1
|
Moreno-Vargas LM, Prada-Gracia D. Exploring the Chemical Features and Biomedical Relevance of Cell-Penetrating Peptides. Int J Mol Sci 2024; 26:59. [PMID: 39795918 PMCID: PMC11720145 DOI: 10.3390/ijms26010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/13/2025] Open
Abstract
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake. Clinical trials have highlighted the potential of CPPs in diagnosing and treating various diseases, including cancer, central nervous system disorders, eye disorders, and diabetes. This review provides a comprehensive overview of CPP classifications, potential applications, transduction mechanisms, and the most relevant algorithms to improve the accuracy and reliability of predictions in CPP development.
Collapse
|
2
|
Wang S, Shcherbii MV, Hirvonen SP, Silvennoinen G, Sarparanta M, Santos HA. Quantitative analysis of electroporation-mediated intracellular delivery via bioorthogonal luminescent reaction. Commun Chem 2024; 7:181. [PMID: 39147836 PMCID: PMC11327378 DOI: 10.1038/s42004-024-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Efficient intracellular delivery is crucial for biotherapeutics, such as proteins, oligonucleotides, and CRISPR/Cas9 gene-editing systems, to achieve their efficacy. Despite the great efforts of developing new intracellular delivery carriers, the lack of straightforward methods for intracellular delivery quantification limits further development in this area. Herein, we designed a simple and versatile bioorthogonal luminescent reaction (BioLure assay) to analyze intracellular delivery. Our results suggest that BioLure can be used to estimate the amount of intracellularly delivered molecules after electroporation, and the estimation by BioLure is in good correlation with the results from complementary methods. Furthermore, we used BioLure assay to correlate the intracellularly-delivered RNase A amount with its tumoricidal activity. Overall, BioLure is a versatile tool for understanding the intracellular delivery process on live cells, and establishing the link between the cytosolic concentration of intracellularly-delivered biotherapeutics and their therapeutic efficacy.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Mariia V Shcherbii
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Sami-Pekka Hirvonen
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Gudrun Silvennoinen
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, The Netherlands
| |
Collapse
|
3
|
Batistatou N, Kritzer JA. Recent advances in methods for quantifying the cell penetration of macromolecules. Curr Opin Chem Biol 2024; 81:102501. [PMID: 39024686 PMCID: PMC11323051 DOI: 10.1016/j.cbpa.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
As the landscape of macromolecule therapeutics advances, drug developers are continuing to aim at intracellular targets. To activate, inhibit, or degrade these targets, the macromolecule must be delivered efficiently to intracellular compartments. Quite often, there is a discrepancy between binding affinity in biochemical assays and activity in cell-based assays. Identifying the bottleneck for cell-based activity requires robust assays that quantify total cellular uptake and/or cytosolic delivery. Recognizing this need, chemical biologists have designed a plethora of assays to make this measurement, each with distinct advantages and disadvantages. In this review, we describe the latest and most promising developments in the last 3 to 4 years.
Collapse
Affiliation(s)
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA.
| |
Collapse
|
4
|
Wu Y, Angelova A. Recent Uses of Lipid Nanoparticles, Cell-Penetrating and Bioactive Peptides for the Development of Brain-Targeted Nanomedicines against Neurodegenerative Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3004. [PMID: 38063700 PMCID: PMC10708303 DOI: 10.3390/nano13233004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2024]
Abstract
The lack of effective treatments for neurodegenerative diseases (NDs) is an important current concern. Lipid nanoparticles can deliver innovative combinations of active molecules to target the various mechanisms of neurodegeneration. A significant challenge in delivering drugs to the brain for ND treatment is associated with the blood-brain barrier, which limits the effectiveness of conventional drug administration. Current strategies utilizing lipid nanoparticles and cell-penetrating peptides, characterized by various uptake mechanisms, have the potential to extend the residence time and bioavailability of encapsulated drugs. Additionally, bioactive molecules with neurotropic or neuroprotective properties can be delivered to potentially mediate the ND targeting pathways, e.g., neurotrophin deficiency, impaired lipid metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, accumulation of misfolded proteins or peptide fragments, toxic protein aggregates, oxidative stress damage, and neuroinflammation. This review discusses recent advancements in lipid nanoparticles and CPPs in view of the integration of these two approaches into nanomedicine development and dual-targeted nanoparticulate systems for brain delivery in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
5
|
Colombano A, Dalponte L, Dall'Angelo S, Clemente C, Idress M, Ghazal A, Houssen WE. Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides. Angew Chem Int Ed Engl 2023; 62:e202215979. [PMID: 36815722 PMCID: PMC10946513 DOI: 10.1002/anie.202215979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.
