1
|
Xu Q, Tu Y, Zhang Y, Xiu Y, Yu Z, Jiang H, Wang C. Discovery and biological evaluation of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives with promising antitumor activities as novel colchicine-binding site inhibitors. Eur J Med Chem 2024; 279:116869. [PMID: 39316845 DOI: 10.1016/j.ejmech.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tubulin, as the fundamental unit of microtubules, is a crucial target in the investigation of anticarcinogens. The synthesis and assessment of small-molecule tubulin polymerization inhibitors remains a promising avenue for the development of novel cancer therapeutics. Through an analysis of reported colchicine-binding site inhibitors (CBSIs) and tubulin binding models, a set of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives were meticulously crafted as potential CBSIs. Notably, compound 14u exhibited potent anti-proliferative efficacy, displaying IC50 values ranging from 0.03 to 0.18 μM against three human cancer cell lines (Huh7, MCF-7, and SGC-7901). Mechanistic investigations revealed that compound 14u could disrupt tubulin polymerization, dismantle the microtubule architecture, arrest the cell cycle at G2/M phase, and induce apoptosis in cancer cells. Furthermore, compound 14u demonstrated significant inhibition of tumor proliferation in vivo with no discernible toxicity in the Huh7 orthotopic tumor model mice. Additionally, physicochemical property predictions indicated that compound 14u adhered well to Lipinski's rule of five. These findings collectively suggest that compound 14u holds promise as an antitumor agent targeting the colchicine-binding site on tubulin and warrants further investigation.
Collapse
Affiliation(s)
- Qianqian Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yuxuan Tu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Zongjiang Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 26610, Shandong, China.
| | - Hongfei Jiang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
2
|
Kumar A, Sharma V, Behl T, Ganesan S, Nathiya D, Gulati M, Khalid M, Elossaily GM, Chigurupati S, Sachdeva M. Insights into medicinal attributes of imidazo[1,2-a]pyridine derivatives as anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2400402. [PMID: 39221527 DOI: 10.1002/ardp.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cancer ranks among the most life-threatening diseases worldwide and is continuously affecting all age groups. Consequently, many research studies are being carried out to develop new cancer treatments, but many of them experience resistance and cause severe toxicity to the patients. Therefore, there is a continuous need to design novel anticancer agents that are target-based, have a higher potency, and have minimal toxicity. The imidazo[1,2-a]pyridine (IP) pharmacophore has been found to be a prominent moiety in the field of medicinal chemistry due to its vast biological properties. Also, it holds immense potential for combating cancer with minimal side effects, depending on the substitution patterns of the core structure. IPs exhibit significant capability in regulating various cellular pathways, offering possibilities for targeted anticancer effects. The present review summarizes the anticancer profile of numerous IP derivatives synthesized and developed by various researchers from 2016 till now, as inhibitors of phosphoinositide-3-kinase/mammalian target of rapamycin (PI3K/mTOR), protein kinase B/mammalian target of rapamycin (Akt/mTOR), aldehyde dehydrogenase (ALDH), and tubulin polymerization. This review provides a comprehensive analysis of the anticancer activity afforded by the discussed IP compounds, emphasizing the structure-activity-relationships (SARs). The aim is also to underscore the potential therapeutic future of the IP moiety as a potent partial structure for upcoming cancer drug development and to aid researchers in the field of rational drug design.
Collapse
Affiliation(s)
- Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Myburgh PJ, Sai KKS. Development and Optimization of 11C-Labeled Radiotracers: A Review of the Modern Quality Control Design Process. ACS Pharmacol Transl Sci 2023; 6:1616-1631. [PMID: 37974626 PMCID: PMC10644505 DOI: 10.1021/acsptsci.3c00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 11/19/2023]
Abstract
Introduction - Several 11C-tracers have demonstrated high potential in early diagnostic PET imaging applications of neurodegenerative diseases including Alzheimer's and Parkinson's disease. These radiotracers often track critical biomarkers in disease pathogenesis such as tau fibrils ([11C]PBB3) or β-amyloid plaques ([11C]PiB) associated with such diseases. Purpose - The short review aims to serve as a guideline in the future development of radiotracers for students, postdocs and/or new radiochemists who will be synthesizing clinical grade or novel research 11C-tracers, including knowledge of regulatory requirements. We aim to bridge the gap between novel and established 11C-tracer quality control (QC) processes through exploring the design process and regulatory requirements for 11C-pharmaceuticals. Methods - A literature survey was undertaken to identify articles with a detailed description of the QC methodology and characterization for each of the sections of the review. Overview - First a general summary of 11C-tracer production was presented; this was used to establish possible places for contamination or assurances for a sterile final product. The key mandated QC analyses for clinical use were then discussed. Further, we assessed the QC methods used for established 11C-tracers and then reviewed the routine QC tests for preclinical translational and validation studies. Therefore, both mandated QC methods for clinical and preclinical animal studies were reviewed. Last, some examples of optimization and automation were reviewed, and implications of the QC practices associated with such procedures were considered. Conclusion - All of the common QC parameters associated with 11C-tracers under clinical and preclinical settings (along with a few exceptions) were discussed in detail. While it is important to establish standard, peer-reviewed QC testing protocols for a novel 11C-tracer entering the clinical umbrella, equal importance is needed on preclinical applications to address credibility and repeatability for the study.
Collapse
Affiliation(s)
- Paul Josef Myburgh
- Translational
Imaging Program, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
| | - Kiran Kumar Solingapuram Sai
- Translational
Imaging Program, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
- Department
of Radiology, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
4
|
Alam MS, Sultana A, Reza MS, Amanullah M, Kabir SR, Mollah MNH. Integrated bioinformatics and statistical approaches to explore molecular biomarkers for breast cancer diagnosis, prognosis and therapies. PLoS One 2022; 17:e0268967. [PMID: 35617355 PMCID: PMC9135200 DOI: 10.1371/journal.pone.0268967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Integrated bioinformatics and statistical approaches are now playing the vital role in identifying potential molecular biomarkers more accurately in presence of huge number of alternatives for disease diagnosis, prognosis and therapies by reducing time and cost compared to the wet-lab based experimental procedures. Breast cancer (BC) is one of the leading causes of cancer related deaths for women worldwide. Several dry-lab and wet-lab based studies have identified different sets of molecular biomarkers for BC. But they did not compare their results to each other so much either computationally or experimentally. In this study, an attempt was made to propose a set of molecular biomarkers that might be more effective for BC diagnosis, prognosis and therapies, by using the integrated bioinformatics and statistical approaches. At first, we identified 190 differentially expressed genes (DEGs) between BC and control samples by using the statistical LIMMA approach. Then we identified 13 DEGs (AKR1C1, IRF9, OAS1, OAS3, SLCO2A1, NT5E, NQO1, ANGPT1, FN1, ATF6B, HPGD, BCL11A, and TP53INP1) as the key genes (KGs) by protein-protein interaction (PPI) network analysis. Then we investigated the pathogenetic processes of DEGs highlighting KGs by GO terms and KEGG pathway enrichment analysis. Moreover, we disclosed the transcriptional and post-transcriptional regulatory factors of KGs by their interaction network analysis with the transcription factors (TFs) and micro-RNAs. Both supervised and unsupervised learning's including multivariate survival analysis results confirmed the strong prognostic power of the proposed KGs. Finally, we suggested KGs-guided computationally more effective seven candidate drugs (NVP-BHG712, Nilotinib, GSK2126458, YM201636, TG-02, CX-5461, AP-24534) compared to other published drugs by cross-validation with the state-of-the-art alternatives top-ranked independent receptor proteins. Thus, our findings might be played a vital role in breast cancer diagnosis, prognosis and therapies.
