1
|
Zheng YC, Gu WJ, Shu RG, Zhang PZ. Four new homoisoflavonoids from Caesalpinia pulcherrima. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:126-135. [PMID: 39120438 DOI: 10.1080/10286020.2024.2387307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Four new homoisoflavonoids, 7-hydroxy-3-[hydroxy(4'-methoxyphenyl)methyl]-benzopyran-4-one (1), (3R)-7, 8-dihydroxy-3-(4'-methoxybenzyl)-chroman-4-one (2), 7-hydroxy-3-(2'-hydroxy-4'-methoxybenzyl)-chroman-4-one (3), and 7-hydroxy-3-(2'-hydroxy-4'-methoxybenzyl)-benzopyran-4-one (4), were isolated from the seeds of Caesalpinia pulcherrima. The structures of new compounds were elucidated by MS and NMR spectra. Their absolute configurations were assigned using electronic circular dichroism spectrum. Compounds 2 and 4 exhibited cytotoxic effects on MCF-7/TAM cells with the IC50 values of 101.4 ± 0.03 and 93.02 ± 0.03 μM, respectively.
Collapse
Affiliation(s)
- Yu-Cheng Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jian Gu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ren-Geng Shu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pu-Zhao Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
2
|
Liu J, Wang H, Shao H, Sun J, Dong C, Chen R, Kang J. Isolation and characterization of dihydrohomoisoflavonoids from Portulaca oleracea L. PHYTOCHEMISTRY 2024; 222:114071. [PMID: 38552709 DOI: 10.1016/j.phytochem.2024.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Eight pairs of dihydrohomoisoflavonoids (1-8), including four pairs of enantiomeric aglycones [(R,S)-portulacanones B (1) and C (2) and (R,S)-oleracones C (3) and Q (4)] and four pairs of epimeric glycosides [portulacasides A-D and epiportulacasides A-D (5-8)], were obtained from Portulaca oleracea L. Among them, (R,S)-oleracone Q (4) and four pairs of epimeric glycosides (5-8) were reported for the first time. The 50% EtOH fraction from the 70% EtOH extract prevented HepG2 human liver cancer cell damage induced by N-acetyl-p-aminophenol (APAP), and the cell survival rate was 62.3%. Portulacaside B (6a), which was isolated from the 50% EtOH fraction, exhibited hepatoprotective and anti-inflammatory effects. The compound increased the survival rate of APAP-damaged HepG2 human liver cancer cells from 40.0% to 51.2% and reduced nitric oxide production in RAW 264.7 macrophages, resulting in an inhibitory rate of 46.8%.
Collapse
Affiliation(s)
- Jianbo Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Hongqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Hongjie Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Junhua Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Chaoxuan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, 613 W. Huangpu Avenue, Guangzhou, Guangdong Province, 510630, China
| | - Ruoyun Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Jie Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China.
| |
Collapse
|
3
|
Liu W, Zhang L, Wei X, Xu Y, Fang Q, Qi S, Chen J, Wang C, Wang S, Qin L, Liu P, Wu J. Structural characterization of an inulin neoseries-type fructan from Ophiopogonis Radix and the therapeutic effect on liver fibrosis in vivo. Carbohydr Polym 2024; 327:121659. [PMID: 38171656 DOI: 10.1016/j.carbpol.2023.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Ophiopogonis Radix is a well-known Traditional Chinese Medicine and functional food that is rich in polysaccharides and has fructan as a characteristic component. In this study, an inulin neoseries-type fructan designated as OJP-W2 was obtained and characterized from Ophiopogonis Radix, and its potential therapeutic effect on liver fibrosis in vivo were investigated. Structural studies revealed that OJP-W2 had a molecular weight of 5.76 kDa and was composed of glucose and fructose with a molar ratio of 1.00:30.87. Further analysis revealed OJP-W2 has a predominantly lineal (1-2)-linked β-D-fructosyl units linked to the glucose moiety of the sucrose molecule with (2-6)-linked β-D-fructosyl side chains. Pharmacological studies revealed that OJP-W2 exerted a marked hepatoprotective effect against liver fibrosis, the mechanism of action was involved in regulating collagen deposition (α-SMA, COL1A1 and liver Hyp contents) and TGF-β/Smads signaling pathway, alleviating liver inflammation (IL-1β, IL-6, CCL5 and F4/80) and MAPK signaling pathway, and inhibiting hepatic apoptosis (Bax, Bcl-2, ATF4 and Caspase 3). These data provide evidence for expanding Ophiopogonis Radix-acquired fructan types and advancing our understanding of the specific role of inulin neoseries-type fructan in liver fibrosis therapy.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linzhang Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xia Wei
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongbin Xu
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Qinqin Fang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Shenglan Qi
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Shunchun Wang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Luping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jianjun Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Zheng Z, Wang S, Zhang C, Wu M, Cui D, Fu X, Gao L, Li A, Wei Q, Liu Z. Hot Air Impingement Drying Enhanced Drying Characteristics and Quality Attributes of Ophiopogonis Radix. Foods 2023; 12:foods12071441. [PMID: 37048262 PMCID: PMC10093796 DOI: 10.3390/foods12071441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The effects of drying temperature and air velocity on the drying characteristics, color, bioactive compounds, rehydration ratio, and microstructure of Ophiopogonis Radix during hot air impingement drying (HAID) were explored in the current study. The experimental results showed that the drying temperature and air velocity had a significant impact on the drying characteristics and quality attributes of dried products except for the rehydration ratio. The drying time decreased from 720 to 240 min with the increase of drying temperature from 50 to 70 °C. Increasing the air velocity from 6 to 12 m/s enhanced the drying process of Ophiopogonis Radix, while the extension of air velocity to 15 m/s lowered the drying rate. The samples that were dried at a lower drying temperature obtained lower color difference. Properly increasing the drying temperature or air velocity could increase the total polysaccharide and flavonoid contents of dried products. Additionally, a back-propagation neural network (BPNN) model was developed to predict the moisture ratio of Ophiopogonis Radix during the drying process. The optimal BPNN with 3-11-1 topology were obtained to predict the moisture ratio of Ophiopogonis Radix during HAID and performed with an acceptable performance.
Collapse
|
5
|
Ouyang Y, Tang L, Hu S, Tian G, Dong C, Lai H, Wang H, Zhao J, Wu H, Zhang F, Yang H. Shengmai san-derived compound prescriptions: A review on chemical constituents, pharmacokinetic studies, quality control, and pharmacological properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154433. [PMID: 36191550 DOI: 10.1016/j.phymed.2022.154433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Shengmai San Formula (SMS), composed of Ginseng Radix et Rhizoma, Ophiopogon Radix and Schisandra chinensis Fructus, was a famous formula in Tradition Chinese Medicine (TCM). With the expansion of clinical applications, SMS was developed to different dosage forms, including Shengmai Yin Oral liquid (SMY), Shengmai Capsule (SMC), Shengmai Granule (SMG), Shengmai Injection (SMI) and Dengzhan Shengmai Capsule (DZSMC). These above SMS-derived compound prescriptions (SSCPs) play an important role in the clinical treatment. This review is aimed to providing a comprehensive perspective of SSCP. METHODS The relevant literatures were collected from classical TCM books and a variety of databases, including PubMed, Google Scholar, Science Direct, Springer Link, Web of Science, China National Knowledge Infrastructure, and Wanfang Data. RESULTS The chemical constituents of SSCPs, arrived from the individual medicinal materials including Ginseng Radix et Rhizoma, Ophiopogon Radix, Schisandra chinensis Fructus, Erigerontis Herba, were firstly summarized respectively. Then the pharmacokinetics studies, quality control, and pharmacological properties of SSCPs were all reviewed. The active compounds, pharmacokinetics characterizes, quality control markers, the effects and mechanisms of pharmacology of the different dosage forms of SSCPs were summarized. Furthermore, the research deficiencies of SSCPs and an innovative research paradigm for Chinese materia medica (CMM) formula were proposed. CONCLUSIONS SMS, as a famous CMM formula, has great values in drug research and in clinical treatment especially for cardiocerebrovascular diseases. This article firstly make a comprehensive and systematic review on SMS.
