1
|
Zheng Y, Li B, Ai Y, Chen M, Zheng X, Qi J. Synthesis, crystal structures and anti-cancer mechanism of Cu(II) complex derived from 2-acetylpyrazine thiosemicarbazone. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yunyun Zheng
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| | - Bin Li
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| | - Yu Ai
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| | - Mengyao Chen
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| | - Xinhua Zheng
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| | - Jinxu Qi
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| |
Collapse
|
2
|
Khan AA, Ahmad R, Alanazi AM, Alsaif N, Abdullah M, Wani TA, Bhat MA. Determination of anticancer potential of a novel pharmacologically active thiosemicarbazone derivative in colorectal cancer cell lines. Saudi Pharm J 2022; 30:815-824. [PMID: 35812146 PMCID: PMC9257852 DOI: 10.1016/j.jsps.2022.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Thiosemicarbazones have received noteworthy attention due to their numerous pharmacological activities. Various thiosemicarbazone derivatives have been reported to play a key role as potential chemotherapeutic agents for the management of cancer. Herein, we aimed to establish the anticancer efficacy of novel thiosemicarbazone derivative C4 against colon cancer in vitro. The MTT viability assay identified C4 as a promising anticancer compound in a panel of cancer cell lines with the most potent activity against colon cancer cells. Further, anticancer potential of C4 was evaluated against HT-29 and SW620 colon cancer cell lines considering the factors like cell adhesion and migration, oxidative stress, cell cycle arrest, and apoptosis. Our results showed that C4 significantly inhibited the migration and adhesion of colon cancer cells. C4 significantly increased the intracellular reactive oxygen species (ROS) and induced apoptotic cell death. Cell cycle analysis revealed that C4 interfered in the cell cycle distribution and arrested the cells at the G2/M phase of the cell cycle. Consistent with these results C4 also down-regulated the Bcl-XL and Bcl-2 and up-regulated the caspase-3 expression. These findings introduced C4 as the potential anticancer agent against colon cancer.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
- Corresponding authors.
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
- Corresponding authors.
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Nawaf Alsaif
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Maha Abdullah
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Tanveer A. Wani
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Mashooq A. Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| |
Collapse
|
3
|
Eğlence-Bakır S. New nickel(II) complexes containing N2O2 donor thiosemicarbazones: Synthesis, characterization and antioxidant properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Kotian A, Kamat V, Naik K, Kokare DG, Kumara K, Neratur KL, Kumbar V, Bhat K, Revankar VK. 8-Hydroxyquinoline derived p-halo N4-phenyl substituted thiosemicarbazones: Crystal structures, spectral characterization and in vitro cytotoxic studies of their Co(III), Ni(II) and Cu(II) complexes. Bioorg Chem 2021; 112:104962. [PMID: 33992968 DOI: 10.1016/j.bioorg.2021.104962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
The current paper deals with 8-hydroxyquinoline derived p-halo N4-phenyl substituted thiosemicarbazones, their crystal structures, spectral characterization and in vitro cytotoxic studies of Co(III), Ni(II) and Cu(II) complexes. The molecular structures of the ligands, (E)-4-(4-halophenyl)-1-((8-hydroxyquinoline-2-yl)methylene)thiosemicarbazones (halo = fluoro/chloro/bromo) are determined by single crystal X-ray diffraction method. The crystal structures reveal that the ligands are non-planar and exist in their thioamide tautomeric forms. The various physicochemical investigations of the synthesized complexes reveal metal to ligand stoichiometry to be 1:2 in Co(III) complexes whereas 1:1 in Ni(II) and Cu(II) complexes. The ligands coordinate in a tridentate NNS fashion around Co(III) centers to form an octahedral geometry and square planar geometry around Ni(II) and Cu(II) metal centers. The oxidation of Co(II) to Co(III) is observed on complexation. The synthesized compounds are subjected to in vitro cytotoxicity studies. When compared to bare ligands, the complexes show enhancement of the antiproliferative activity against MCF-7, breast cancer cell lines. The Co(III) complexes of fluoro and bromo derivatives of ligands have displayed remarkable results with roughly two fold increase in their activity in correlation to the standard drug, Paclitaxel. Moreover, the fluorescence microscopy images of cells stained with acridine orange-ethidium bromide suggest an apoptotic mode of cell death.