Collapse
Affiliation(s)
- Md. Shahin Alam
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail: (MNHM); (MSA)
| | - Adiba Sultana
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Md. Selim Reza
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Amanullah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail: (MNHM); (MSA)
| |
Collapse
|
5
|
Bilgi A, Yurt Kilcar A, Gokulu SG, Kayas C, Yildirim N, Karatay KB, Akman L, Biber Muftuler FZ, Ozsaran AA. mTOR inhibitors from a diagnostic perspective: radiolabeling of everolimus and its nanoformulation, in vitro incorporation assays against cervix and ovarian cancer cells. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Lu M, Yu L, Yang Y, Zhu J, Qiang S, Wang X, Wang J, Tan X, Wang W, Zhang Y, Wang W, Xie J, Chen X, Wang H, Cui X, Ge X. Hayatine inhibits amino acid-induced mTORC1 activation as a novel mTOR-Rag A/C interaction disruptor. Biochem Biophys Res Commun 2021; 583:71-78. [PMID: 34735882 DOI: 10.1016/j.bbrc.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Abnormal activation of the mechanistic target of rapamycin (mTOR) signaling is commonly observed in many cancers and attracts extensive attention as an oncology drug discovery target, which is encouraged by the success of rapamycin and its analogs (rapalogs) in treatment of mTORC1-hyperactive cancers in both pre-clinic models and clinical trials. However, rapamycin and existing rapalogs have typically short-lasting partial responses due to drug resistance, thereby triggering our interest to investigate a potential mTORC1 inhibitor that is mechanistically different from rapamycin. Here, we report that hayatine, a derivative from Cissampelos, can serve as a potential mTORC1 inhibitor selected from a natural compound library. The unique properties owned by hayatine such as downregulation of mTORC1 activities, induction of mTORC1's translocation to lysosomes followed by autophagy, and suppression on cancer cell growth, strongly emphasize its role as a potential mTORC1 inhibitor. Mechanistically, we found that hayatine disrupts the interaction between mTORC1 complex and its lysosomal adaptor RagA/C by binding to the hydrophobic loop of RagC, leading to mTORC1 inhibition that holds great promise to overcome rapamycin resistance. Taken together, our data shed light on an innovative strategy using structural interruption-based mTORC1 inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Meiling Lu
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200072, China
| | - Lei Yu
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Yanrong Yang
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Jiali Zhu
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Sujing Qiang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200072, China
| | - Xinbo Wang
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Jia Wang
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Xiao Tan
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Weifeng Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200072, China
| | - Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200072, China
| | - Weichao Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200072, China
| | - Jian Xie
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200060, China
| | - Xinyan Chen
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200060, China
| | - Hongbing Wang
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200060, China
| | - Xianghuan Cui
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200060, China.
| | - Xin Ge
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China.
| |
Collapse
|
7
|
Meng D, He W, Zhang Y, Liang Z, Zheng J, Zhang X, Zheng X, Zhan P, Chen H, Li W, Cai L. Development of PI3K inhibitors: Advances in clinical trials and new strategies (Review). Pharmacol Res 2021; 173:105900. [PMID: 34547385 DOI: 10.1016/j.phrs.2021.105900] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are the family of vital lipid kinases widely distributed in mammalian cells. The overexpression of PI3Ks leads to hyperactivation of the PI3K/AKT/mTOR pathway, which is considered a pivotal pathway in the occurrence and development of tumors. Hence, PI3Ks are viewed as promising therapeutic targets for anti-cancer therapy. To date, some PI3K inhibitors have achieved desired therapeutic effect via inhibiting the activity of PI3Ks or reducing the level of PI3Ks in clinical trials, among which, Idelalisib, Alpelisib and Duvelisib have been approved by the FDA for treatment of ER+/HER2- advanced metastatic breast cancer and refractory chronic lymphocytic leukemia (CLL) and small lymphocytic lymphomas (SLL). This review focuses on the latest advances of PI3K inhibitors with efficacious anticancer activity, which are classified into Pan-PI3K inhibitors, isoform-specific PI3K inhibitors and dual PI3K/mTOR inhibitors based on the isoform affinity. Their corresponding structure characteristics and structures-activity relationship (SAR), together with the progress in the clinical application are mainly discussed. Additionally, the new PI3K inhibitory strategy, such as PI3K degradation agent, for the design of potential PI3K candidates to overcome drug resistance is referred as well.
Collapse
Affiliation(s)
- Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Wei He
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Zhenguo Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Peng Zhan
- School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Road, Jinan 250012, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
8
|
Xu Z, Jia L, Liu W, Li W, Song Y, Zheng QH. Radiosynthesis of a carbon-11 labeled PDE5 inhibitor [ 11C]TPN171 as a new potential PET heart imaging agent. Appl Radiat Isot 2020; 162:109190. [PMID: 32501230 DOI: 10.1016/j.apradiso.2020.109190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
To develop PET tracers for imaging of heart disease, a new carbon-11 labeled potent and selective PDE5 inhibitor [11C]TPN171 ([11C]9) has been synthesized. The reference standard TPN171 (9) and its corresponding precursor desmethyl-TPN171 (11) were synthesized from methyl 3-oxovalerate and 2-hydroxybenzonitrile in 9 and 10 steps with 31% and 25% overall chemical yield, respectively. The radiotracer [11C]TPN171 was prepared from desmethyl-TPN171 with [11C]CH3OTf through N-11C-methylation and isolated by HPLC purification followed by SPE formulation in 45-55% radiochemical yield, based on [11C]CO2 and decay corrected to EOB. The radiochemical purity was >99%, and the molar activity (Am) at EOB was in a range of 370-740 GBq/μmol.