Collapse
Affiliation(s)
- Yi Ouyang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shaowei Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghuan Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Zunyi Medical University, Zunyi, China
| | - Caihong Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Huaqing Lai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Zunyi Medical University, Zunyi, China
| | - Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Simultaneous Extraction and Determination of Characteristic Steroidal Saponins and Homoisoflavonoids in Zhejiang Ophiopogon japonicus. Molecules 2022; 27:molecules27217380. [PMID: 36364204 PMCID: PMC9656867 DOI: 10.3390/molecules27217380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
Zhejiang Ophiopogonjaponicus (ZOJ) is a specific variety of Ophiopogon japonicus with characteristic steroidal saponins and homoisoflavonoids, which are also main pharmacodynamic constituents with clinical effects, including curing inflammation and cardiovascular diseases. However, few analysis methods were applied to simultaneously and quantitatively determine two kinds of its constituents, and hazardous organic solvents are mostly used for extraction. In this study, a new validated simultaneous extraction and determination method for four characteristic steroidal saponins and homoisoflavonoids in ZOJ was established by ionic liquid–ultrasonic extraction (IL-UAE) combined with HPLC-DAD-ELSD analysis, which can be used for the quality control of ZOJ. Chromatographic separation was performed with a DAD wavelength at 296 nm, and the ELSD parameters of the drift tube temperature (DTT), atomizer temperature (AT), and nitrogen gas pressure (NGP) were set at 20% heating power, 70 °C, and 25 psi, respectively. The optimal IL-UAE conditions were 1 mol/L [Bmim]CF3SO3 aqueous solution, a liquid–material ratio of 40 mL/g, and an ultrasonic time of 60 min. The proposed method is reliable, reproducible, and accurate, which were verified with real sample assays. Consequently, this work will be helpful for the quality control of ZOJ. It can also present a promising reference for the simultaneous extraction and determination of different kinds of constituents in other medicinal plants.
Collapse
|
7
|
Escobar-Ramos A, Gómez-Rivera A, Lobato-García CE, Zamilpa A, Ble-González EA, González-Cortazar M, Gallegos-García AJ, Herrera-Ruiz M. Anxiolytic effect of the heartwood of Haematoxylum campechianum L. and sappanchalcone in an in vivo model in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114764. [PMID: 34687835 DOI: 10.1016/j.jep.2021.114764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Haematoxylum campechianum L., is a well-known plant in the southeast region of Mexico, where it is named as "palo tinto" or "palo de Campeche", in English there are vernacular names such as "redwood", "bloodwood tree" or "campeachy wood". Traditional medicine refers its use for the treatment of different disorders including depression. AIM OF THE STUDY Considering the traditional use of this plant for the alleviation of depression, the aim of this study was the evaluation of the anxiolytic effect of the methanolic and hydroalcoholic extracts from the heartwood of Haematoxylum campechianum L., and the sappanchalchone (Sapp). Additionally, it is presented the characterization of the new compound 4-hydroxyhematoxylol (2) isolated from the hydroalcoholic extract. MATERIAL AND METHODS The anxiolytic effect of the extracts and Sapp was evaluated by using the Elevated Plus Maze (EPM) additionally the sedative effect was assessed with the Open Field Test (OFT). The chemical characterization of Sapp and 2 was performing by 1D and 2D NMR experiments. RESULTS The EPM test showed that the administration of the plant extracts increased the percentage of time spent in open arms (76.32 ± 6.35 and 66.68 ± 20.64%, respectively for the methanolic and hydroalcoholic extracts), whereas the administration of Sapp increased the percentage of time spent in open arms by 60.07 ± 14.28%, these results are similar to Diazepam (DZP, positive control) which caused an increment of 74.06 ± 23.42%. For the OFT, all of the doses evaluated for both extracts and Sapp diminished the number of rearing (R) and total corssing (TC) behavior in a similar way to the positive control (DZO) and statistically different with respect to the vehicle. CONCLUSION The results obtained showed that the polar extracts from the heartwood of Haematoxylum campechianum L. possess both anxiolytic and sedative effect and that the chalcone-type compound Sapp, isolated from the methanolic extract, is partially responsible of these activities.
Collapse
Affiliation(s)
- Armando Escobar-Ramos
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco, 86690, Mexico
| | - Abraham Gómez-Rivera
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco, 86690, Mexico.
| | - Carlos Ernesto Lobato-García
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco, 86690, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur- Instituto Mexicano del Seguro Social (IMSS), Argentina No 1, Col. Centro, 62790, Xochitepec Morelos, Mexico
| | - Ever A Ble-González
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco, 86690, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur- Instituto Mexicano del Seguro Social (IMSS), Argentina No 1, Col. Centro, 62790, Xochitepec Morelos, Mexico
| | - Ammy Joana Gallegos-García
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco, 86690, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur- Instituto Mexicano del Seguro Social (IMSS), Argentina No 1, Col. Centro, 62790, Xochitepec Morelos, Mexico.
| |
Collapse
|
8
|
Lei F, Weckerle CS, Heinrich M. Liriopogons (Genera Ophiopogon and Liriope, Asparagaceae): A Critical Review of the Phytochemical and Pharmacological Research. Front Pharmacol 2021; 12:769929. [PMID: 34925027 PMCID: PMC8678496 DOI: 10.3389/fphar.2021.769929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
The closely related genera Liriope and Ophiopogon (Asparagaceae), collectively known in English as liriopogons, have similar therapeutic uses in treating cough, rheumatoid arthritis, and cleaning heat. The main aim of this review is to understand the current phytochemical and pharmacological knowledge including an assessment of the quality of the scientific evidence. A literature search was conducted in line with PRISMA guidelines, by retrieving available information up to 2020 from five online resources. The bioactive metabolites of liriopogons include steroidal saponins, flavonoids, polysaccharides, organic acids, phenols. Cardiovascular protective, anti-inflammatory, anti-diabetic, anti-oxidant, anti-cancer, neuroprotective, anti-viral, anti-acute myeloid leukemia and hepatoprotective effects have been at the center of attention. From a toxicological perspective Ophiopogon japonicus seems to be safe. Some problems with the quality of the pharmacological evidence stand out including the application of excessive dose level and methodological problems in the design. Additionally, a reasonable link between local/traditional uses and pharmacological assessment is often vague or not reflected in the text. Future researches on liriopogons are required to use rigorous scientific approaches in research on evidence-based natural products for the future benefits of patients.
Collapse
Affiliation(s)
- Feiyi Lei
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Caroline S Weckerle
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Michael Heinrich
- Research Group 'Pharmacognosy and Phytotherapy', UCL School of Pharmacy, University of London, London, United Kingdom
| |
Collapse
|
9
|
A pair of homoisoflavonoid analogues (6-aldehydo-isoophiopogonanone A/6-aldehydo-isoophiopogonanone B) from Ophiopogon japonicus as a tyrosinase inhibitor: inhibitory activity, conformational change and mechanism. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03902-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Ohta S, Takeda M, Ohta E, Nehira T, Ômura H, Uy MM, Ishihara Y. Janohigenins: Long-chain anacardic acid derivatives with neuroprotective activity from Ophiopogon japonicus seeds. PHYTOCHEMISTRY 2021; 191:112904. [PMID: 34388665 DOI: 10.1016/j.phytochem.2021.112904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Eight hitherto undescribed long-chain anacardic acid derivatives, janohigenins, were isolated from the endosperm of Ophiopogon japonicus seed, and their structures were elucidated employing spectroscopic and chemical methods. The neuroprotective activity of the isolated compounds was evaluated against rotenone-induced cellular damage in SH-SY5Y human neuroblastoma cells. Janohigenins exhibited noticeable neuroprotection at 1 μM.
Collapse
Affiliation(s)
- Shinji Ohta
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan.
| | - Manami Takeda
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
| | - Emi Ohta
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
| | - Tatsuo Nehira
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
| | - Hisashi Ômura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
| | - Mylene M Uy
- Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Yasuhiro Ishihara
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan.
| |
Collapse
|
11
|
An X, Duan L, Zhang YH, Jin D, Zhao S, Zhou RR, Duan Y, Lian F, Tong X. The three syndromes and six Chinese patent medicine study during the recovery phase of COVID-19. Chin Med 2021; 16:44. [PMID: 34099015 PMCID: PMC8182732 DOI: 10.1186/s13020-021-00454-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), first broke out in Wuhan, China, in 2019. SARS-CoV-2 develops many types of mutations (such as B.1.1.7), making diagnosis and treatment challenging. Although we now have a preliminary understanding of COVID-19, including pathological changes, clinical manifestations, and treatment measures, we also face new difficulties. The biggest problem is that most COVID-19 patients might face sequelae (e.g., fatigue, sleep disturbance, pulmonary fibrosis) during the recovery phase. We aimed to test six Chinese patent medicines to treat three major abnormal symptoms in COVID-19 patients during the recovery phase, including cardiopulmonary function, sleep disturbance, and digestive function. We launched the "three syndromes and six Chinese patent medicines" randomized, double-blind, placebo-controlled, multicenter clinical trial on April 10, 2020. The results showed that Jinshuibao tablets and Shengmaiyin oral liquid significantly improved the cardiopulmonary function of recovering COVID-19 patients. Shumian capsules, but not Xiaoyao capsules, significantly improved patients' sleep disorders. This might be because the indication of Xiaoyao capsules is liver qi stagnation rather than psychological or emotional problems. Xiangsha Liujun pills and Ludangshen oral liquid significantly improved digestive function. Our research provides a guideline for treating COVID-19 sequelae in patients during the recovery period based on high-quality evidence.