Collapse
Affiliation(s)
- Alessandro Colombano
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Luca Dalponte
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Sergio Dall'Angelo
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Claudia Clemente
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Mohannad Idress
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
- Abzena, Babraham Research CampusCambridgeUK
| | - Ahmad Ghazal
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Wael E. Houssen
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| |
Collapse
|
6
|
Sadiq IZ, Muhammad A, Mada SB, Ibrahim B, Umar UA. Biotherapeutic effect of cell-penetrating peptides against microbial agents: a review. Tissue Barriers 2021; 10:1995285. [PMID: 34694961 DOI: 10.1080/21688370.2021.1995285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selective permeability of biological membranes represents a significant barrier to the delivery of therapeutic substances into both microorganisms and mammalian cells, restricting the access of drugs into intracellular pathogens. Cell-penetrating peptides usually 5-30 amino acids with the characteristic ability to penetrate biological membranes have emerged as promising antimicrobial agents for treating infections as well as an effective delivery modality for biological conjugates such as nucleic acids, drugs, vaccines, nanoparticles, and therapeutic antibodies. However, several factors such as antimicrobial resistance and poor drug delivery of the existing medications justify the urgent need for developing a new class of antimicrobials. Herein, we review cell-penetrating peptides (CPPs) used to treat microbial infections. Although these peptides are biologically active for infections, effective transduction into membranes and cargo transport, serum stability, and half-life must be improved for optimum functions and development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Sanusi Bello Mada
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Bashiru Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Umar Aliyu Umar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
7
|
Larsen JB, Taebnia N, Dolatshahi-Pirouz A, Eriksen AZ, Hjørringgaard C, Kristensen K, Larsen NW, Larsen NB, Marie R, Mündler AK, Parhamifar L, Urquhart AJ, Weller A, Mortensen KI, Flyvbjerg H, Andresen TL. Imaging therapeutic peptide transport across intestinal barriers. RSC Chem Biol 2021; 2:1115-1143. [PMID: 34458827 PMCID: PMC8341777 DOI: 10.1039/d1cb00024a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Oral delivery is a highly preferred method for drug administration due to high patient compliance. However, oral administration is intrinsically challenging for pharmacologically interesting drug classes, in particular pharmaceutical peptides, due to the biological barriers associated with the gastrointestinal tract. In this review, we start by summarizing the pharmacological performance of several clinically relevant orally administrated therapeutic peptides, highlighting their low bioavailabilities. Thus, there is a strong need to increase the transport of peptide drugs across the intestinal barrier to realize future treatment needs and further development in the field. Currently, progress is hampered by a lack of understanding of transport mechanisms that govern intestinal absorption and transport of peptide drugs, including the effects of the permeability enhancers commonly used to mediate uptake. We describe how, for the past decades, mechanistic insights have predominantly been gained using functional assays with end-point read-out capabilities, which only allow indirect study of peptide transport mechanisms. We then focus on fluorescence imaging that, on the other hand, provides opportunities to directly visualize and thus follow peptide transport at high spatiotemporal resolution. Consequently, it may provide new and detailed mechanistic understanding of the interplay between the physicochemical properties of peptides and cellular processes; an interplay that determines the efficiency of transport. We review current methodology and state of the art in the field of fluorescence imaging to study intestinal barrier transport of peptides, and provide a comprehensive overview of the imaging-compatible in vitro, ex vivo, and in vivo platforms that currently are being developed to accelerate this emerging field of research.