Collapse
Affiliation(s)
- Zhidong Xu
- College of Chemical & Pharmaceutical Engineering, Key Laboratory of Molecular Chemistry for Medicine of Hebei Province, Hebei University of Science & Technology, Shijiazhuang, Hebei, 050018, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei, 071002, China
| | - Limeng Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei, 071002, China
| | - Wenqing Liu
- College of Chemical & Pharmaceutical Engineering, Key Laboratory of Molecular Chemistry for Medicine of Hebei Province, Hebei University of Science & Technology, Shijiazhuang, Hebei, 050018, China
| | - Wei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei, 071002, China
| | - Ying Song
- Department of Chemical and Environmental Engineering, Hebei College of Industry & Technology, Shijiazhuang, Hebei, 050000, China.
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West, 16th Street, Room 208, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
11C-Labeled Pictilisib (GDC-0941) as a Molecular Tracer Targeting Phosphatidylinositol 3-Kinase (PI3K) for Breast Cancer Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:1760184. [PMID: 31787861 PMCID: PMC6877939 DOI: 10.1155/2019/1760184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022]
Abstract
Pictilisib (GDC-0941) is an inhibitor of phosphatidylinositol 3-kinase (PI3K), part of a signaling cascade involved in breast cancer development. The purpose of this study was to evaluate the pharmacokinetics of pictilisib noninvasively by radiolabeling it with 11C and to assess the usability of the resulting [11C]-pictilisib as a positron-emission tomography (PET) tracer to screen for pictilisib-sensitive tumors. In this study, pictilisib was radiolabeled with [11C]-methyl iodide to obtain 11C-methylated pictilisib ([11C]-pictilisib) using an automated synthesis module with a high radiolabeling yield. Considerably higher uptake ratios were observed in MCF-7 (PIK3CA mutation, pictilisib-sensitive) cells than those in MDA-MB-231 (PIK3CA wild-type, pictilisib-insensitive) cells at all evaluated time points, indicating good in vitro binding of [11C]-pictilisib. Dynamic micro-PET scans in mice and biodistribution results showed that [11C]-pictilisib was mainly excreted via the hepatobiliary tract into the intestines. MCF-7 xenografts could be clearly visualized on the static micro-PET scans, while MDA-MB-231 tumors could not. Biodistribution results of two xenograft models showed significantly higher uptake and tumor-to-muscle ratios in the MCF-7 xenografts than those in MDA-MB-231 xenografts, exhibiting high in vivo targeting specificity. In conclusion, [11C]-pictilisib was first successfully prepared, and it exhibited good potential to identify pictilisib-sensitive tumors noninvasively, which may have a great impact in the treatment of cancers with an overactive PI3K/Akt/mTOR signal pathway. However, the high activity in hepatobiliary system and intestines needs to be addressed.
Collapse
|
10
|
Radiosynthesis of a carbon-11 labeled tetrahydrobenzisoxazole derivative as a new PET probe for γ-secretase imaging in Alzheimer's disease. Appl Radiat Isot 2019; 155:108915. [PMID: 31590101 DOI: 10.1016/j.apradiso.2019.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 11/23/2022]
Abstract
To develop PET radiotracers for imaging of Alzheimer's disease, a new carbon-11 labeled potent and selective γ-secretase modulator (GSM) has been synthesized. The reference standard tetrahydrobenzisoxazole derivative 8 and its desmethylated precursor 9 were synthesized from cyclohex-2-en-1-one and 3-hydroxy-4-nitrobenzaldehyde in eight and nine steps with 11% and 5% overall chemical yield, respectively. The radiotracer [11C]8 was prepared from its corresponding precursor 9 with [11C]CH3OTf through O-11C-methylation and isolated by RP-HPLC combined with SPE in 45-50% radiochemical yield, based on [11C]CO2 and decay corrected to EOB. The radiochemical purity was >99%, and the molar activity (Am) at EOB was 555-740 GBq/μmol.
Collapse
|
11
|
Altine B, Gai Y, Han N, Jiang Y, Ji H, Fang H, Niyonkuru A, Bakari KH, Rajab Arnous MM, Liu Q, Zhang Y, Lan X. Preclinical Evaluation of a Fluorine-18 ( 18F)-Labeled Phosphatidylinositol 3-Kinase Inhibitor for Breast Cancer Imaging. Mol Pharm 2019; 16:4563-4571. [PMID: 31553879 DOI: 10.1021/acs.molpharmaceut.9b00690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Breast cancer is one of the commonest malignancies in women, especially in middle-aged and elderly women. Abnormal activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKt/mTOR) pathway has been found to be involved in breast cancer proliferation. Pictilisib (GDC-0941) is a potent inhibitor of PI3K with high affinity and is undergoing phase 2 clinical trials. In this study, we aimed to develop a noninvasive PI3K radiotracer to help determine the mechanism of the PI3K/AKt/mTOR pathway to aid in diagnosis. We designed a new 18F-radiolabeled radiotracer based on the structure of pictilisib, to evaluate noninvasively abnormal activation of the PI3K/AKT/mTOR pathway. To increase the water solubility, and to decrease hepatobiliary and gastrointestinal uptake of the tracer, pictilisib was modified with triethylene glycol di(p-toluenesulfonate) (TsO-PEG3-OTs) to obtain TsO-PEG3-GDC-0941 as the precursor for 18F labeling. A nonradiolabeled reference compound [19F]-PEG3-GDC-0941 was also prepared. Breast cancer cell lines, MCF-7 and MDA-MB-231, were used as high- and low-expression PI3K models, respectively. PET imaging and ex vivo biodistribution assays of [18F]-PEG3-GDC-0941 in MCF-7 and MDA-MB-231 xenografts were also performed, and the results were compared. The precursor compound and reference standard compound were successfully synthesized and identified using NMR and mass spectroscopy. The 18F radiolabeling was achieved with a high yield (61 ± 1%) at a high molar activity (2100 ± 100 MBq/mg). MicroPET images and biodistribution studies showed a higher uptake of the radiotracer in MCF-7 tumors than in MDA-MB-231 tumors (7.56 ± 1.01%ID/g vs 4.07 ± 0.68%ID/g, 1 h postinjection). Additionally, the MCF-7 tumor uptake was significantly decreased when a blocking dose of GDC-0941 was coinjected, indicating high specificity. The liver was found to be the major excretory organ with 5.82 ± 0.88%ID/g at 30 min postinjection for MCF-7 mice. This radiotracer holds great potential for patient screening, diagnosis, and therapy prediction of PI3K-related diseases.