Collapse
Affiliation(s)
- Xuedong An
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yue Hong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shenghui Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong Rong Zhou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yingying Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
12
|
A Comprehensive Review on Chemotaxonomic and Phytochemical Aspects of Homoisoflavonoids, as Rare Flavonoid Derivatives. Int J Mol Sci 2021; 22:ijms22052735. [PMID: 33800482 PMCID: PMC7962952 DOI: 10.3390/ijms22052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Homoisoflavonoids (3-benzylidene-4-chromanones) are considered as an infrequent flavonoid class, possessing multi-beneficial bioactivities. The present study gives an overview on phytochemical aspects of homoisoflavonoids, including utilized plant species, parts, extracts, and separation techniques. Overall, these compounds have mainly been isolated and identified from bulbs and rhizomes of the plants belonging to Asparagaceae and Fabaceae families, particularly the genera of Ophiopogon, Dracaena, Scilla, Polygonatum, and Caesalpinia.
Collapse
|
13
|
Zhou Y, Wang L, Liu T, Mao Z, Ge Q, Mao J. Isolation of homoisoflavonoids from the fibrous roots of Ophiopogon japonicus by recycling high-speed counter-current chromatography and online antioxidant activity assay. ACTA CHROMATOGR 2019. [DOI: 10.1556/1326.2018.00509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces, Hangzhou, 310023, China
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacuring, 310023, China
| | - Liling Wang
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Tiebing Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces, Hangzhou, 310023, China
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacuring, 310023, China
| | - Zedong Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Qing Ge
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces, Hangzhou, 310023, China
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacuring, 310023, China
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces, Hangzhou, 310023, China
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacuring, 310023, China
| |
Collapse
|
14
|
7- O-methylpunctatin, a Novel Homoisoflavonoid, Inhibits Phenotypic Switch of Human Arteriolar Smooth Muscle Cells. Biomolecules 2019; 9:biom9110716. [PMID: 31717401 PMCID: PMC6920859 DOI: 10.3390/biom9110716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Remodeling of arterioles is a pivotal event in the manifestation of many inflammation-based cardio-vasculopathologies, such as hypertension. During these remodeling events, vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype. The latter is characterized by increased proliferation, migration, and invasion. Compounds with anti-inflammatory actions have been successful in attenuating this phenotypic switch. While the vast majority of studies investigating phenotypic modulation were undertaken in VSMCs isolated from large vessels, little is known about the effect of such compounds on phenotypic switch in VSMCs of microvessels (microVSMCs). We have recently characterized a novel homoisoflavonoid that we called 7-O-methylpunctatin (MP). In this study, we show that MP decreased FBS-induced cell proliferation, migration, invasion, and adhesion. MP also attenuated adhesion of THP-1 monocytes to microVSMCs, abolished FBS-induced expression of MMP-2, MMP-9, and NF-κB, as well as reduced activation of ERK1/2 and FAK. Furthermore, MP-treated VSMCs showed an increase in early (myocardin, SM-22α, SM-α) and mid-term (calponin and caldesmon) differentiation markers and a decrease in osteopontin, a protein highly expressed in synthetic VSMCs. MP also reduced transcription of cyclin D1, CDK4 but increased protein levels of p21 and p27. Taken together, these results corroborate an anti-inflammatory action of MP on human microVSMCs. Therefore, by inhibiting the synthetic phenotype of microVSMCs, MP may be a promising modulator for inflammation-induced arteriolar pathophysiology.
Collapse
|
15
|
Yang F, He WP, Yao JQ, Zou D, Chen P, Li J. Synthesis and Neuroprotective Biological Evaluation of Quinazolinone Derivatives via Scaffold Hopping. Curr Org Synth 2019; 16:772-775. [DOI: 10.2174/1570179416666190328233501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
Abstract
Objective:
To develop efficient method for the synthesis of quinazolinone derivatives bearing
different functional groups on ring A and ring B and evaluation as neuroprotective agents.
Methods:
Synthetic route to quinazolinone derivatives was furnished by condensation/cyclocondensation/
reduction sequence of the activated N-acylbenzotriazoles. The structures of the targets compounds
have been deduced upon their spectral data (1HNMR, 13CNMR and Mass spectroscopy). The
neuroprotective activities of the synthesized compounds are also evaluated.
Results:
Preliminary screening on a MPP+ induced SH-SY5Y cell injury model of the synthesized compounds
resulted in four compounds (6q, 6r, 6u, and 8e) showed promising neural cell protection activities. The action
mechanisms of these compounds on neuroprotection were then analyzed by docking and reverse docking
modeling.
Conclusion:
A series of quinazolinone derivatives, including different substitution types on rings A and B
were designed and synthesized via scaffold hopping. With the help of neuroprotective biological evaluation,
several efficient therapeutic neuroprotective agents were found for further evaluation as drug candidate against
neurodegenerative disorder.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| | - Wei-Ping He
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| | - Jia-Qi Yao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| | - Dong Zou
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| | - Pu Chen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| | - Jie Li
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| |
Collapse
|
16
|
Systematic Review of Herbal Tea (a Traditional Chinese Treatment Method) in the Therapy of Chronic Simple Pharyngitis and Preliminary Exploration about Its Medication Rules. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9458676. [PMID: 31662783 PMCID: PMC6791273 DOI: 10.1155/2019/9458676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 12/29/2022]
Abstract
Background Chronic simple pharyngitis (CSP) is a common clinical chronic respiratory inflammation with persistent and intransigent symptoms. We analyzed the clinical data to find the evidence that herbal tea, a traditional Chinese medicine treatment in China, could improve the symptoms of CSP patients in a simple way. Methods We systematically reviewed the clinical data of randomized controlled treatments from April 2019 and evaluated the results using the improved Jadad scale and the Cochrane bias risk assessment tool. RevMan 5.3 software was used for chart analysis. In addition, we used Excel to conduct frequency statistics on Chinese herbs from included articles and analyze its medication rules. Results Among the collection of 161 articles, 6 RCTs published in Chinese journals were included in this review. The methodological quality of the treatments was low, and most of them only provide diagnostic criteria. Inclusion and exclusion criteria were not specified, and none of the 6 RCTs used the blind method on the result evaluator. Furthermore, only one RCT evaluated the baseline level variance. For these reasons, we did not make a network meta-analysis. Conclusions The traditional Chinese herbs involved in herbal tea did have ingredients to alleviate CSP symptoms. However, our research showed that the current research could not draw any credible conclusions on the curative effect of herbal tea, which indicated that the overall level of TCM clinical research needs to be improved to evaluate the efficacy of herbal tea.
Collapse
|
17
|
Savio M, Ibrahim MF, Scarlata C, Orgiu M, Accardo G, Sardar AS, Moccia F, Stivala LA, Brusotti G. Anti-Inflammatory Properties of Bellevalia saviczii Root Extract and Its Isolated Homoisoflavonoid ( Dracol) Are Mediated by Modification on Calcium Signaling. Molecules 2019; 24:molecules24183376. [PMID: 31533249 PMCID: PMC6766996 DOI: 10.3390/molecules24183376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/31/2022] Open
Abstract
Bellevalia saviczii is a medicinal plant used as anti-rheumatic and anti-inflammatory herbal remedy in Iraqi-Kurdistan. The aim of this study was to evaluate the anti-inflammatory activity of its extract and the isolated homoisoflavonoid (Dracol) by studying the Ca2+-dependent NF-kB pathway. Nuclear translocation of p65 NF-kB subunit, as parameter of NF-kB activation, was visualized in human leukemic monocytes by immunofluorescence and Western blot analyses, after cell treatment with B. saviczii root extract or Dracol followed by Lipopolysaccharide stimulation. In parallel, Ca2+ signals responsible for NF-kB activation and levels of inflammatory cytokines were investigated. LPS-induced p65 translocation was evident in monocytes and both treatments, in particular that with Dracol, were able to counteract this activation. Intracellular Ca2+ oscillations were halted and the cytokine release reduced. These results confirm the traditional anti-inflammatory efficacy of B. saviczii and identify one of the molecules in the extract which appears to be responsible of this action.
Collapse
Affiliation(s)
- Monica Savio
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Mohammed Farhad Ibrahim
- Department of Drug Sciences, viale Taramelli 12, University of Pavia, 27100 Pavia, Italy.