Collapse
Affiliation(s)
- Avinash Kotian
- Department of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Vinayak Kamat
- Department of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Krishna Naik
- Department of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Dhoolesh G Kokare
- Department of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Karthik Kumara
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India; Department of Physics, School of Sciences-I JAIN (Deemed to be) University, Bengaluru 560011, India
| | | | - Vijay Kumbar
- Maratha Mandal's Central Research Laboratory, Maratha Mandal Dental College and Research Centre, Belgaum, Karnataka, India
| | - Kishore Bhat
- Maratha Mandal's Central Research Laboratory, Maratha Mandal Dental College and Research Centre, Belgaum, Karnataka, India
| | - Vidyanand K Revankar
- Department of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India.
| |
Collapse
|
5
|
Lobana TS, Kaushal M, Bala R, Nim L, Paul K, Arora DS, Bhatia A, Arora S, Jasinski JP. Di-2-pyridylketone-N1-substituted thiosemicarbazone derivatives of copper(II): Biosafe antimicrobial potential and high anticancer activity against immortalized L6 rat skeletal muscle cells. J Inorg Biochem 2020; 212:111205. [DOI: 10.1016/j.jinorgbio.2020.111205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 02/08/2023]
|
6
|
Queiroz CM, de Oliveira Filho GB, Espíndola JWP, do Nascimento AV, Aliança ASDS, de Lorena VMB, Feitosa APS, da Silva PR, Alves LC, Leite ACL, Brayner FA. Thiosemicarbazone and thiazole: in vitro evaluation of leishmanicidal and ultrastructural activity on Leishmania infantum. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02619-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Synthetic and antitumor comparison of 9-O-alkylated and carbohydrate-modified berberine derivatives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01985-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Qi J, Zhao W, Zheng Y, Wang R, Chen Q, Wang FA, Fan W, Gao H, Xia X. Single-crystal structure and intracellular localization of Zn(II)-thiosemicarbazone complex targeting mitochondrial apoptosis pathways. Bioorg Med Chem Lett 2020; 30:127340. [PMID: 32631541 DOI: 10.1016/j.bmcl.2020.127340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/17/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Tracking of drugs in cancer cells is important for basic biology research and therapeutic applications. Therefore, we designed and synthesised a Zn(II)-thiosemicarbazone complex with photoluminescent property for organelle-specific imaging and anti-cancer proliferation. The Zn(AP44eT)(NO3)2 coordination ratio of metal to ligand was 1:1, which was remarkably superior to 2-((3-aminopyridin-2-yl) methylene)-N, N-diethylhydrazinecarbothioamide (AP44eT·HCl) in many aspects, such as fluorescence and anti-tumour activity. Confocal fluorescence imaging showed that the Zn(AP44eT)(NO3)2 was aggregated in mitochondria. Moreover, Zn(AP44eT)(NO3)2 was more effective than the metal-free AP44eT·HCl in shortening the G2 phase in the MCF-7 cell cycle and promoting apoptosis of cancer cells. Supposedly, the effects of these complexes might be located mainly in the mitochondria and activated caspase-3 and 9 proteins.