Collapse
Affiliation(s)
- Bouhari Altine
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Na Han
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Hanyi Fang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Alexandre Niyonkuru
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Khamis Hassan Bakari
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Maher Mohamad Rajab Arnous
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| |
Collapse
|
12
|
Radiosynthesis of carbon-11 labeled PDE5 inhibitors as new potential PET radiotracers for imaging of Alzheimer's disease. Appl Radiat Isot 2019; 154:108873. [PMID: 31470193 DOI: 10.1016/j.apradiso.2019.108873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Accepted: 08/21/2019] [Indexed: 11/20/2022]
Abstract
To develop PET tracers for imaging of Alzheimer's disease, new carbon-11 labeled potent and selective PDE5 inhibitors have been synthesized. The reference standards (5) and (12), and their corresponding desmethylated precursors (6) and (13) were synthesized from methyl 2-amino-5-bromobenzoate and (4-methoxyphenyl)methanamine in multiple steps with 2%, 1%, 1% and 0.2% overall chemical yield, respectively. The radiotracers ([11C]5) and ([11C]12) were prepared from their corresponding precursors 6 and 13 with [11C]CH3OTf through O-11C-methylation and isolated by HPLC combined with SPE in 40-50% radiochemical yield, based on [11C]CO2 and decay corrected to EOB. The radiochemical purity was >99%, and the molar activity (Am) at EOB was in a range of 370-740 GBq/μmol.
Collapse
|
13
|
Calvello M, Flore MC, Richeldi L. Novel drug targets in idiopathic pulmonary fibrosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1590196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mariarosaria Calvello
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Chiara Flore
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UniversitàCattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
14
|
Bonomi R, Popov V, Laws MT, Gelovani D, Majhi A, Shavrin A, Lu X, Muzik O, Turkman N, Liu R, Mangner T, Gelovani JG. Molecular Imaging of Sirtuin1 Expression-Activity in Rat Brain Using Positron-Emission Tomography-Magnetic-Resonance Imaging with [ 18F]-2-Fluorobenzoylaminohexanoicanilide. J Med Chem 2018; 61:7116-7130. [PMID: 30052441 DOI: 10.1021/acs.jmedchem.8b00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sirtuin 1 (SIRT1) is a class III histone deacetylase that plays significant roles in the regulation of lifespan, metabolism, memory, and circadian rhythms and in the mechanisms of many diseases. However, methods of monitoring the pharmacodynamics of SIRT1-targeted drugs are limited to blood sampling because of the invasive nature of biopsies. For the noninvasive monitoring of the spatial and temporal dynamics of SIRT1 expression-activity in vivo by PET-CT-MRI, we developed a novel substrate-type radiotracer, [18F]-2-fluorobenzoylaminohexanoicanilide (2-[18F]BzAHA). PET-CT-MRI studies in rats demonstrated increased accumulation of 2-[18F]BzAHA-derived radioactivity in the hypothalamus, hippocampus, nucleus accumbens, and locus coeruleus, consistent with autoradiographic and immunofluorescent (IMF) analyses of brain-tissue sections. Pretreatment with the SIRT1 specific inhibitor, EX-527 (5 mg/kg, ip), resulted in about a 20% reduction of 2-[18F]BzAHA-derived-radioactivity accumulation in these structures. In vivo imaging of SIRT1 expression-activity should facilitate studies that improve the understanding of SIRT1-mediated regulation in the brain and aid in the development and clinical translation of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Robin Bonomi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Vadim Popov
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Maxwell T Laws
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - David Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Anjoy Majhi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Aleksandr Shavrin
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | | | | | - Nashaat Turkman
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Renshyan Liu
- National Taiwan University , Taipei City 10617 , Taiwan
| | | | - Juri G Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| |
Collapse
|
15
|
Synthesis of carbon-11-labeled 5-HT6R antagonists as new candidate PET radioligands for imaging of Alzheimer’s disease. Bioorg Med Chem Lett 2018; 28:1836-1841. [DOI: 10.1016/j.bmcl.2018.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
|
16
|
Gao M, Wang M, Zheng QH. Synthesis of carbon-11-labeled CK1 inhibitors as new potential PET radiotracers for imaging of Alzheimer's disease. Bioorg Med Chem Lett 2018; 28:2234-2238. [PMID: 29859907 DOI: 10.1016/j.bmcl.2018.05.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
The reference standards methyl 3-((2,2-difluoro-5H-[1,3]dioxolo[4',5':4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoate (5a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4',5':4,5]benzo[1,2-d]imidazol-6-yl)-3-methoxybenzamide (5c), and their corresponding desmethylated precursors 3-((2,2-difluoro-5H-[1,3]dioxolo[4',5':4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoic acid (6a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4',5':4,5]benzo[1,2-d]imidazol-6-yl)-3-hydroxybenzamide (6b), were synthesized from 5-amino-2,2-difluoro-1,3-benzodioxole and 3-substituted benzoic acids in 5 and 6 steps with 33% and 11%, 30% and 7% overall chemical yield, respectively. Carbon-11-labeled casein kinase 1 (CK1) inhibitors, [11C]methyl 3-((2,2-difluoro-5H-[1,3]dioxolo[4',5':4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoate ([11C]5a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4',5':4,5]benzo[1,2-d]imidazol-6-yl)-3-[11C]methoxybenzamide ([11C]5c), were prepared from their O-desmethylated precursor 6a or 6b with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 40-45% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370-740 GBq/μmol with a total synthesis time of ∼40-min from EOB.
Collapse
Affiliation(s)
- Mingzhang Gao
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA
| | - Min Wang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA.
| |
Collapse
|
17
|
Slobbe P, Windhorst AD, Adamzek K, Bolijn M, Schuit RC, Heideman DAM, van Dongen GAMS, Poot AJ. Development of [11C]vemurafenib employing a carbon-11 carbonylative Stille coupling and preliminary evaluation in mice bearing melanoma tumor xenografts. Oncotarget 2018; 8:38337-38350. [PMID: 28418885 PMCID: PMC5503536 DOI: 10.18632/oncotarget.16321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/15/2017] [Indexed: 01/07/2023] Open
Abstract
Over the last decade kinase inhibitors have witnessed tremendous growth as anti-cancer drugs. Unfortunately, despite their promising clinical successes, a large portion of patients does not benefit from these targeted therapeutics. Vemurafenib is a serine/threonine kinase inhibitor approved for the treatment of melanomas specifically expressing the BRAFV600E mutation. The aim of this study was to develop vemurafenib as PET tracer to determine its potential for identification of tumors sensitive to vemurafenib treatment. Therefore, vemurafenib was labeled with carbon-11 and analyzed for its tumor targeting potential in melanoma xenografts Colo829 (BRAFV600E) and MeWo (BRAFwt) using autoradiography on tissue sections, in vitro tumor cell uptake studies and biodistribution studies in xenografted athymic nu/nu mice. [11C]vemurafenib was synthesized in 21 ± 4% yield (decay corrected, calculated from [11C]CO) in > 99% radiochemical purity and a specific activity of 55 ± 18 GBq/μmol. Similar binding of [11C]vemurafenib was shown during autoradiography and cellular uptake studies in both cell lines. Plasma metabolite analysis demonstrated > 95% intact [11C]vemurafenib in vivo at 45 minutes after injection, indicating excellent stability. Biodistribution studies confirmed the in vitro results, showing similar tumor-to-background ratios in both xenografts models. These preliminary results suggest that identification of BRAFV600E mutations in vivo using PET with [11C]vemurafenib will be challenging.