- Department of Environmental Science, College of Science, University of Salahaddin-Erbil, Erbil 44001, Iraq.
| | - Chiara Scarlata
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Matteo Orgiu
- Department of Biology and Biotechnology "L. Spallanzani" via Forlanini 6, University of Pavia, 27100 Pavia, Italy.
| | - Giuseppe Accardo
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Abdullah Shakur Sardar
- Department of Biology, College of Education, University of Salahaddin-Erbil, Erbil 44001, Iraq.
| | - Francesco Moccia
- Department of Biology and Biotechnology "L. Spallanzani" via Forlanini 6, University of Pavia, 27100 Pavia, Italy.
| | - Lucia Anna Stivala
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Gloria Brusotti
- Department of Drug Sciences, viale Taramelli 12, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
18
|
Wang L, Zhou Y, Qin Y, Wang Y, Liu B, Fang R, Bai M. Methylophiopogonanone B of Radix Ophiopogonis protects cells from H2O2‑induced apoptosis through the NADPH oxidase pathway in HUVECs. Mol Med Rep 2019; 20:3691-3700. [PMID: 31485606 PMCID: PMC6755187 DOI: 10.3892/mmr.2019.10625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Methylophiopogonanone B (MO-B), which belongs to a group of homoisoflavonoids, present in Ophiopogon japonicus, has been identified as an active component with antioxidative and anti-tumor properties. The present study investigated whether MO-B may exert protective effects on human umbilical vein endothelial cells (HUVECs) against H2O2-induced injury in vitro, and whether the MO-B effects may be modulated by the NADPH pathway. HUVECs were treated with MO-B in the presence or absence of H2O2. Malondialdehyde (MDA), reactive oxygen species (ROS) levels, and superoxide dismutase (SOD) activity were analyzed to evaluate cell injury and the antioxidative potential of MO-B. The results revealed that MO-B inhibited the production of MDA and ROS, but enhanced SOD activity. Furthermore, MO-B could alleviate H2O2-induced apoptosis in HUVECs, which is consistent with the expression of apoptosis-associated genes and proteins in cells, including Bax/Bcl-2 and caspase-3. To explore the potential mechanism, the present study investigated the effects of MO-B on NADPH-related signaling via the analysis of neutrophil cytochrome b light chain (p22phox) expression, which is the membrane-associated subunit of NADPH oxidase. MO-B could improve the survival of endothelial cells and therefore may be a potential drug in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Liling Wang
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Yuchuan Qin
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Yanbin Wang
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Bentong Liu
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Ru Fang
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Minge Bai
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| |
Collapse
|
19
|
Kędzia J, Bartosik T, Drogosz J, Janecka A, Krajewska U, Janecki T. Synthesis and Cytotoxic Evaluation of 3-Methylidenechroman-4-ones. Molecules 2019; 24:molecules24101868. [PMID: 31096601 PMCID: PMC6572547 DOI: 10.3390/molecules24101868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 11/24/2022] Open
Abstract
In the search for new anticancer agents, a library of variously substituted 3-methylidenechroman-4-ones was synthesized using Horner–Wadsworth–Emmons methodology. Acylation of diethyl methylphosphonate with selected ethyl salicylates furnished 3-diethoxyphosphorylchromen-4-ones which were next used as Michael acceptors in the reaction with various Grignard reagents. The adducts were obtained as the mixtures of trans and cis diastereoisomers along with a small amount of enol forms. Their relative configuration and preferred conformation were established by NMR analysis. The adducts turned up to be effective Horner–Wadsworth–Emmons reagents giving 2-substituted 3-methylidenechroman-4-ones, which were then tested for their possible cytotoxic activity against two leukemia cell lines, HL-60 and NALM-6, and against MCF-7 breast cancer cell line. All new compounds (14a–o) were highly cytotoxic for the leukemic cells and showed a moderate or weak effect on MCF-7 cells. Analog 14d exhibited the highest growth inhibitory activity and was more potent than carboplatin against HL-60 (IC50 = 1.46 ± 0.16 µM) and NALM-6 (IC50 = 0.50 ± 0.05 µM) cells. Further tests showed that 14d induced apoptosis in NALM-6 cells, which was mediated mostly through the extrinsic pathway.
Collapse
Affiliation(s)
- Jacek Kędzia
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | - Tomasz Bartosik
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | - Joanna Drogosz
- Department of Biomolecular Chemistry, Medical University of Łódź, Mazowiecka 6/8, 92-215 Łódź, Poland.
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Łódź, Mazowiecka 6/8, 92-215 Łódź, Poland.
| | - Urszula Krajewska
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| |
Collapse
|
20
|
Abegaz BM, Kinfe HH. Naturally Occurring Homoisoflavonoids: Phytochemistry, Biological Activities, and Synthesis (Part II). Nat Prod Commun 2019. [DOI: 10.1177/1934578x19845813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This review documents all the new homoisoflavonoids (HIFs) that have been reported since 2007, whose total number has grown from 159 in 2007 to 295 at the present time. This review contains their structures, biological sources, plant parts they are obtained from, and, if reported, their optical rotations and melting points. The same classification is followed as an earlier review to ease reference to both reviews. This review takes note of the recent revision of plant families that were known to contain HIFs that have now been merged into one big family, Asparagaceae. Homoisoflavonoids also occur in Fabaceae and others. Two taxa, Ophiopogoan japonicus (Asparagaceae) and Caesalpinia sappan (Fabaceae), have been the source of many HIFs. These are briefly summarized. The biological properties of HIFs are also reviewed under the topics such as antioxidant, anti-inflammatory, antimicrobial, antidiabetic, and cytotoxic. The review also surveys the total synthesis of natural HIFs. All new compounds are classified and tabulated following the same style as the previous review. Dedicated to Professor Andrew Paul Krapcho on the occasion of his 87th Birthday.
Collapse
Affiliation(s)
- Berhanu M Abegaz
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, South Africa
- Department of Chemistry, Center of Synthesis and Catalysis, University of Johannesburg, South Africa
| | - Henok H Kinfe
- Department of Chemistry, Center of Synthesis and Catalysis, University of Johannesburg, South Africa
| |
Collapse
|
21
|
Harn YC, Su BH, Ku YL, Lin OA, Chou CF, Tseng YJ. NP-StructurePredictor: Prediction of Unknown Natural Products in Plant Mixtures. J Chem Inf Model 2017; 57:3138-3148. [PMID: 29131618 DOI: 10.1021/acs.jcim.7b00565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Identification of the individual chemical constituents of a mixture, especially solutions extracted from medicinal plants, is a time-consuming task. The identification results are often limited by challenges such as the development of separation methods and the availability of known reference standards. A novel structure elucidation system, NP-StructurePredictor, is presented and used to accelerate the process of identifying chemical structures in a mixture based on a branch and bound algorithm combined with a large collection of natural product databases. NP-StructurePredictor requires only targeted molecular weights calculated from a list of m/z values from liquid chromatography-mass spectrometry (LC-MS) experiments as input information to predict the chemical structures of individual components matching the weights in a mixture. NP-StructurePredictor also provides the predicted structures with statistically calculated probabilities so that the most likely chemical structures of the natural products and their analogs can be proposed accordingly. Four data sets consisting of different Chinese herbs with mixtures containing known compounds were selected for validation studies, and all their components were correctly identified and highly predicted using NP-StructurePredictor. NP-StructurePredictor demonstrated its applicability for predicting the chemical structures of novel compounds by returning highly accurate results from four different validation case studies.
Collapse
Affiliation(s)
- Yeu-Chern Harn
- Graduate Institute of Networking and Multimedia, National Taiwan University , No. 1 Roosevelt Road Section 4, Taipei 10617, Taiwan.,The Metabolomics Core Laboratory, NTU Center of Genomic Medicine , 7F, No. 2, Syujhou Road, Taipei 10055, Taiwan
| | - Bo-Han Su
- Department of Computer Science and Information Engineering, National Taiwan University , No. 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| | - Yuan-Ling Ku
- Medical and Pharmaceutical Industry Technology and Development Center , 7F, No. 9, Wuquan Road, Wugu District, New Taipei City 24886, Taiwan
| | - Olivia A Lin
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University , No. 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| | - Cheng-Fu Chou
- Department of Computer Science and Information Engineering, National Taiwan University , No. 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| | - Y Jane Tseng
- The Metabolomics Core Laboratory, NTU Center of Genomic Medicine , 7F, No. 2, Syujhou Road, Taipei 10055, Taiwan.,Department of Computer Science and Information Engineering, National Taiwan University , No. 1 Roosevelt Road Section 4, Taipei 10617, Taiwan.,Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University , No. 1 Roosevelt Road Section 4, Taipei 10617, Taiwan.,Drug Research Center, National Taiwan University College of Medicine , No. 1 Jen Ai Road Section 1, Taipei 10051, Taiwan
| |
Collapse
|
22
|
Structure features and in vitro hypoglycemic activities of polysaccharides from different species of Maidong. Carbohydr Polym 2017; 173:215-222. [DOI: 10.1016/j.carbpol.2017.05.076] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/24/2017] [Indexed: 01/03/2023]
|
23
|
Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy. Proc Natl Acad Sci U S A 2017; 114:E5986-E5994. [PMID: 28674004 DOI: 10.1073/pnas.1706778114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) of human is an attractive target for immunosuppressive agents. Currently, small-molecule inhibitors do not show good selectivity for different IMPDH isoforms (IMPDH1 and IMPDH2), resulting in some adverse effects, which limit their use. Herein, we used a small-molecule probe specifically targeting IMPDH2 and identified Cysteine residue 140 (Cys140) as a selective druggable site. On covalently binding to Cys140, the probe exerts an allosteric regulation to block the catalytic pocket of IMPDH2 and further induces IMPDH2 inactivation, leading to an effective suppression of neuroinflammatory responses. However, the probe does not covalently bind to IMPDH1. Taken together, our study shows Cys140 as a druggable site for selectively inhibiting IMPDH2, which provides great potential for development of therapy agents for autoimmune and neuroinflammatory diseases with less unfavorable tolerability profile.