Collapse
Affiliation(s)
- Jannik Bruun Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Alireza Dolatshahi-Pirouz
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Anne Zebitz Eriksen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Claudia Hjørringgaard
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kasper Kristensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nanna Wichmann Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Niels Bent Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Rodolphe Marie
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ann-Kathrin Mündler
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ladan Parhamifar
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Andrew James Urquhart
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Arjen Weller
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kim I Mortensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Henrik Flyvbjerg
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Thomas Lars Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| |
Collapse
|
8
|
In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides. Int J Mol Sci 2020; 21:ijms21134719. [PMID: 32630650 PMCID: PMC7369778 DOI: 10.3390/ijms21134719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
The cell membrane is a complex and highly regulated system that is composed of lipid bilayer and proteins. One of the main functions of the cell membrane is the regulation of cell entry. Cell-penetrating peptides (CPPs) are defined as peptides that can cross the plasma membrane and deliver their cargo inside the cell. The uptake of a peptide is determined by its sequence and biophysicochemical properties. At the same time, the uptake mechanism and efficiency are shown to be dependent on local peptide concentration, cell membrane lipid composition, characteristics of the cargo, and experimental methodology, suggesting that a highly efficient CPP in one system might not be as productive in another. To better understand the dependence of CPPs on the experimental system, we present a review of the in vitro assays that have been employed in the literature to evaluate CPPs and CPP-cargos. Our comprehensive review suggests that utilization of orthogonal assays will be more effective for deciphering the true ability of CPPs to translocate through the membrane and enter the cell cytoplasm.
Collapse
|
9
|
Karatas H, Maric T, D’Alessandro PL, Yevtodiyenko A, Vorherr T, Hollingworth GJ, Goun EA. Real-Time Imaging and Quantification of Peptide Uptake in Vitro and in Vivo. ACS Chem Biol 2019; 14:2197-2205. [PMID: 31498986 DOI: 10.1021/acschembio.9b00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peptides constitute an important class of drugs for the treatment of multiple metabolic, oncological, and neurodegenerative diseases, and several hundred novel therapeutic peptides are currently in the preclinical and clinical stages of development. However, many leads fail to advance clinically because of poor cellular membrane and tissue permeability. Therefore, assessment of the ability of a peptide to cross cellular membranes is critical when developing novel peptide-based therapeutics. Current methods to assess peptide cellular permeability are limited by multiple factors, such as the need to introduce rather large modifications (e.g., fluorescent dyes) that require complex chemical reactions as well as an inability to provide kinetic information on the internalization of a compound or distinguish between internalized and membrane-bound compounds. In addition, many of these methods are based on end point assays and require multiple sample manipulation steps. Herein, we report a novel "Split Luciferin Peptide" (SLP) assay that enables the real-time noninvasive imaging and quantification of peptide uptake both in vitro and in vivo using a very sensitive bioluminescence readout. This method is based on a straightforward, stable chemical modification of the peptide of interest with a d-cysteine tag that preserves the overall peptidic character of the original molecule. This method can be easily adapted for screening peptide libraries and can thus become an important tool for preclinical peptide drug development.