Collapse
Affiliation(s)
- Paul Slobbe
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.,Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Kevin Adamzek
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marije Bolijn
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert C Schuit
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.,Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Alex J Poot
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Synthesis of N -(3-(4-[ 11 C]methylpiperazin-1-yl)−1-(5-methylpyridin-2-yl)−1 H -pyrazol-5-yl)pyrazolo[1,5- a ]pyrimidine-3-carboxamide as a new potential PET agent for imaging of IRAK4 enzyme in neuroinflammation. Appl Radiat Isot 2018; 132:6-12. [DOI: 10.1016/j.apradiso.2017.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/17/2017] [Accepted: 11/05/2017] [Indexed: 12/19/2022]
|
19
|
Varone F, Montemurro G, Macagno F, Calvello M, Conte E, Intini E, Iovene B, Leone PM, Mari PV, Richeldi L. Investigational drugs for idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2017; 26:1019-1031. [PMID: 28777013 DOI: 10.1080/13543784.2017.1364361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION IPF is a specific form of chronic fibrosing interstitial pneumonia of unknown cause, characterized by progressive worsening in lung function and an unfavorable prognosis. Current concepts on IPF pathogenesis are based on a dysregulated wound healing response, leading to an over production of extracellular matrix. Based on recent research however, several other mechanisms are now proposed as potential targets for novel therapeutic strategies. Areas covered: This review analyzes the current investigational strategies targeting extracellular matrix deposition, tyrosine-kinase antagonism, immune and autoimmune response, and cell-based therapy. A description of the pathogenic rationale implied in each novel therapeutic approach is summarized. Expert opinion: New IPF drugs are being evaluated in the context of phase 1 and 2 clinical trials. Nevertheless, many drugs that have shown efficacy in preclinical studies, failed to exhibit the same positive effect when translated to humans. A possible explanation for these failures might be related to the known limitations of animal models of the disease. The recent development of 3D systems composed of cells from individual patients that recreate an ex-vivo model of IPF, could lead to significant improvements in disease pathogenesis and treatment. New drugs could be tested on more genuine models and clinicians could tailor therapy based on patient's response.
Collapse
Affiliation(s)
- Francesco Varone
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Giuliano Montemurro
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Francesco Macagno
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Mariarosaria Calvello
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Emanuele Conte
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Enrica Intini
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Bruno Iovene
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Paolo Maria Leone
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Pier-Valerio Mari
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Luca Richeldi
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| |
Collapse
|
20
|
Gao M, Wang M, Meyer JA, Peters JS, Zarrinmayeh H, Territo PR, Hutchins GD, Zheng QH. Synthesis and preliminary biological evaluation of [ 11 C]methyl (2-amino-5-(benzylthio)thiazolo[4,5- d ]pyrimidin-7-yl)- d -leucinate for the fractalkine receptor (CX 3 CR1). Bioorg Med Chem Lett 2017; 27:2727-2730. [DOI: 10.1016/j.bmcl.2017.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/19/2022]
|
21
|
Synthesis and preliminary biological evaluation of radiolabeled 5-BDBD analogs as new candidate PET radioligands for P2X4 receptor. Bioorg Med Chem 2017; 25:3835-3844. [PMID: 28554730 DOI: 10.1016/j.bmc.2017.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
P2X4 receptor has become an interesting molecular target for treatment and PET imaging of neuroinflammation and associated brain diseases such as Alzheimer's disease. This study reports the first design, synthesis, radiolabeling and biological evaluation of new candidate PET P2X4 receptor radioligands using 5-BDBD, a specific P2X4 receptor antagonist, as a scaffold. 5-(3-Hydroxyphenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD analog, [11C]9) and 5-(3-Bromophenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD, [11C]8c) were prepared from their corresponding desmethylated precursors with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with SPE in 30-50% decay corrected radiochemical yields with 370-1110GBq/µmol specific activity at EOB. 5-(3-[18F]Fluorophenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]F-5-BDBD, [18F]5a) and 5-(3-(2-[18F]fluoroethoxy)phenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]FE-5-BDBD, [18F]11) were prepared from their corresponding nitro- and tosylated precursors by nucleophilic substitution with K[18F]F/Kryptofix 2.2.2 and isolated by HPLC-SPE in 5-25% decay corrected radiochemical yields with 111-740GBq/µmol specific activity at EOB. The preliminary biological evaluation of radiolabeled 5-BDBD analogs indicated these new radioligands have similar biological activity with their parent compound 5-BDBD.
Collapse
|
22
|
Wang M, Gao M, Xu Z, Zheng QH. Synthesis of [11C]HG-10-102-01 as a new potential PET agent for imaging of LRRK2 enzyme in Parkinson’s disease. Bioorg Med Chem Lett 2017; 27:1351-1355. [DOI: 10.1016/j.bmcl.2017.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
|
23
|
Gao M, Wang M, Zheng QH. Synthesis of carbon-11-labeled isonicotinamides as new potential PET agents for imaging of GSK-3 enzyme in Alzheimer’s disease. Bioorg Med Chem Lett 2017; 27:740-743. [DOI: 10.1016/j.bmcl.2017.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/29/2022]
|
24
|
Synthesis and antitumor activity evaluation of 4,6-disubstituted quinazoline derivatives as novel PI3K inhibitors. Bioorg Med Chem Lett 2016; 26:4408-4413. [DOI: 10.1016/j.bmcl.2016.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/16/2016] [Accepted: 08/06/2016] [Indexed: 02/06/2023]
|
25
|
Gao M, Wang M, Zheng QH. Synthesis of [11C]MK-1064 as a new PET radioligand for imaging of orexin-2 receptor. Bioorg Med Chem Lett 2016; 26:3694-9. [DOI: 10.1016/j.bmcl.2016.05.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/29/2022]
|
26
|
Synthesis of carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives as new potential PET tracers for imaging of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). Bioorg Med Chem Lett 2016; 26:1371-5. [PMID: 26856922 DOI: 10.1016/j.bmcl.2016.01.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/07/2023]
Abstract
The target tracer carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives, N-(3-[(11)C]methoxy-4-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (3-[(11)C]4a) and N-(4-[(11)C]methoxy-3-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (4-[(11)C]4a); 2-((6-amino-9H-purin-8-yl)thio)-N-(3-[(11)C]methoxy-4-methoxyphenyl)acetamide (3-[(11)C]8a) and 2-((6-amino-9H-purin-8-yl)thio)-N-(4-[(11)C]methoxy-3-methoxyphenyl)acetamide (4-[(11)C]8a), were prepared by O-[(11)C]methylation of their corresponding precursors with [(11)C]CH3OTf under basic condition (2N NaOH) and isolated by a simplified solid-phase extraction (SPE) method in 50-60% radiochemical yields based on [(11)C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-555GBq/μmol.