Collapse
|
24
|
Liu H, Wang Y, Wang T, Ying X, Wu R, Chen H. De novo assembly and annotation of the Zhe-Maidong (Ophiopogon japonicus (L.f.) Ker-Gawl) transcriptome in different growth stages. Sci Rep 2017; 7:3616. [PMID: 28620183 PMCID: PMC5472570 DOI: 10.1038/s41598-017-03937-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Zhe-Maidong (Ophiopogon japonicus (L.f.) Ker-Gawl) is a traditional medicinal herb in the family Liliaceae that has significant pharmacological effects on immunity and cardiovascular disease. In this study, three different growth stages of Zhe-Maidong were investigated using RNA-seq, and a total of 16.4 Gb of raw data was obtained. After filtering and assembling, 96,738 unigenes with an average length of 605.3 bp were ultimately generated. A total of 77,300 unigenes were annotated using information from five databases, including the NT, NR, SwissProt, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases. Additionally, the mechanisms of flavonoid, saponin and polysaccharide biosynthesis and of accumulation at different stages of tuber development were also characterized. From the first to third years, the contents of flavonoids, saponins and polysaccharides all increased, whereas the expression levels of related genes decreased in the flavonoid and saponin pathways and first increased and then decreased in the polysaccharide pathway. The results of this study provide the most comprehensive expressed sequence resource for Zhe-Maidong and will expand the available O. japonicus gene library and facilitate further genome-wide research and analyses of this species.
Collapse
Affiliation(s)
- Huijun Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Wang
- Zhejiang Institute of Microbiology, Hangzhou, 310012, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, 310012, China
| | - Tingzhang Wang
- Zhejiang Institute of Microbiology, Hangzhou, 310012, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, 310012, China
| | - Xuhui Ying
- ChiaTaiQingchunbao Pharmaceutical Co., Ltd, Hangzhou 310012, China
| | - Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China.
| | - Huan Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Zhejiang Institute of Microbiology, Hangzhou, 310012, China.
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, 310012, China.
| |
Collapse
|
25
|
Thapa Magar TB, Kadayat TM, Oh HJ, Park PH, Lee ES. Inhibitory Activity of Halogenated 3-Benzylidenechroman-4-ones Against Lipopolysaccharide-stimulated Reactive Oxygen Species Production in RAW 264.7 Macrophages. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Tara Man Kadayat
- College of Pharmacy; Yeungnam University; Gyeongsan 712-749 Republic of Korea
| | - Hye Jin Oh
- College of Pharmacy; Yeungnam University; Gyeongsan 712-749 Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy; Yeungnam University; Gyeongsan 712-749 Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy; Yeungnam University; Gyeongsan 712-749 Republic of Korea
| |
Collapse
|
26
|
Zhao M, Xu WF, Shen HY, Shen PQ, Zhang J, Wang DD, Xu H, Wang H, Yan TT, Wang L, Hao HP, Wang GJ, Cao LJ. Comparison of bioactive components and pharmacological activities of ophiopogon japonicas extracts from different geographical origins. J Pharm Biomed Anal 2017; 138:134-141. [DOI: 10.1016/j.jpba.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/26/2022]
|
27
|
Dang NH, Chung ND, Tuan HM, Van Thanh N, Hiep NT, Lee D, Dat NT. 2-Benzyl-benzofurans from the tubers of Ophiopogon japonicus. Chem Cent J 2017; 11:15. [PMID: 28224018 PMCID: PMC5293711 DOI: 10.1186/s13065-017-0242-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/20/2017] [Indexed: 01/19/2023] Open
Abstract
Background The overproduction of nitric oxide (NO) is known to involve in various inflammatory processes. A methanol extract of the tubers of Ophiopogon japonicus was found to strongly inhibit NO production. The present paper deals with the isolation, structural identification and NO inhibitory effect of five compounds isolated from the MeOH extract of O. japonicus tubers. Results Three new compounds were elucidated to be (2R)-(4-methoxybenzyl)-5,7-dimethyl-6-hydroxyl-2,3-dihydrobenzofuran (1), 2-(2-hydroxyl-4-methoxy-benzyl)-5-methyl-6-methoxyl-2,3-dihydrobenzofuran (2), and 2-(4-hydroxy-benzyl)-5,6-dihydroxybenzofuran (3). In addition, two known compounds were isolated from a natural source for the first time including 2-(4-methoxy-benzyl)-6,7-dimethoxyl-2,3-dihydrobenzofuran (4), and 2-(4-methoxy-benzyl)-6,7-methylenedioxy-2,3-dihydrobenzofuran (5). The absolute configuration of compound 1 was determined by experimental and calculated circular dichroism spectra. The effects of the isolated compounds on LPS-induced NO production in RAW264.7 cells were evaluated. Compound 1 and 2 showed the inhibitory activity with IC50 values of 11.4 and 29.1 μM, respectively. Conclusions The class of 2-benzyl-2,3-dihydrobenzofuran is uncommon in nature. In this work, three such compounds were isolated from O. japonicus. Two of them showed promising anti-inflammatory activity by inhibition of NO production. Electronic supplementary material The online version of this article (doi:10.1186/s13065-017-0242-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyen Hai Dang
- Advanced Center for Bio-organic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Dinh Chung
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Ha Manh Tuan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Van Thanh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Tuan Hiep
- National Institute of Medicinal Materials, 1B Quang Trung, Hoan Kiem, Hanoi, Vietnam
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Nguyen Tien Dat
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
28
|
Zhao JW, Chen DS, Deng CS, Wang Q, Zhu W, Lin L. Evaluation of anti-inflammatory activity of compounds isolated from the rhizome of Ophiopogon japonicas. Altern Ther Health Med 2017; 17:7. [PMID: 28056939 PMCID: PMC5217338 DOI: 10.1186/s12906-016-1539-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Background Ophiopogon japonicas (L.f) Ker-Gawl has been used as a traditional Chinese medicine to cure acute and chronic inflammation and cardiovascular diseases including thrombotic diseases for thousands of years. Previous phytochemical studies showed that O. japonicus contained compounds with anti-inflammatory activity. The aim of this study was to identify and isolate compounds with anti-inflammatory activity from the rhizome of O. japonicas. Methods Compounds were isolated by various column chromatography and their structures were identified in terms of nuclear magnetic resonance spectrum (NMR) and mass spectrum (MS). To measure the anti-inflammatory effects of thirteen compounds in LPS-induced RAW 264.7 macrophage cells, we used the following methods: cell viability assay, nitric oxide assay, enzyme-linked immunosorbent assay, quantitative real-time PCR analysis and western blotting analysis. Results One new and twelve known compounds (mainly homoisoflavonoids) were extracted from O. japonicas, in which 4′-O-Demethylophiopogonanone E (10) was considered as a new compound, additionally, compounds 4-O-(2-Hydroxy-1- hydroxymethylethyl)-dihydroconiferyl alcohol (2) and 5,7-dihydroxy-6-methyl-3-(2′, 4′-dihydroxybenzyl) chroman-4-one (12) were isolated from the rhizome of O. japonicas for the first time. The isolated compounds Oleic acid (3), Palmitic acid (4), desmethylisoophiopogonone B [5,7-dihydroxy-3-(4′-hydroxybenzyl)-8- methyl- chromone] (5), 5,7-dihydroxy-6-methyl-3-(4′-hydroxybenzyl) chromone (7) and 10 significantly suppressed the production of NO in LPS-induced RAW 264.7 cells. Especially compound 10 showed the strongest effect against the production of the pro-inflammatory cytokine IL-1β and IL-6 with the IC50 value of 32.5 ± 3.5 μg/mL and 13.4 ± 2.3 μg/mL, respectively. Further analysis elucidated that the anti-inflammatory activity of compound 10 might be exerted through inhibiting the phosphorylation of ERK1/2 and JNK in MAPK signaling pathways to decrease NO and pro-inflammatory cytokines production. Conclusions Our results indicated that 4′-O-Demethylophiopogonanone E can be considered as a potential source of therapeutic medicine for inflammatory diseases.