Collapse
Affiliation(s)
- Hacer Karatas
- Laboratory of Bioorganic Chemistry and Molecular Imaging, Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tamara Maric
- Laboratory of Bioorganic Chemistry and Molecular Imaging, Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Aleksey Yevtodiyenko
- Laboratory of Bioorganic Chemistry and Molecular Imaging, Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thomas Vorherr
- Novartis Pharma AG, Werk Klybeck Postfach, 4002 Basel, Switzerland
| | | | - Elena A. Goun
- Laboratory of Bioorganic Chemistry and Molecular Imaging, Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Deprey K, Becker L, Kritzer J, Plückthun A. Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. Bioconjug Chem 2019; 30:1006-1027. [PMID: 30882208 PMCID: PMC6527423 DOI: 10.1021/acs.bioconjchem.9b00112] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecules have many properties that make them promising for intracellular therapeutic applications, but delivery remains a key challenge because large biomolecules cannot easily enter the cytosol. Furthermore, quantification of total intracellular versus cytosolic concentrations remains demanding, and the determination of delivery efficiency is thus not straightforward. In this review, we discuss strategies for delivering biomolecules into the cytosol and briefly summarize the mechanisms of uptake for these systems. We then describe commonly used methods to measure total cellular uptake and, more selectively, cytosolic localization, and discuss the major advantages and drawbacks of each method. We critically evaluate methods of measuring "cell penetration" that do not adequately distinguish total cellular uptake and cytosolic localization, which often lead to inaccurate interpretations of a molecule's cytosolic localization. Finally, we summarize the properties and components of each method, including the main caveats of each, to allow for informed decisions about method selection for specific applications. When applied correctly and interpreted carefully, methods for quantifying cytosolic localization offer valuable insight into the bioactivity of biomolecules and potentially the prospects for their eventual development into therapeutics.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joshua Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Peraro L, Kritzer JA. Emerging Methods and Design Principles for Cell-Penetrant Peptides. Angew Chem Int Ed Engl 2018; 57:11868-11881. [PMID: 29740917 PMCID: PMC7184558 DOI: 10.1002/anie.201801361] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell-penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best-odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide.
Collapse
Affiliation(s)
- Leila Peraro
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| |
Collapse
|
12
|
Peraro L, Kritzer JA. Neue Methoden und Designprinzipien für zellgängige Peptide. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Leila Peraro
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| | - Joshua A. Kritzer
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
13
|
Acar H, Samaeekia R, Schnorenberg MR, Sasmal DK, Huang J, Tirrell MV, LaBelle JL. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation. Bioconjug Chem 2017; 28:2316-2326. [PMID: 28771332 DOI: 10.1021/acs.bioconjchem.7b00364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein-protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a Förster resonance energy transfer (FRET)-based tracking system. Using this platform, we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| | - Ravand Samaeekia
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| | - Mathew R Schnorenberg
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States.,Medical Scientist Training Program, University of Chicago , 924 East 57th Street, Suite 104, Chicago, Illinois 60637, United States
| | - Dibyendu K Sasmal
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jun Huang
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Institute for Molecular Engineering, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60639, United States
| | - James L LaBelle
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
GUO ZHENGRONG, PENG HUANYAN, KANG JIWEN, SUN DIANXING. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomed Rep 2016; 4:528-534. [PMID: 27123243 PMCID: PMC4840506 DOI: 10.3892/br.2016.639] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/09/2016] [Indexed: 01/09/2023] Open
Abstract
Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse peptides with 5-30 amino acids. CPPs are divided into cationic, amphipathic and hydrophobic CPPs. They are able to carry small molecules, plasmid DNA, small interfering RNA, proteins, viruses, imaging agents and other various nanoparticles across the cellular membrane, resulting in internalization of the intact cargos. However, the mechanisms of CPP internalization remain to be elucidated. Recently, CPPs have received considerable attention due to their high transduction efficiency and low cytotoxicity. These peptides have a significant potential for diagnostic and therapeutic applications, such as delivery of fluorescent or radioactive compounds for imaging, delivery of peptides and proteins for therapeutic application, and delivery of molecules into induced pluripotent stem cells for directing differentiation. The present study reviews the classifications and transduction mechanisms of CPPs, as well as their potential applications.