Collapse
Affiliation(s)
- Jinxu Qi
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Wei Zhao
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yunyun Zheng
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Ruiya Wang
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Qiu Chen
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Fu-An Wang
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Weiwei Fan
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Huashan Gao
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xichao Xia
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| |
Collapse
|
9
|
Wang L, Yang X, Li X, Stoika R, Wang X, Lin H, Ma Y, Wang R, Liu K. Synthesis of hydrophobically modified berberine derivatives with high anticancer activity through modulation of the MAPK pathway. NEW J CHEM 2020. [DOI: 10.1039/d0nj01645d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Linoleic acid-modified berberine derivative induces apoptosis of A549 cells and affects the expression of proteins associated with the MAPK pathway.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis
- Institute of Cell Biology
- National Academy of Sciences of Ukraine
- Lviv
- Ukraine
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Houwen Lin
- Research Center for Marine Drugs
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yukui Ma
- Shandong Provincial Key Laboratory of Chemical Drugs
- Shandong Academy of Pharmaceutical Sciences
- 250101 Jinan
- China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| |
Collapse
|
10
|
Hussein MA, Iqbal MA, Umar MI, Haque RA, Guan TS. Synthesis, structural elucidation and cytotoxicity of new thiosemicarbazone derivatives. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Ertas M, Sahin Z, Bulbul EF, Bender C, Biltekin SN, Berk B, Yurttas L, Nalbur AM, Celik H, Demirayak Ş. Potent ribonucleotide reductase inhibitors: Thiazole-containing thiosemicarbazone derivatives. Arch Pharm (Weinheim) 2019; 352:e1900033. [PMID: 31475759 DOI: 10.1002/ardp.201900033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
The antioxidant, antimalarial, antibacterial, and antitumor activities of thiosemicarbazones have made this class of compounds important for medicinal chemists. In addition, thiosemicarbazones are among the most potent and well-known ribonucleotide reductase inhibitors. In this study, 24 new thiosemicarbazone derivatives were synthesized, and the structures and purity of the compounds were determined by IR, 1 H NMR, 13 C NMR, mass spectroscopy, and elemental analysis. The IC50 values of these 24 compounds were determined with an assay for ribonucleotide reductase inhibition. Compounds 19, 20, and 24 inhibited ribonucleotide reductase enzyme activity at a higher level than metisazone as standard. The cytotoxic effects of these compounds were measured on the MCF7 (human breast adenocarcinoma) and HEK293 (human embryonic kidney) cell lines. Similarly, compounds 19, 20, and 24 had a selective effect on the MCF7 and HEK293 cell lines, killing more cancer cells than cisplatin as standard. The compounds (especially 19, 20, and 24 as the most active ones) were then subjected to docking experiments to identify the probable interactions between the ligands and the enzyme active site. The complex formation was shown qualitatively. The ADME (absorption, distribution, metabolism, and excretion) properties of the compounds were analyzed using in-silico techniques.
Collapse
Affiliation(s)
- Merve Ertas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Zafer Sahin
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Emre F Bulbul
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Ceysu Bender
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Sevde N Biltekin
- Department of Pharmaceutical Microbiology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Barkin Berk
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Leyla Yurttas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Aysu M Nalbur
- Department of Analytical Chemistry, School of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Hayati Celik
- Department of Analytical Chemistry, School of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Şeref Demirayak
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
12
|
Liu QX, Wang BL, Mao MZ, Xiong LX, Li ZM. Synthesis and pesticidal activities of novel anthranilic diamides containing pyridylpyrazole and iminodithiocarbamate or thiosemicarbazone motifs. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2018.1487433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Qiao-Xia Liu
- State Key Laboratory of Elemento-Organic Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Bao-Lei Wang
- State Key Laboratory of Elemento-Organic Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Ming-Zhen Mao
- State Key Laboratory of Elemento-Organic Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Li-Xia Xiong
- State Key Laboratory of Elemento-Organic Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Zheng-Ming Li
- State Key Laboratory of Elemento-Organic Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Fang Y, Li J, Han PP, Han QX, Li MX. Less toxic zinc(ii), diorganotin(iv), gallium(iii) and cadmium(ii) complexes derived from 2-benzoylpyridine N, N-dimethylthiosemicarbazone: synthesis, crystal structures, cytotoxicity and investigations of mechanisms of action. Toxicol Res (Camb) 2018; 7:987-993. [PMID: 30310676 DOI: 10.1039/c8tx00127h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/27/2018] [Indexed: 11/21/2022] Open
Abstract
Four metal complexes based on 2-benzoylpyridine N,N-dimethylthiosemicarbazone (Bp44mT) were designed. Free ligand and zinc(ii), diorganotin(iv), gallium(iii) and cadmium(ii) complexes all demonstrated pronounced activity, which was indicated using the growth inhibition test in vitro. Interestingly, most of the compounds were found to be selective against hepatocellular carcinoma (HepG2) cells but had little effect on normal hepatocyte (QSG7701) cells. In particular, Zn(Bp44mT)2 (1) exhibited toxicity on QSG7701 cells which approximately 12-fold lower than that on HepG2 cells. The studies of mechanisms of action indicated that 1 induced reactive oxygen species (ROS) generation in a dose-dependent manner via the mitochondria transduction pathway. Protein analyses showed that 1 significantly promoted p21 and p53 gene expression, causing caspase-3 activation.
