779, United States
| | - Jun Xu
- Research Center for Drug Discovery and Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou, China 510006
| |
Collapse
|