Collapse
Affiliation(s)
- ZHENGRONG GUO
- The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
- Department of Gastroenterology, The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050011, P.R. China
| | - HUANYAN PENG
- The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
- Hebei Medical University Graduate School, Shijiazhuang, Hebei 050017, P.R. China
| | - JIWEN KANG
- The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - DIANXING SUN
- The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| |
Collapse
|
15
|
Kacprzak K, Skiera I, Piasecka M, Paryzek Z. Alkaloids and Isoprenoids Modification by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition (Click Chemistry): Toward New Functions and Molecular Architectures. Chem Rev 2016; 116:5689-743. [DOI: 10.1021/acs.chemrev.5b00302] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karol Kacprzak
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Iwona Skiera
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Monika Piasecka
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Zdzisław Paryzek
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
16
|
Abstract
During the three decades of cell-penetrating peptides era the superfamily of CPPs has rapidly expanded, and the quest for new sequences continues. CPPs have been well recognized by scientific community and they have been used for transduction of a wide variety of molecules and particles into cultured cells and in vivo. In parallel with application of CPPs for delivering of active payloads, the mechanisms that such peptides take advantage of for gaining access to cells' insides have been in the focus of intense studies. Although the common denominator "cell penetration" unites all CPPs, the interaction partners on the cell surface, evoked cellular responses and even the uptake mechanisms might greatly vary between different peptide types. Here we present some possibilities for classification of CPPs based on their type of origin, physical-chemical properties, and the extent of modifications and design efforts. We also briefly analyze the internalization mechanisms with regard to their classification into groups based on physical-chemical characteristics.
Collapse
|
17
|
Oueis E, Adamson C, Mann G, Ludewig H, Redpath P, Migaud M, Westwood NJ, Naismith JH. Derivatisable Cyanobactin Analogues: A Semisynthetic Approach. Chembiochem 2015; 16:2646-50. [PMID: 26507241 PMCID: PMC4736454 DOI: 10.1002/cbic.201500494] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/24/2022]
Abstract
Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine‐tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger‐scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics.
Collapse
Affiliation(s)
- Emilia Oueis
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Catherine Adamson
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Greg Mann
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Hannes Ludewig
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Philip Redpath
- John King Medicinal Chemistry Laboratory, School of Pharmacy, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Marie Migaud
- John King Medicinal Chemistry Laboratory, School of Pharmacy, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Nicholas J Westwood
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK. .,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Jallouk AP, Palekar RU, Pan H, Schlesinger PH, Wickline SA. Modifications of natural peptides for nanoparticle and drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:57-91. [PMID: 25819276 PMCID: PMC4750874 DOI: 10.1016/bs.apcsb.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural products serve as an important source of novel compounds for drug development. Recently, peptides have emerged as a new class of therapeutic agents due to their versatility and specificity for biological targets. Yet, their effective application often requires use of a nanoparticle delivery system. In this chapter, we review the role of natural peptides in the design and creation of nanomedicines, with a particular focus on cell-penetrating peptides, antimicrobial peptides, and peptide toxins. The use of natural peptides in conjunction with nanoparticle delivery systems holds great promise for the development of new therapeutic formulations as well as novel platforms for the delivery of various cargoes.
Collapse
Affiliation(s)
- Andrew P. Jallouk
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
| | - Rohun U. Palekar
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
| | - Hua Pan
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
| | - Paul H. Schlesinger
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Samuel A. Wickline
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| |
Collapse
|
19
|
Quartararo JS, Eshelman MR, Peraro L, Yu H, Baleja JD, Lin YS, Kritzer JA. A bicyclic peptide scaffold promotes phosphotyrosine mimicry and cellular uptake. Bioorg Med Chem 2014; 22:6387-91. [PMID: 25438762 DOI: 10.1016/j.bmc.2014.09.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023]
Abstract
While peptides are promising as probes and therapeutics, targeting intracellular proteins will require greater understanding of highly structured, cell-internalized scaffolds. We recently reported BC1, an 11-residue bicyclic peptide that inhibits the Src homology 2 (SH2) domain of growth factor receptor-bound protein 2 (Grb2). In this work, we describe the unique structural and cell uptake properties of BC1 and similar cyclic and bicyclic scaffolds. These constrained scaffolds are taken up by mammalian cells despite their net neutral or negative charges, while unconstrained analogs are not. The mechanism of uptake is shown to be energy-dependent and endocytic, but distinct from that of Tat. The solution structure of BC1 was investigated by NMR and MD simulations, which revealed discrete water-binding sites on BC1 that reduce exposure of backbone amides to bulk water. This represents an original and potentially general strategy for promoting cell uptake.