Collapse
Affiliation(s)
- Yan Fang
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Jie Li
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Pei-Pei Han
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Qiu-Xia Han
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Ming-Xue Li
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| |
Collapse
|
14
|
Gatti A, Habtemariam A, Romero-Canelón I, Song JI, Heer B, Clarkson GJ, Rogolino D, Sadler PJ, Carcelli M. Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes: Solution Behavior and Antiproliferative Activity. Organometallics 2018; 37:891-899. [PMID: 29681675 PMCID: PMC5908187 DOI: 10.1021/acs.organomet.7b00875] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/29/2022]
Abstract
We report the synthesis, characterization, and antiproliferative activity of organo-osmium(II) and organo-ruthenium(II) half-sandwich complexes [(η6-p-cym)Os(L)Cl]Cl (1 and 2) and [(η6-p-cym)Ru(L)Cl]Cl (3 and 4), where L = N-(2-hydroxy)-3-methoxybenzylidenethiosemicarbazide (L1) or N-(2,3-dihydroxybenzylidene)-3-phenylthiosemicarbazide (L2), respectively. X-ray crystallography showed that all four complexes possess half-sandwich pseudo-octahedral "three-legged piano-stool" structures, with a neutral N,S-chelating thiosemicarbazone ligand and a terminal chloride occupying three coordination positions. In methanol, E/Z isomerization of the coordinated thiosemicarbazone ligand was observed, while in an aprotic solvent like acetone, partial dissociation of the ligand occurs, reaching complete displacement in a more coordinating solvent like DMSO. In general, the complexes exhibited good activity toward A2780 ovarian, A2780Cis cisplatin-resistant ovarian, A549 lung, HCT116 colon, and PC3 prostate cancer cells. In particular, ruthenium complex 3 does not present cross-resistance with the clinical drug cisplatin in the A2780 human ovarian cancer cell line. The complexes were more active than the free thiosemicarbazone ligands, especially in A549 and HCT116 cells with potency improvements of up to 20-fold between organic ligand L1 and ruthenium complex 1.