Collapse
|
27
|
Recent Advances in the Development and Application of Radiolabeled Kinase Inhibitors for PET Imaging. Molecules 2015; 20:22000-27. [PMID: 26690113 PMCID: PMC6332294 DOI: 10.3390/molecules201219816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Over the last 20 years, intensive investigation and multiple clinical successes targeting protein kinases, mostly for cancer treatment, have identified small molecule kinase inhibitors as a prominent therapeutic class. In the course of those investigations, radiolabeled kinase inhibitors for positron emission tomography (PET) imaging have been synthesized and evaluated as diagnostic imaging probes for cancer characterization. Given that inhibitor coverage of the kinome is continuously expanding, in vivo PET imaging will likely find increasing applications for therapy monitoring and receptor density studies both in- and outside of oncological conditions. Early investigated radiolabeled inhibitors, which are mostly based on clinically approved tyrosine kinase inhibitor (TKI) isotopologues, have now entered clinical trials. Novel radioligands for cancer and PET neuroimaging originating from novel but relevant target kinases are currently being explored in preclinical studies. This article reviews the literature involving radiotracer design, radiochemistry approaches, biological tracer evaluation and nuclear imaging results of radiolabeled kinase inhibitors for PET reported between 2010 and mid-2015. Aspects regarding the usefulness of pursuing selective vs. promiscuous inhibitor scaffolds and the inherent challenges associated with intracellular enzyme imaging will be discussed.
Collapse
|
28
|
Tucker JW, Chenard L, Young JM. Selective Access to Heterocyclic Sulfonamides and Sulfonyl Fluorides via a Parallel Medicinal Chemistry Enabled Method. ACS COMBINATORIAL SCIENCE 2015; 17:653-7. [PMID: 26434694 DOI: 10.1021/acscombsci.5b00120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sulfur-functionalized aminoacrolein derivative is used for the efficient and selective synthesis of heterocyclic sulfonyl chlorides, sulfonyl fluorides, and sulfonamides. The development of a 3-step parallel medicinal chemistry (PMC) protocol for the synthesis of pyrazole-4-sulfonamides effectively demonstrates the utility of this reagent. This reactivity was expanded to provide rapid access to other heterocyclic sulfonyl fluorides, including pyrimidines and pyridines, whose corresponding sulfonyl chlorides lack suitable chemical stability.
Collapse
Affiliation(s)
- Joseph W. Tucker
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Lois Chenard
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph M. Young
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
29
|
Development of novel PET probes targeting phosphatidylinositol 3-kinase (PI3K) in tumors. Nucl Med Biol 2015; 43:101-107. [PMID: 26602328 DOI: 10.1016/j.nucmedbio.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 08/18/2015] [Accepted: 09/22/2015] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) activity and protein expression levels are often increased in tumor regions. Since PI3K plays a crucial role in regulating cell growth and proliferation, inhibiting PI3K-dependent pathways could be a promising approach for cancer treatment. In clinical practice, however, evaluation of PI3K expression levels is limited to immunohistochemistry of patient samples, which requires invasive biopsies. Here we report the synthesis of three candidate compounds, FMTA-1, 2 and 3, and evaluate their capacity to detect PI3K expression levels with positron emission tomography (PET). Among the three candidates, FMTA-2 showed a lower IC50 value for PI3K. (18)F Radiolabeling of FMTA-2 to produce [(18)F]FMTA-2 was accomplished and its capacity for detecting PI3K expression levels was evaluated in vitro and in vivo. Cell uptake of [(18)F]FMTA-2 correlated well with cellular PI3K expression levels, and was suppressed by the ATP-competitive PI3K inhibitor ZSTK474. In an in vivo experiment using tumor-transplanted model mice, a higher signal-to-noise ratio (S/N) was seen with [(18)F]FMTA-2 in animals transplanted with DMS114 cells (expressing high PI3K levels) relative to DU145 cells (expressing low PI3K levels). However, in vivo pharmacokinetics of [(18)F]FMTA-2 was undesirable and the absolute amount of this compound that accumulated at the tumor region was low. To the best of our knowledge, this study represents the first trial of a PET tracer for detecting PI3K. Although further improvement of the probe is required prior to clinical application, these results should encourage future work.
Collapse
|
30
|
Synthesis of [11C]CX-6258 as a new PET tracer for imaging of Pim kinases in cancer. Bioorg Med Chem Lett 2015; 25:3831-5. [DOI: 10.1016/j.bmcl.2015.07.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022]
|
31
|
Wang M, Gao M, Xu Z, Zheng QH. Synthesis of a PET tau tracer [(11)C]PBB3 for imaging of Alzheimer's disease. Bioorg Med Chem Lett 2015; 25:4587-92. [PMID: 26323870 DOI: 10.1016/j.bmcl.2015.08.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 11/17/2022]
Abstract
The authentic standard PBB3 and its precursor N-desmethyl-PBB3 as well as TBS-protected N-desmethyl-PBB3 precursor for radiolabeling were synthesized from 5-bromo-2-nitropyridine, acrolein diethyl acetal, 6-methoxy-2-methylbenzothiazole, and diethylchlorophosphate with overall chemical yield 1% in six steps, 2% in five steps, and 1% in six steps, respectively. [(11)C]PBB3 was prepared from either desmethyl-PBB3 or TBS-protected desmethyl-PBB3 with [(11)C]CH3OTf through N-[(11)C]methylation and isolated by HPLC combined with SPE in 20-25% and 15-20% radiochemical yield, respectively, based on [(11)C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the specific activity at EOB was 370-1110 GBq/μmol with a total synthesis time of ~40-min from EOB.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA
| | - Mingzhang Gao
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA
| | - Zhidong Xu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA.