Collapse
|
29
|
Castelli M, López S. Homoisoflavonoids: Occurrence, Biosynthesis, and Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00009-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Dang NH, Chung ND, Tuan HM, Hiep NT, Dat NT. Cytotoxic Homoisoflavonoids from Ophiopogon japonicus Tubers. Chem Pharm Bull (Tokyo) 2016; 65:204-207. [PMID: 27916782 DOI: 10.1248/cpb.c16-00743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A phytochemical fractionation of a methanol extract of Ophiopogon japonicus tubers led to the isolation of a new homoisoflavanone, homoisopogon A (1), and three new homoisoflavanes, homoisopogon B-D (2-4). Their chemical structures were elucidated by mass, NMR, and circular dichroism (CD) spectroscopic methods. Homoisopogon A (1) exhibited potent cytotoxicity against human lung adenocarcinoma LU-1, human epidermoid carcinoma KB, and human melanoma SK-Mel-2 cancer cells with IC50 values ranging from 0.51 to 0.66 µM.
Collapse
Affiliation(s)
- Nguyen Hai Dang
- Advanced Center for Bio-organic Chemistry, Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST)
| | | | | | | | | |
Collapse
|
31
|
Chen MH, Chen XJ, Wang M, Lin LG, Wang YT. Ophiopogon japonicus--A phytochemical, ethnomedicinal and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:193-213. [PMID: 26826325 DOI: 10.1016/j.jep.2016.01.037] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 12/30/2015] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ophiopogonis Radix (Maidong in Chinese), the root of Ophiopogon japonicus, is widely used in local medicines of China, Japan and some south-eastern Asian countries. According to the traditional Chinese medicine (TCM) principle, Ophiopogonis Radix nourishes the yin, promotes body fluid production, moistens the lung, eases the mind and clears away heart fire. This review summarizes the achievements of the investigations in botany, phytochemistry, quality control, traditional uses, pharmacological activities and clinical studies on O. japonicus; this review also describes the shortcomings of studies on this herbal drug and thus serves as the basis of further scientific research and development of this traditional herbal drug. MATERIALS AND METHODS O. japonicus-related information was collected from various resources, including books on Chinese herbs and the Internet databases, such as Google Scholar, SciFinder, Web of Science, Elsevier, ACS, PubMed and China Knowledge Resource Integrated (CNKI). RESULTS O. japonicus is widely distributed in East Asia, especially in China. Numerous compounds were identified from this plant. The main components of O. japonicus include steroidal saponins, homoisoflavonoids and polysaccharides, which exhibited various pharmacological activities, such as cardiovascular protection, anti-inflammation, anticancer, anti-oxidation, immunomodulation, cough relief, antimicrobial, and anti-diabetes. CONCLUSIONS O. japonicus is a common traditional Chinese herbal drug used as the main ingredient in many prescriptions. Modern researches verified that O. japonicus can be used either as a healthy food or a therapeutic agent for disease prevention and treatment. The molecular mechanisms and chemical principles of this herbal medicine should be further explored.
Collapse
Affiliation(s)
- Min-Hui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Sino-Dutch Center for Preventive and Personalized Medicine/Leiden Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Mei Wang
- Sino-Dutch Center for Preventive and Personalized Medicine/Leiden Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
32
|
Sappanone A exhibits anti-inflammatory effects via modulation of Nrf2 and NF-κB. Int Immunopharmacol 2015; 28:328-36. [PMID: 26122134 DOI: 10.1016/j.intimp.2015.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Homoisoflavonoids constitute a small class of natural products. In the present study, we investigated the anti-inflammatory effect of sappanone A (SPNA), a homoisoflavanone that is isolated from the heartwood of Caesalpinia sappan (Leguminosae), in murine macrophages. SPNA inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2) and interleukin-6 (IL-6) as well as the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and IL-6 in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Moreover, SPNA protected C57BL/6 mice from LPS-induced mortality. Treatment of RAW264.7 cells with SPNA induced heme oxygenase (HO)-1 protein and mRNA expression and increased nuclear translocation of the nuclear factor-E2-related factor 2 (Nrf2) as well as the expression of Nrf2 target genes such as NAD(P)H quinone oxidoreductase 1 (NQO1). Knockdown of Nrf2 by siRNA blocked SPNA-mediated HO-1 induction. SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitor, blocked SPNA-induced HO-1 expression and nuclear translocation of Nrf2, suggesting that SPNA induces HO-1 expression by activating Nrf2 through the p38 MAPK pathway. Consistent with the notion that the Nrf2/HO-1 pathway has anti-inflammatory properties, inhibiting HO-1 significantly abrogated the anti-inflammatory effects of SPNA in LPS-stimulated RAW264.7 cells. Moreover, SPNA suppressed LPS-induced nuclear factor κB (NF-κB) activation via inhibiting Ser 536 phosphorylation and transcriptional activity of RelA/p65 subunit of NF-κB. Taken together, these findings suggest that SPNA exerts its anti-inflammatory effect by modulating the Nrf2 and NF-κB pathways, and may be a valuable compound to prevent or treat inflammatory diseases.
Collapse
|
33
|
Devarajan K, Devaraj S, Balasubramanian KK, Bhagavathy S. An Unexpected Thermal [1,3]-[1,3]-para Rearrangement of Chromone-3-ylmethyl Aryl Ethers: Mechanism and Application of the Intercepted [1,3]-Rearranged Intermediates to the Synthesis of cis-Homopterocarpans. CHEM LETT 2015. [DOI: 10.1246/cl.141162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Wang Y, Sun Y, Guo Y, Wang Z, Huang L, Li X. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives. J Enzyme Inhib Med Chem 2015; 31:389-97. [PMID: 25798687 DOI: 10.3109/14756366.2015.1024675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Because of the complexity of Alzheimer's disease (AD), the multi-target-directed ligand (MTDL) strategy is expected to provide superior effects for the treatment of AD, instead of the classic one-drug-one-target strategy. In this context, we focused on the design, synthesis and evaluation of homoisoflavonoid derivatives as dual acetyl cholinesterase (AChE) and monoamine oxidase (MAO-B) inhibitors. Among all the synthesized compounds, compound 10 provided a desired balance of AChE and hMAO-B inhibition activities, with IC50 value of 3.94 and 3.44 μM, respectively. Further studies revealed that compound 10 was a mixed-type inhibitor of AChE and an irreversible inhibitor of hMAO-B, which was also confirmed by molecular modeling studies. Taken together, the data indicated that 10 was a promising dual functional agent for the treatment of AD.
Collapse
Affiliation(s)
- Yali Wang
- a School of Pharmaceutical Sciences, Institute of Drug Synthesis and Pharmaceutical Process, Sun Yat-sen University , Guangzhou , China
| | - Yang Sun
- a School of Pharmaceutical Sciences, Institute of Drug Synthesis and Pharmaceutical Process, Sun Yat-sen University , Guangzhou , China
| | - Yueyan Guo
- a School of Pharmaceutical Sciences, Institute of Drug Synthesis and Pharmaceutical Process, Sun Yat-sen University , Guangzhou , China
| | - Zechen Wang
- a School of Pharmaceutical Sciences, Institute of Drug Synthesis and Pharmaceutical Process, Sun Yat-sen University , Guangzhou , China
| | - Ling Huang
- a School of Pharmaceutical Sciences, Institute of Drug Synthesis and Pharmaceutical Process, Sun Yat-sen University , Guangzhou , China
| | - Xingshu Li
- a School of Pharmaceutical Sciences, Institute of Drug Synthesis and Pharmaceutical Process, Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
35
|
Synthesis and cytotoxic evaluation of some new[1,3]dioxolo[4,5-g]chromen-8-one derivatives. ACTA ACUST UNITED AC 2014; 22:41. [PMID: 24887061 PMCID: PMC4019946 DOI: 10.1186/2008-2231-22-41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/16/2014] [Indexed: 12/03/2022]
Abstract
Background Homoisoflavonoids are naturally occurring compounds belong to flavonoid classes possessing various biological properties such as cytotoxicity. In this work, an efficient strategy for the synthesis of novel homoisoflavonoids, [1,3]dioxolo[4,5-g]chromen-8-ones, was developed and all compounds were evaluated for their cytotoxic activities on three breast cancer cell lines. Methods Our synthetic route started from benzo[d][1,3]dioxol-5-ol which was reacted with 3-bromopropanoic acid followed by the reaction of oxalyl chloride to afford 6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one. The aldol condensation of the later compound with aromatic aldehydes led to the formation of the title compounds. Five novel derivatives 4a-e were tested for their cytotoxic activity against three human breast cancer cell lines including MCF-7, T47D, and MDA-MB-231 using the MTT assay. Results Among the synthesized compounds, 7-benzylidene-6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one (4a) exhibited the highest activity against three cell lines. Also the analysis of acridine orange/ethidium bromide staining results revealed that 7-benzylidene-6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one (4a) and 7-(2-methoxybenzylidene)-6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one (4b) induced apoptosis in T47D cell line. Conclusion Finally, the effect of methoxy group on the cytotoxicity of compounds 4b-4d was investigated in and it was revealed that it did not improve the activity of [1,3]dioxolo[4,5-g]chromen-8-ones against MCF-7, T47D, and MDA-MB-231.