Collapse
Affiliation(s)
- Anna Gatti
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale
and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei
Metalli nei Sistemi Biologici), University
of Parma, Parco Area
delle Scienze 11/A, 43124 Parma, Italy
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Abraha Habtemariam
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Isolda Romero-Canelón
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- School
of Pharmacy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ji-Inn Song
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Bindy Heer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Guy J. Clarkson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Dominga Rogolino
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale
and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei
Metalli nei Sistemi Biologici), University
of Parma, Parco Area
delle Scienze 11/A, 43124 Parma, Italy
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mauro Carcelli
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale
and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei
Metalli nei Sistemi Biologici), University
of Parma, Parco Area
delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
15
|
Argibay-Otero S, Vázquez-López EM. Crystal structure of N-(4-hy-droxy-benz-yl)acetone thio-semicarbazone. Acta Crystallogr E Crystallogr Commun 2017; 73:1382-1384. [PMID: 28932480 PMCID: PMC5588586 DOI: 10.1107/s2056989017012129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/22/2017] [Indexed: 01/13/2023]
Abstract
The structure of the title compound, C11H15N3OS, shows the flexibility due to the methyl-ene group at the thio-amide N atom in the side chain, resulting in the mol-ecule being non-planar. The dihedral angle between the plane of the benzene ring and that defined by the atoms of the thio-semicarbazide arm is 79.847 (4)°. In the crystal, the donor-acceptor hydrogen-bond character of the -OH group dominates the inter-molecular associations, acting as a donor in an O-H⋯S hydrogen bond, as well as being a double acceptor in a centrosymmetric cyclic bridging N-H⋯O,O' inter-action [graph set R22(4)]. The result is a one-dimensional duplex chain structure, extending along [111]. The usual N-H⋯S hydrogen-bonding association common in thio-semicarbazone crystal structures is not observed.
Collapse
Affiliation(s)
- Saray Argibay-Otero
- Departamento de Química Inorgánica, Facultade de Química, Instituto de Investigación Sanitaria Galicia Sur – Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain
| | - Ezequiel M. Vázquez-López
- Departamento de Química Inorgánica, Facultade de Química, Instituto de Investigación Sanitaria Galicia Sur – Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain
| |
Collapse
|
16
|
Kumar S, Hansda A, Chandra A, Kumar A, Kumar M, Sithambaresan M, Faizi MSH, Kumar V, John RP. Co(II), Ni(II), Cu(II) and Zn(II) complexes of acenaphthoquinone 3-(4-benzylpiperidyl)thiosemicarbazone: Synthesis, structural, electrochemical and antibacterial studies. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.05.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Synthesis, characterization and in vitro biological activities of new water-soluble copper(II), zinc(II), and nickel(II) complexes with sulfonato-substituted Schiff base ligand. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Hosseini-Yazdi SA, Mirzaahmadi A, Khandar AA, Eigner V, Dušek M, Mahdavi M, Soltani S, Lotfipour F, White J. Reactions of copper(II), nickel(II), and zinc(II) acetates with a new water-soluble 4-phenylthiosemicarbazone Schiff base ligand: Synthesis, characterization, unexpected cyclization, antimicrobial, antioxidant, and anticancer activities. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Synthesis, anti-Trypanosoma cruzi activity and quantitative structure relationships of some fluorinated thiosemicarbazones. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Basu A, Sohn YS, Alyan M, Nechushtai R, Domb AJ, Goldblum A. Discovering Novel and Diverse Iron-Chelators in Silico. J Chem Inf Model 2016; 56:2476-2485. [PMID: 28024407 DOI: 10.1021/acs.jcim.6b00450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Specific iron chelation is a validated strategy in anticancer drug discovery. However, only a few chemical classes (4-5 categories) have been reported to date. We discovered in silico five new structurally diverse iron-chelators by screening through models based on previously known chelators. To encompass a larger chemical space and propose newer scaffolds, we used our iterative stochastic elimination (ISE) algorithm for model building and subsequent virtual screening (VS). The ISE models were developed by training a data set of 130 reported iron-chelators. The developed models are statistically significant with area under the receiver operating curve greater than 0.9. The models were used to screen the Enamine chemical database of ∼1.8 million molecules. The top ranked 650 molecules were reduced to 50 diverse structures, and a few others were eliminated due to the presence of reactive groups. Finally, 34 molecules were purchased and tested in vitro. Five compounds were identified with significant iron-chelation activity in Cal-G assay. Intracellular iron-chelation study revealed one compound as equivalent in potency to the iron chelating "gold standards" deferoxamine and deferiprone. The amount of discovered positives (5 out of 34) is expected by the realistic enrichment factor of the model.