| |
Collapse
|
32
|
Gao M, Wang M, Zheng QH. Fully automated synthesis of [18F]T807, a PET tau tracer for Alzheimer’s disease. Bioorg Med Chem Lett 2015; 25:2953-7. [DOI: 10.1016/j.bmcl.2015.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 01/14/2023]
|
33
|
Gao M, Wang M, Green MA, Hutchins GD, Zheng QH. Synthesis of [11C]GSK1482160 as a new PET agent for targeting P2X7 receptor. Bioorg Med Chem Lett 2015; 25:1965-70. [DOI: 10.1016/j.bmcl.2015.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
|
34
|
Gao M, Gao AC, Wang M, Zheng QH. Synthesis of carbon-11-labeled aminoalkylindole derivatives as new candidates of cannabinoid receptor radioligands for PET imaging of alcohol abuse. Bioorg Med Chem Lett 2014; 24:5581-5586. [DOI: 10.1016/j.bmcl.2014.10.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 11/30/2022]
|
35
|
Majo VJ, Simpson NR, Prabhakaran J, Mann JJ, Kumar JSD. Radiosynthesis of [18F]ATPFU: a potential PET ligand for mTOR. J Labelled Comp Radiopharm 2014; 57:705-9. [PMID: 25359578 DOI: 10.1002/jlcr.3239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
Mammalian target of rapamycin (mTOR) plays a pivotal role in many aspects of cellular proliferation, and recent evidence suggests that an altered mTOR signaling pathway plays a central role in the pathogenesis of aging, tumor progression, neuropsychiatric, and major depressive disorder. Availability of a mTOR-specific PET tracer will facilitate monitoring early response to treatment with mTOR inhibitors that are under clinical development. Towards this we have developed the radiosynthesis of [(18)F]1-(4-(4-(8-oxa-3-azabicyclo[3.2.1]octan-3-yl)-1-(2,2,2-trifluoroethyl)-1H-pyrazolo[3,4-d]pyrimidin-6-yl)phenyl)-3-(2-fluoroethyl)urea [(18)F]ATPFU ([(18)F]1) as an mTOR PET ligand. Synthesis of reference 1 and the precursor for radiolabeling, 4-(4-8-oxa-3-azabicyclo[3.2.1]-octan-3yl)-1-(2,2,2-trifluoroethyl)-1H-pyrazolo[3,4-d]pyrimidin-6yl)aniline (10), were achieved from beta-chloroaldehyde 3 in 4 and 5 steps, respectively, with an overall yield of 25-28%. [(18)F]Fluoroethylamine was prepared by heating N-[2-(toluene-4-sulfonyloxy)ethyl]phthalimide with [(18)F]fluoride ion in acetonitrile. [(18)F]1 was obtained by slow distillation under argon of [(18) F]FCH2CH2NH2 into amine 10 that was pre-treated with triphosgene at 0-5 °C. The total time required for the two-step radiosynthesis including semi-preparative HPLC purification was 90 min, and the overall radiochemical yield of [(18)F]1 for the process was 15 ± 5% based on [(18)F]fluoride ion (decay corrected). At the end of synthesis (EOS), the specific activity was 37-74 GBq/µmol (N = 6).
Collapse
Affiliation(s)
- Vattoly J Majo
- Division of Molecular Imaging and Neuropathology New York State Psychiatric Institute, New York, USA
| | | | | | | | | |
Collapse
|
36
|
Wang M, Gao M, Zheng QH. The first radiosynthesis of [ 11 C]AZD8931 as a new potential PET agent for imaging of EGFR, HER2 and HER3 signaling. Bioorg Med Chem Lett 2014; 24:4455-4459. [DOI: 10.1016/j.bmcl.2014.07.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/26/2022]
|
37
|
Wang M, Gao M, Zheng QH. Synthesis of carbon-11-labeled 4-(phenylamino)-pyrrolo[2,1-f][1,2,4]triazine derivatives as new potential PET tracers for imaging of p38α mitogen-activated protein kinase. Bioorg Med Chem Lett 2014; 24:3700-5. [PMID: 25065491 DOI: 10.1016/j.bmcl.2014.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 12/30/2022]
Abstract
The reference standards methyl 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate (10a), methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate (10b) and corresponding precursors 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylic acid (11a), methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylic acid (11b) were synthesized from methyl crotonate and 3-amino-4-methylbenzoic acid in multiple steps with moderate to excellent yields. The target tracer [(11)C]methyl 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate ([(11)C]10a) and [(11)C]methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate ([(11)C]10b) were prepared from their corresponding precursors with [(11)C]CH3OTf under basic condition through O-[(11)C]methylation and isolated by a simplified solid-phase extraction (SPE) method in 50-60% radiochemical yields at end of bombardment (EOB) with 185-555 GBq/μmol specific activity at end of synthesis (EOS).
Collapse
Affiliation(s)
- Min Wang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA
| | - Mingzhang Gao
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA.
| |
Collapse
|
38
|
Gao M, Xu J, Wang M, Zheng QH. Facile and high-yield synthesis of N-(4-diethylamino)benzyl-4-[¹¹C]methoxy-N-(p-tolyl)benzenesulfonamide as a new potential PET selective CB2 radioligand. Appl Radiat Isot 2014; 90:181-6. [PMID: 24768996 DOI: 10.1016/j.apradiso.2014.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/11/2014] [Accepted: 03/30/2014] [Indexed: 11/20/2022]
Abstract
The reference standard N-(4-diethylamino)benzyl-4-methoxy-N-(p-tolyl)benzenesulfonamide (3c) (CB2, Ki=0.5 nM; CB1, Ki=1297 nM; selectivity CB1/CB2=2594) and its corresponding precursor N-(4-diethylamino)benzyl-4-hydroxy-N-(p-tolyl)benzenesulfonamide (3d) were synthesized from 4-(diethylamino)benzaldehyde and p-toluidine in 3 steps with 75-84% overall chemical yield. The target tracer N-(4-diethylamino)benzyl-4-[(11)C]methoxy-N-(p-tolyl)benzenesulfonamide ([(11)C]3c) was synthesized from the phenol hydroxyl precursor by O-[(11)C]-methylation with [(11)C]CH3OTf, followed by HPLC combined with SPE purification in 40-50% decay corrected radiochemical yields with 370-740 GBq/μmol specific activity at the end of bombardment (EOB).
Collapse
Affiliation(s)
- Mingzhang Gao
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, L3-202, Indianapolis, IN 46202-2111, USA
| | - Julie Xu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, L3-202, Indianapolis, IN 46202-2111, USA
| | - Min Wang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, L3-202, Indianapolis, IN 46202-2111, USA
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, L3-202, Indianapolis, IN 46202-2111, USA.
| |
Collapse
|
39
|
Simple synthesis of new carbon-11-labeled 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives for PET imaging of A₃ adenosine receptor. Appl Radiat Isot 2014; 91:71-8. [PMID: 24908190 DOI: 10.1016/j.apradiso.2014.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 12/31/2022]
Abstract
The reference standards 4a-b, 6a-b, 7a-c, and desmethylated precursors 9a-b, 10a-b, 8a-c were synthesized from 4-methoxyaniline, ethyl 2-chloro-acetoacetate and substituted benzene-1,2-diamines with 3, 5, 6 steps in 61-67%, 34-41%, 23-31%, and with 4, 6, 7 steps in 49-57%, 28-35%, 20-27% overall chemical yield, respectively. The target tracers [(11)C]4a-b, [(11)C]6a-b, [(11)C]7a-c were synthesized from their corresponding precursors with [(11)C]CH3OTf through O-[(11)C]methylation and isolated by simplified SPE in 40-60% decay corrected radiochemical yields at EOB, with 185-370 GBq/μmol specific activity at EOS.