Collapse
|
36
|
Lee YS, Hur S, Kim TY. Homoisoflavanone prevents mast cell activation and allergic responses by inhibition of Syk signaling pathway. Allergy 2014; 69:453-62. [PMID: 24446972 DOI: 10.1111/all.12356] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mast cells play important roles in allergic inflammatory responses because they produce leukotrienes (LTs), prostaglandins (PGs), and a variety of inflammatory cytokines. Thus, pharmacological interventions for allergies have focused on inhibiting mast cell activation. Homoisoflavanone (HIF), isolated from Cremastra appendiculata Makino, has anti-angiogenic activities; however, its effects on allergic reactions have not been determined. The aim of this study was to assess the inhibitory effects of HIF on mast cell activation, which is critical for anti-allergic reaction and the underlying mechanisms. METHODS Enzyme-linked immunosorbent assays, quantitative real-time PCR, western blot analyses, and degranulation assay were performed to measure pro-inflammatory and allergic mediators in PMA/A23187- or IgE/antigen-stimulated mouse bone marrow-derived mast cells (BMMCs), HMC-1, RBL-1, or human PBMC-derived mast cells treated with or without HIF. The anti-allergic effects of HIF were determined in mouse models using dinitrophenol-immunoglobulin E-induced passive cutaneous anaphylaxis (PCA) and compound 48/80-induced ear swelling. RESULTS Homoisoflavanone down-regulated PGD2 , LTB4 , and LTC4 production and inhibited the production of pro-inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α in PMA/A23187- or IgE/antigen-stimulated mast cells. The molecular mechanisms by which HIF caused these inhibitory effects were determined to be the inactivation of spleen tyrosine kinase (Syk) signaling and the concurrent suppression of cPLA2 . HIF inhibited IgE-mediated PCA and compound 48/80-induced ear swelling in mouse. CONCLUSIONS Homoisoflavanone inhibited mast cell activation through the suppression of Syk pathway together with the inhibition of cPLA2 . Thus, it might be a good candidate molecule for allergic diseases.
Collapse
Affiliation(s)
- Y. S. Lee
- Department of Dermatology; College of Medicine; The Catholic University of Korea; Seoul South Korea
| | - S. Hur
- Department of Dermatology; College of Medicine; The Catholic University of Korea; Seoul South Korea
| | - T.-Y. Kim
- Department of Dermatology; College of Medicine; The Catholic University of Korea; Seoul South Korea
| |
Collapse
|
37
|
Wang HM, Lin SK, Yeh CH, Lai JN. Prescription pattern of Chinese herbal products for adult-onset asthma in Taiwan: a population-based study. Ann Allergy Asthma Immunol 2014; 112:465-70. [PMID: 24656660 DOI: 10.1016/j.anai.2014.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Throughout the world, asthma can be a life-threatening disease. Traditional Chinese medicine (TCM) is commonly used among Taiwanese adults to control many diseases. OBJECTIVE To analyze the use of Chinese herbal products (CHPs) among adults with asthma in Taiwan. METHODS The use, frequency of service, and the type of CHP prescribed for asthma among adults with asthma were evaluated. The study group consisted of a randomly sampled cohort of 1,000,000 beneficiaries from the National Health Insurance Research Database. Logistic regression was used to estimate the odds ratios (ORs) for use of CHP. RESULTS Overall, 20,627 asthma patients (85.7%) used TCM. Ding-chuan-tang (panting-stabilizing decoction) was the most frequently prescribed CHP, followed by xiao-qing-long-tang (minor green-blue dragon decoction) and ma-xing-gan-shi-tang (ephedra, apricot kernel, licorice, and gypsum decoction). CONCLUSION The use of CHPs among adults with asthma appears high. Ding-chuan-tang containing ma-huang is the most commonly prescribed and consumed among adults with asthma.
Collapse
Affiliation(s)
- Hung-Ming Wang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Chinese Medicine, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Shun-Ku Lin
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Chinese Medicine, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Chia-Hao Yeh
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Chinese Medicine, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Jung-Nien Lai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Chinese Medicine, Taipei City Hospital, Yangming Branch, Taipei, Taiwan.
| |
Collapse
|
38
|
The effects of maekmoondong-tang on cockroach extract-induced allergic asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:958965. [PMID: 24723965 PMCID: PMC3958718 DOI: 10.1155/2014/958965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/14/2014] [Accepted: 01/23/2014] [Indexed: 12/14/2022]
Abstract
Maekmoondong-tang (MMDT) has long been used in Asian countries to treat respiratory diseases. However, the precise mechanisms underlying its effects on asthma are unknown. This study was conducted to evaluate the protective effects of MMDT in a cockroach allergen (CKA-)induced animal model of allergic asthma. After being challenged with CKA, the number of macrophages, eosinophils, neutrophils, lymphocytes, and total cells in the bronchoalveolar lavage fluid (BALF) was evaluated. The Th2 specific cytokines IL-4, IL-5, and IL-13 were also analyzed in BALF along with IgE levels in serum. For histological analysis, hematoxylin and eosin (H&E) staining, periodic acid-Schiff (PAS) staining, and immunohistochemical staining were performed. In addition, airway hyperresponsiveness was assessed by noninvasive plethysmography. The cellular profiles and histopathologic analysis demonstrated that peribronchial and perivascular inflammatory cell infiltrates were significantly decreased in the MMDT-treated groups compared with the cockroach extract-injected (CKA) groups. In addition, the IgE, IL-4, IL-5, and IL-13 levels were significantly decreased in the MMDT group. MMDT treatment also significantly attenuated airway hyperresponsiveness. These results demonstrated that MMDT significantly reduced the hallmark signs of asthma: elevated serum IgE, airway eosinophilia, airway remodeling, mucus hypersecretion, and airway hyperresponsiveness. The remarkable antiasthmatic effects of MMDT suggest its therapeutic potential in allergic asthma treatment.
Collapse
|
39
|
Gan C, Zhao Z, Nan DD, Yin B, Hu J. Homoisoflavonoids as potential imaging agents for β-amyloid plaques in Alzheimer's disease. Eur J Med Chem 2014; 76:125-31. [PMID: 24583352 DOI: 10.1016/j.ejmech.2014.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/31/2013] [Accepted: 02/08/2014] [Indexed: 11/16/2022]
Abstract
A series of homoisoflavonoids [(E)-3-benzylidenechroman-4-ones, 3a-l] as novel potential diagnostic imaging agents targeting β-amyloid (Aβ) plaques in Alzheimer's disease (AD) were synthesized and evaluated. In vitro binding studies using Aβ₁₋₄₀ aggregates with [(125)I]IMPY as the reference ligand showed that these compounds demonstrated high to low binding affinities at the K(i) values ranged from 9.10 to 432.03 nM, depending on the substitution of the phenyl ring. Fluorescent staining in vitro indicated that one compound with a N,N-dimethylamino group intensely stained Aβ plaques within brain sections of postmortem AD patients. Biodistribution studies in normal mice after i.v. injection of the radioiodinated homoisoflavonoid displayed good initial brain uptake (2.61% ID/g at 2 min postinjection) and rapid clearance from the brain (0.18% ID/g at 60 min), which is desirable for amyloid imaging agents. The results strongly suggest that these derivatives are worthy of further study and may be useful amyloid imaging agents for early detection of amyloid plaques in the brain of AD.
Collapse
Affiliation(s)
- Changsheng Gan
- Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Zhenzhen Zhao
- Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Dou-Dou Nan
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Binbin Yin
- Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Jingyi Hu
- Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
40
|
A valid approach in refractory glossodynia: a single-institution 5-year experience treating with Japanese traditional herbal (kampo) medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:354872. [PMID: 24223055 PMCID: PMC3816042 DOI: 10.1155/2013/354872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/19/2013] [Accepted: 09/15/2013] [Indexed: 12/19/2022]
Abstract
Glossodynia is often refractory to conventional medicine, and there is only limited evidence to guide clinicians in its management. Patients with refractory glossodynia are often introduced to Japanese traditional herbal (Kampo) medicine experts under such circumstances because Kampo medicine has become known in Japan to be effective in treating a wide variety of symptoms refractory to conventional medicine. Herein, we report our single-institution 5-year experience treating patients with Kampo medicine for primary glossodynia that was refractory to conventional medicine. We found that 69.2% of patients reported a beneficial effect of Kampo medicine on glossodynia, and the average onset of improvement was 8.0 ± 7.7 weeks after starting Kampo treatment. The top two frequently used Kampo medicines for glossodynia were seinetsuhokito and mibakuekkito among high responders who showed a decrease of severity by 50% or more. The top four most overlapped herbs among effective Kampo medicines for glossodynia were Glycyrrhiza Root, Ginseng Root, Hoelen, and Atractylodes (lancea) Rhizome, which compose an essential Kampo prescription called shikunshito. Although more research is required to further clarify the effectiveness of Kampo medicine, it has valid efficacy even in cases of glossodynia that remain incurable by conventional treatments.