Collapse
Affiliation(s)
- Arijit Basu
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| | - Yang-Sung Sohn
- Department of Plant and Environmental Sciences, the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem , Givat Ram, Jerusalem, 91904, Israel
| | - Mohamed Alyan
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| | - Rachel Nechushtai
- Department of Plant and Environmental Sciences, the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem , Givat Ram, Jerusalem, 91904, Israel
| | - Abraham J Domb
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| | - Amiram Goldblum
- School of Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem , Jerusalem, 91120, Israel
| |
Collapse
|
21
|
Bruneau C, Gramage-Doria R. One-Pot Directing Group Formation/C−H Bond FunctionalizationviaCopper(I) and Ruthenium(II) Catalysis. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Christian Bruneau
- Organometallics: Materials and Catalysis Laboratory; Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS; Université de Rennes 1; Avenue du Général Leclerc 263 35042 Rennes France
| | - Rafael Gramage-Doria
- Organometallics: Materials and Catalysis Laboratory; Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS; Université de Rennes 1; Avenue du Général Leclerc 263 35042 Rennes France
| |
Collapse
|
22
|
Synthesis, structural characterization and biological activities of organotin(IV) complexes with 5-allyl-2-hydroxy-3- methoxybenzaldehyde-4-thiosemicarbazone. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0924-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
de Melos JLR, Torres-Santos EC, Faiões VDS, Del Cistia CDN, Sant'Anna CMR, Rodrigues-Santos CE, Echevarria A. Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonensis. Eur J Med Chem 2015; 103:409-17. [PMID: 26375353 DOI: 10.1016/j.ejmech.2015.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/02/2015] [Accepted: 09/05/2015] [Indexed: 11/30/2022]
Abstract
A series of eleven 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones (16-27) was synthesised as part of a study to search for potential new drugs with a leishmanicidal effect. The thiosemicarbazones, ten of which are new compounds, were prepared in good yields (85-98%) by the reaction of 3,4-methylenedioxyde-6-benzaldehydes (6-X-piperonal), previously synthesised for this work by several methodologies, and thiosemicarbazide in ethanol with a few drops of H2SO4. These compounds were evaluated against Leishmania amazonensis promastigotes, and derivatives where X = I (22) and X = CN (23) moieties showed impressive results, having IC₅₀ = 20.74 μM and 16.40 μM, respectively. The intracellular amastigotes assays showed IC₅₀ = 22.00 μM (22) and 17.00 μM (23), and selectivity index >5.7 and >7.4, respectively, with a lower toxicity compared to pentamidine (positive control, SI = 4.5). The results obtained from the preliminary QSAR study indicated the hydrophobicity (log P) as a fundamental parameter for the 2D-QSAR linear model. A molecular docking study demonstrated that both compounds interact with flavin mononucleotide (FMN), important binding site of NO synthase.
Collapse
Affiliation(s)
- Jorge Luiz R de Melos
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23.890-000 Seropédica, RJ, Brazil
| | | | - Viviane dos S Faiões
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | - Aurea Echevarria
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23.890-000 Seropédica, RJ, Brazil.