Collapse
|
40
|
Synthesis of a new fluorine-18-labeled bexarotene analogue for PET imaging of retinoid X receptor. Bioorg Med Chem Lett 2014; 24:1742-7. [DOI: 10.1016/j.bmcl.2014.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/20/2022]
|
41
|
Lu GP, Cai C. An odorless, one-pot synthesis of nitroaryl thioethers via SNAr reactions through the in situ generation of S-alkylisothiouronium salts. RSC Adv 2014. [DOI: 10.1039/c4ra11490f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis of nitroaryl thioethers using thiourea as the sulfur source in water by an odorless one-pot process was disclosed.
Collapse
Affiliation(s)
- Guo-ping Lu
- Chemical Engineering College
- Nanjing University of Science & Technology
- Nanjing, P. R. China
| | - Chun Cai
- Chemical Engineering College
- Nanjing University of Science & Technology
- Nanjing, P. R. China
| |
Collapse
|
42
|
Concise and high-yield synthesis of T808 and T808P for radiosynthesis of [18F]-T808, a PET tau tracer for Alzheimer’s disease. Bioorg Med Chem Lett 2014; 24:254-7. [DOI: 10.1016/j.bmcl.2013.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 11/20/2022]
|
43
|
Wang M, Gao M, Zheng QH. A high-yield route to synthesize the P-glycoprotein radioligand [11C]N-desmethyl-loperamide and its parent radioligand [11C]loperamide. Bioorg Med Chem Lett 2013; 23:5259-63. [DOI: 10.1016/j.bmcl.2013.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 11/26/2022]
|
44
|
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci 2013; 70:3243-75. [PMID: 23224428 PMCID: PMC11113493 DOI: 10.1007/s00018-012-1206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
From 5 to 12 FK506-binding proteins (FKBPs) are encoded in the genomes of disparate marine organisms, which appeared at the dawn of evolutionary events giving rise to primordial multicellular organisms with elaborated internal body plan. Fifteen FKBPs, several FKBP-like proteins and some splicing variants of them are expressed in humans. Human FKBP12 and some of its paralogues bind to different macrocyclic antibiotics such as FK506 or rapamycin and their derivatives. FKBP12/(macrocyclic antibiotic) complexes induce diverse pharmacological activities such as immunosuppression in humans, anticancerous actions and as sustainers of quiescence in certain organisms. Since the FKBPs bind to various assemblies of proteins and other intracellular components, their complexes with the immunosuppressive drugs may differentially perturb miscellaneous cellular functions. Sequence-structure relationships and pharmacological profiles of diverse FKBPs and their involvement in crucial intracellular signalization pathways and modulation of cryptic intercellular communication networks were discussed.
Collapse
Affiliation(s)
- Andrzej Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
45
|
Synthesis of (Z)-2-((1H-indazol-3-yl)methylene)-6-[11C]methoxy-7-(piperazin-1-ylmethyl)benzofuran-3(2H)-one as a new potential PET probe for imaging of the enzyme PIM1. Bioorg Med Chem Lett 2013; 23:4342-6. [DOI: 10.1016/j.bmcl.2013.05.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 12/23/2022]
|
46
|
Welker ME, Kulik G. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors. Bioorg Med Chem 2013; 21:4063-91. [PMID: 23735831 PMCID: PMC3711139 DOI: 10.1016/j.bmc.2013.04.083] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 12/20/2022]
Abstract
This review focuses on the syntheses of PI3K/Akt/mTOR inhibitors that have been reported outside of the patent literature in the last 5years but is largely centered on synthetic work reported in 2011 and 2012. While focused on syntheses of inhibitors, some information on in vitro and in vivo testing of compounds is also included. Many of these reported compounds are reversible, competitive adenosine triphosphate (ATP) binding inhibitors, so given the structural similarities of many of these compounds to the adenine core, this review presents recent work on inhibitors based on where the synthetic chemistry was started, that is, inhibitor syntheses which started with purines/pyrimidines are followed by inhibitor syntheses which began with pyridines, pyrazines, azoles, and triazines then moves to inhibitors which bear no structural resemblance to adenine: liphagal, wortmannin and quercetin analogs. The review then finishes with a short section on recent syntheses of phosphotidyl inositol (PI) analogs since competitive PI binding inhibitors represent an alternative to the competitive ATP binding inhibitors which have received the most attention.
Collapse
Affiliation(s)
- Mark E Welker
- Department of Chemistry, Wake Forest University, PO Box 7486, Winston-Salem, NC 27109, USA.
| | | |
Collapse
|
47
|
[11C]Olanzapine, radiosynthesis and lipophilicity of a new potential PET 5-HT2 and D2 receptor radioligand. Bioorg Med Chem Lett 2013; 23:1953-6. [DOI: 10.1016/j.bmcl.2013.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 11/20/2022]
|
48
|
Gao M, Yang Q, Wang M, Miller KD, Sledge GW, Zheng QH. Synthesis of radiolabeled protein disulfide isomerase (PDI) inhibitors as new potential PET agents for imaging of the enzyme PDI in neurological disorders and cancer. Appl Radiat Isot 2013; 74:61-9. [DOI: 10.1016/j.apradiso.2013.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/29/2012] [Accepted: 01/01/2013] [Indexed: 12/28/2022]
|
49
|
Wang M, Gao M, Miller KD, Zheng QH. Synthesis of 2,6-difluoro-N-(3-[11C]methoxy-1H-pyrazolo[3,4-b]pyridine-5-yl)-3-(propylsulfonamidio)benzamide as a new potential PET agent for imaging of B-RafV600E in cancers. Bioorg Med Chem Lett 2013; 23:1017-21. [DOI: 10.1016/j.bmcl.2012.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 11/27/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
|
50
|
The first synthesis of [11C]J147, a new potential PET agent for imaging of Alzheimer’s disease. Bioorg Med Chem Lett 2013; 23:524-7. [DOI: 10.1016/j.bmcl.2012.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 10/27/2012] [Accepted: 11/07/2012] [Indexed: 11/23/2022]
|