Collapse
|
41
|
Namdar R, Makouie N, Nafisi S. Study on the interaction of homoisoflavonoids with RNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 128:100-6. [PMID: 24084260 DOI: 10.1016/j.jphotobiol.2013.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 01/05/2023]
Abstract
Homoisoflavonoids (3-benzylidene-4-chromanones) are isomers of flavonoids and exhibit different biological activities because of hydroxyl groups attaching to different positions. This study is the first attempt to locate the binding sites of four synthetic homoisoflavonoids: (E)-3-(3,4-dihydroxybenzylidene)-7-methoxychroman-4-one (BMC), (E)-3-(3,4-dihydroxybenzylidene)-7-propoxychroman-4-one (BPC), (E)-3-(4-hydroxybenzylidene)-7-methoxychroman-4-one (HBMC) and (E) 3-(4-hydroxybenzylidene)-chroman-4-one (HBC) to RNA. The effect of the ligand complexation on RNA aggregation was investigated in aqueous solution at physiological conditions, using constant RNA concentration (6.25mM) and various ligand/polynucleotide (phosphate) ratios of 1/120, 1/80, 1/40, 1/20, 1/10 and 1/5. Fourier transform infrared (FTIR) and UV-Visible spectroscopic methods were used to determine the ligand binding modes, the binding constants, and the stability of ligand-RNA complexes in aqueous solution. Spectroscopic evidence showed external binding of homoisoflavonoids to RNA duplex with overall binding constants of KBMC-RNA = 1.06(± 0.09) × 10(4)M(-1), KBPC-RNA = 1.11(± 0.15) × 10(4)M (-1), KHBC-RNA = 3.82(± 0.09) × 10(3)M(-1) and KHBMC-RNA=5.82(± 0.04) × 10(3) M(-1). The affinity of homoisoflavonoid-RNA binding is in the order of BPC>BMC>HBMC>HBC. No biopolymer secondary structural changes were observed upon homoisoflavonoids interaction and RNA remains in the A-family structure in these complexes.
Collapse
Affiliation(s)
- Roshanak Namdar
- Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran, Iran; Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | | |
Collapse
|
42
|
Basha GM, Yadav SK, Srinuvasarao R, Prasanthi S, Ramu T, Mangarao N, Siddaiah V. A mild and efficient protocol to synthesize chromones, isoflavones, and homoisoflavones using the complex 2,4,6-trichloro-1,3,5-triazine/dimethylformamide. CAN J CHEM 2013. [DOI: 10.1139/cjc-2013-0137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mild and efficient one-flask method has been developed for the synthesis of chromones, isoflavones, and homoisoflavones from 2-hydroxyacetophenones, deoxybenzoins, and dihydrochalcones, respectively, via one-carbon extension using the complex 2,4,6-trichloro-1,3,5-triazine/dimethylformamide. Deoxybenzoins and dihydrochalcones were prepared in situ by the reaction of readily available substituted phenols with phenylacetic acids and 3-phenylpropanoic acids, respectively. This method allows the synthesis of a wide range of compounds with multiple phenolic hydroxyls and other substituents. The methodology has been applied to the synthesis of three naturally occurring isoflavones such as formononetin (9c), daidzein (9d), and retusin (9h).
Collapse
Affiliation(s)
- G. Mahaboob Basha
- Dept. of Organic Chemistry & FDW, Andhra University, Visakhapatnam 530 003, India
| | - S. Kumar Yadav
- Dept. of Organic Chemistry & FDW, Andhra University, Visakhapatnam 530 003, India
| | - R. Srinuvasarao
- Dept. of Organic Chemistry & FDW, Andhra University, Visakhapatnam 530 003, India
| | - S. Prasanthi
- Dept. of Organic Chemistry & FDW, Andhra University, Visakhapatnam 530 003, India
| | - T. Ramu
- Dept. of Organic Chemistry & FDW, Andhra University, Visakhapatnam 530 003, India
| | - N. Mangarao
- Dept. of Organic Chemistry & FDW, Andhra University, Visakhapatnam 530 003, India
| | - V. Siddaiah
- Dept. of Organic Chemistry & FDW, Andhra University, Visakhapatnam 530 003, India
| |
Collapse
|
43
|
Zhou CX, Zou L, Mo JX, Wang XY, Yang B, He QJ, Gan LS. Homoisoflavonoids fromOphiopogon japonicus. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200493] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Molecular aspects on the specific interaction of homoisoflavonoids to DNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 117:207-13. [DOI: 10.1016/j.jphotobiol.2012.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/23/2012] [Accepted: 09/25/2012] [Indexed: 01/01/2023]
|
45
|
Liang H, Xing Y, Chen J, Zhang D, Guo S, Wang C. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012. [PMID: 23190550 PMCID: PMC3534486 DOI: 10.1186/1472-6882-12-238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Methods Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC) and fermentation broth (FB) were tested for antimicrobial activity using peptide deformylase (PDF) inhibition fluorescence assays and MTT cell proliferation assays. Results A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC) and 33.33% of the fermentation broths (FB) displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. Conclusion The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.
Collapse
|
46
|
Li N, Zhang JY, Zeng KW, Zhang L, Che YY, Tu PF. Anti-inflammatory homoisoflavonoids from the tuberous roots of Ophiopogon japonicus. Fitoterapia 2012; 83:1042-5. [PMID: 22626747 DOI: 10.1016/j.fitote.2012.05.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 11/27/2022]
Abstract
Two new homoisoflavonoids, named ophiopogonone E (1) and ophiopogonanone H (2), together with thirteen known ones (3-15) were isolated from the tuberous roots of Ophiopogon japonicus. Their structures were elucidated by spectroscopic and chemical analyses. Compounds 7 and 15 were isolated from the genus for the first time. In addition, compounds 2-15 were evaluated for their effects on the inhibition of NO production induced by lipopolysaccharide in the murine microglial cell line BV-2. Compounds 2, 4, 6, 7, 10, 11 showed potent inhibitory effects on NO production with IC(50) values of 20.1, 17.0, 7.8, 5.1, 19.2 and 14.4 μM respectively.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Wang Y, Xu J, Qu H. Determination of three steroidal saponins from Ophiopogon japonicus (Liliaceae) via high-performance liquid chromatography with mass spectrometry. Nat Prod Res 2012; 27:72-5. [DOI: 10.1080/14786419.2012.656109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Yongyi Wang
- a Pharmaceutical Informatics Institute, Zhejiang University , Hangzhou 310058 , P.R. China
| | - Jinzhong Xu
- a Pharmaceutical Informatics Institute, Zhejiang University , Hangzhou 310058 , P.R. China
| | - Haibin Qu
- a Pharmaceutical Informatics Institute, Zhejiang University , Hangzhou 310058 , P.R. China
| |
Collapse
|
48
|
Desideri N, Bolasco A, Fioravanti R, Monaco LP, Orallo F, Yáñez M, Ortuso F, Alcaro S. Homoisoflavonoids: natural scaffolds with potent and selective monoamine oxidase-B inhibition properties. J Med Chem 2011; 54:2155-64. [PMID: 21405131 DOI: 10.1021/jm1013709] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of homoisoflavonoids [(E)-3-benzylidenechroman-4-ones 1a-w, 3-benzyl-4H-chromen-4-ones 2a-g, and 3-benzylchroman-4-ones 3a-e] have been synthesized and tested in vitro as inhibitors of human monoamine oxidase isoforms A and B (hMAO-A and hMAO-B). Most of the compounds were found to be potent and selective MAO-B inhibitors. In general, the (E)-3-benzylidenechroman-4-ones 1a-w showed activities in the nano- or micromolar range coupled with high selectivity against hMAO-B. The reduction of the exocyclic double bond results in compounds 3a-e selective against isoform B and active in the micromolar range. In contrast, the endocyclic migration of the double bond (compounds 2a-g) generally produces the loss of the inhibitory activity or a marked reduction in potency. (E)-3-(4-(Dimethylamino)benzylidene)chroman-4-one (1l) and (E)-5,7-dihydroxy-3-(4-hydroxybenzylidene)chroman-4-one (1h) were the most interesting compounds of the entire series of inhibitors, showing hMAO-B affinity better than the selective inhibitor selegiline. Molecular modeling studies have been carried out to explain the selectivity of the most active homoisoflavonoids 1h and 1l.
Collapse
Affiliation(s)
- Nicoletta Desideri
- Dipartimento di Chimica e Tecnologie del Farmaco, Università La Sapienza di Roma, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|