| |
Collapse
|
24
|
Akgemci EG, Saf AO, Tasdemir HU, Türkkan E, Bingol H, Turan SO, Akkiprik M. Spectrophotometric, voltammetric and cytotoxicity studies of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone and its N(4)-substituted derivatives: a combined experimental-computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt B:719-725. [PMID: 25448971 DOI: 10.1016/j.saa.2014.09.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 06/04/2023]
Abstract
In this study, 2-hydroxy-5-methoxyacetophenone thiosemicarbazone (HMAT) and its novel N(4) substituted derivatives were synthesized and characterized by different techniques. The optical band gap of the compounds and the energy of HOMO were experimentally examined by UV-vis spectra and cyclic voltammetry measurements, respectively. Furthermore, the conformational spaces of the compounds were scanned with molecular mechanics method. The geometry optimization, HOMO and LUMO energies, the energy gap of the HOMO-LUMO, dipole moment of the compounds were theoretically calculated by the density functional theory B3LYP/6-311++G(d,p) level. The minimal electronic excitation energy and maximum wavelength calculations of the compounds were also performed by TD-DFT//B3LYP/6-311++G(d,p) level of theory. Theoretically calculated values were compared with the related experimental values. The combined results exhibit that all compounds have good electron-donor properties which affect anti-proliferative activity. The cytotoxic effects of the compounds were also evaluated against HeLa (cervical carcinoma), MCF-7 (breast carcinoma) and PC-3 (prostatic carcinoma) cell lines using the standard MTT assay. All tested compounds showed antiproliferative effect having IC50 values in different range. In comparison with that of HMAT, it was obtained that while ethyl group on 4(N)-substituted position decreased in potent anti-proliferative effect, the phenyl group on the position increased in anti-proliferative effect for the tested cancer cell line. Considering the molecular energy parameters, the cytotoxicity activities of the compounds were discussed.
Collapse
Affiliation(s)
- Emine Guler Akgemci
- Department of Chemistry Education, Faculty of A.K. Education, University of Necmettin Erbakan, Konya, Turkey.
| | - Ahmet Ozgur Saf
- Department of Chemistry Education, Faculty of A.K. Education, University of Necmettin Erbakan, Konya, Turkey.
| | - Halil Ugur Tasdemir
- Department of Physic Education, Faculty of A.K. Education, University of Necmettin Erbakan, Konya, Turkey.
| | - Ercan Türkkan
- Department of Physic Education, Faculty of A.K. Education, University of Necmettin Erbakan, Konya, Turkey.
| | - Haluk Bingol
- Department of Chemistry Education, Faculty of A.K. Education, University of Necmettin Erbakan, Konya, Turkey.
| | - Suna Ozbas Turan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Marmara, Istanbul, Turkey.
| | - Mustafa Akkiprik
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
25
|
Hussein MA, Iqbal MA, Asif M, Haque RA, Ahamed MBK, Majid AMSA, Guan TS. Asynthesis, Crystal Structures and in Vitro Anticancer Studies of New Thiosemicarbazone Derivatives. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2014.995299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mouayed A. Hussein
- School of Chemical Science, Universiti Sains Malaysia, 11800 – Mindern, Pulau Pinang, Malaysia
- University of Basrah, College of Science, Department of Chemistry, Basra-Iraq 61004
| | - Muhammad Adnan Iqbal
- School of Chemical Science, Universiti Sains Malaysia, 11800 – Mindern, Pulau Pinang, Malaysia
| | - Muhammad Asif
- EMAN Testing and Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800-Minden, Pulau Pinanag, Malaysia
| | - Rosenani A. Haque
- School of Chemical Science, Universiti Sains Malaysia, 11800 – Mindern, Pulau Pinang, Malaysia
| | - Mohammed B. Khadeer Ahamed
- EMAN Testing and Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800-Minden, Pulau Pinanag, Malaysia
| | - Amin M. S. Abdul Majid
- EMAN Testing and Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800-Minden, Pulau Pinanag, Malaysia
| | - Teoh Siang Guan
- School of Chemical Science, Universiti Sains Malaysia, 11800 – Mindern, Pulau Pinang, Malaysia
| |
Collapse
|
26
|