Collapse
Affiliation(s)
- Justin S Quartararo
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, United States
| | - Matthew R Eshelman
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, United States
| | - Leila Peraro
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, United States
| | - Hongtao Yu
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, United States
| | - James D Baleja
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155, United States.
| |
Collapse
|
20
|
Zhao J, Zhou R, Fu X, Ren W, Ma L, Li R, Zhao Y, Guo L. Cell-Penetrable Lysine Dendrimers for Anti-Cancer Drug Delivery: Synthesis and Preliminary Biological Evaluation. Arch Pharm (Weinheim) 2014; 347:469-77. [PMID: 24740712 DOI: 10.1002/ardp.201300415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Jing Zhao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Rui Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Xiaoyu Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
- State Key Laboratory of Biotherapy; West China Hospital; Sichuan University; Chengdu P. R. China
| | - Wen Ren
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Lifang Ma
- School of Chemical Engineering; Sichuan University; Chengdu P. R. China
| | - Ran Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yi Zhao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry; Department of Medicinal Chemistry; West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| |
Collapse
|
21
|
Ghosh B, Jones LH. Target validation using in-cell small molecule clickable imaging probes. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00277b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of click chemistry to the visualization of chemical probes in in-cell chemical biology experiments is reviewed and the influence this research has had on target validation and molecular mode of action studies is also highlighted.
Collapse
Affiliation(s)
| | - Lyn H. Jones
- Pfizer
- Chemical Biology Group
- BioTherapeutics Chemistry
- WorldWide Medicinal Chemistry
- Cambridge
| |
Collapse
|
22
|
Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release 2013; 174:126-36. [PMID: 24291335 DOI: 10.1016/j.jconrel.2013.11.020] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/13/2022]
Abstract
The plasma membrane as a selectively permeable barrier of living cells is essential to cell survival and function. In many cases, however, the efficient passage of exogenous bioactive molecules through the plasma membrane remains a major hurdle for intracellular delivery of cargoes. During the last two decades, the potential of peptides for drug delivery into cells has been highlighted by the discovery of numerous cell-penetrating peptides (CPPs). CPPs serving as carriers can successfully intracellular transport cargoes such as siRNA, nucleic acids, proteins, small molecule therapeutic agents, quantum dots and MRI contrast agents. This review mainly introduces recent advances of CPPs as new carriers for the development of cellular imaging, nuclear localization, pH-sensitive and thermally targeted delivery systems. In particular, we highlight the exploiting of the synergistic effects of targeting ligands and CPPs. What's more, the classification and cellular uptake mechanisms of CPPs are briefly discussed as well.
Collapse
Affiliation(s)
- Feihu Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Institute of Pharmaceutical Industry, 1111 Zhongshan Beiyi Road, Shanghai 200437, PR China
| | - Yun Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiao Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Wenjun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Fang Jin
- Shanghai Institute of Pharmaceutical Industry, 1111 Zhongshan Beiyi Road, Shanghai 200437, PR China.
| |
Collapse
|
23
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1393] [Impact Index Per Article: 116.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
24
|
Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 2012; 17:850-60. [PMID: 22465171 DOI: 10.1016/j.drudis.2012.03.002] [Citation(s) in RCA: 615] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/04/2012] [Accepted: 03/07/2012] [Indexed: 11/24/2022]
Abstract
With more than ten new FDA approvals since 2001, peptides are emerging as an important therapeutic alternative to small molecules. However, unlike small molecules, peptides on the market today are limited to extracellular targets. By contrast, cell-penetrating peptides (CPPs) can target intracellular proteins and also carry other cargoes (e.g. other peptides, small molecules or proteins) into the cell, thus offering great potential as future therapeutics. In this review I present a classification scheme for CPPs based on their physical-chemical properties and origin, and I provide a general framework for understanding and discovering new CPPs.
Collapse
Affiliation(s)
- Francesca Milletti
- Hoffmann-La Roche Inc., pRED Informatics, 340 Kingsland Street, Nutley, NJ, USA.
| |
Collapse
|