Sarkar T, Banerjee S, Hussain A. Significant photocytotoxic effect of an iron(iii) complex of a Schiff base ligand derived from vitamin B6and thiosemicarbazide in visible light. RSC Adv 2015. [DOI: 10.1039/c5ra04207k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An iron(iii)–Schiff base complex derived from vitamin B6and thiosemicarbazide is significantly photocytotoxic to HeLa cancer cells in visible light (400 nm–700 nm) but non-toxic in the absence of light.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Chemistry
- Handique Girls' College
- Guwahati 781001
- India
| | - Samya Banerjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Akhtar Hussain
- Department of Chemistry
- Handique Girls' College
- Guwahati 781001
- India
| |
Collapse
|
27
|
Lukmantara AY, Kalinowski DS, Kumar N, Richardson DR. Synthesis and biological evaluation of 2-benzoylpyridine thiosemicarbazones in a dimeric system: Structure–activity relationship studies on their anti-proliferative and iron chelation efficacy. J Inorg Biochem 2014; 141:43-54. [DOI: 10.1016/j.jinorgbio.2014.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/22/2023]
|
28
|
Serda M, Kalinowski DS, Rasko N, Potůčková E, Mrozek-Wilczkiewicz A, Musiol R, Małecki JG, Sajewicz M, Ratuszna A, Muchowicz A, Gołąb J, Šimůnek T, Richardson DR, Polanski J. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships. PLoS One 2014; 9:e110291. [PMID: 25329549 PMCID: PMC4199632 DOI: 10.1371/journal.pone.0110291] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/10/2014] [Indexed: 01/01/2023] Open
Abstract
Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized “soft” donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.
Collapse
Affiliation(s)
- Maciej Serda
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
| | - Danuta S. Kalinowski
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nathalie Rasko
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Eliška Potůčková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Anna Mrozek-Wilczkiewicz
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
- A. Chełkowski Institute of Physics and Silesian Interdisciplinary Centre for Education and Research, University of Silesia, Katowice, Silesia, Poland
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
| | - Jan G. Małecki
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
| | | | - Alicja Ratuszna
- A. Chełkowski Institute of Physics and Silesian Interdisciplinary Centre for Education and Research, University of Silesia, Katowice, Silesia, Poland
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Warsaw, Mazovia, Poland
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, Warsaw, Mazovia, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Mazovia, Poland
| | - Tomáš Šimůnek
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Des R. Richardson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JP); (DRR)
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Katowice, Silesia, Poland
- * E-mail: (JP); (DRR)
| |
Collapse
|
29
|
Carballo R, Pino-Cuevas A, Vázquez-López EM. Crystal structure of 1-(4-formyl-benzyl-idene)thio-semicarbazone. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o970. [PMID: 25309285 PMCID: PMC4186181 DOI: 10.1107/s1600536814017255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 12/02/2022]
Abstract
The asymmetric unit of the title compound, C9H9N3OS, contains two approximately planar molecules (r.m.s. deviations for 14 non-H atoms = 0.094 and 0.045 Å), with different conformations. In one of them, the C=O group is syn to the S atom and in the other it is anti. Each molecule features an intramolecular N—H⋯N hydrogen bond, which generates an S(5) ring. In the crystal, molecules are linked by N—H⋯O and N—H⋯S hydrogen bonds, generating discrete networks; the syn molecules form [010] chains and the anti molecules form (100) sheets.
Collapse
Affiliation(s)
- Rosa Carballo
- Departamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Galicia, Spain
| | - Arantxa Pino-Cuevas
- Departamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Galicia, Spain
| | - Ezequiel M Vázquez-López
- Departamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Galicia, Spain
| |
Collapse
|
30
|
Manikandan R, Viswanathamurthi P, Velmurugan K, Nandhakumar R, Hashimoto T, Endo A. Synthesis, characterization and crystal structure of cobalt(III) complexes containing 2-acetylpyridine thiosemicarbazones: DNA/protein interaction, radical scavenging and cytotoxic activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:205-16. [DOI: 10.1016/j.jphotobiol.2013.11.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 01/26/2023]
|
31
|
Hanauske-Abel HM, Saxena D, Palumbo PE, Hanauske AR, Luchessi AD, Cambiaghi TD, Hoque M, Spino M, Gandolfi DD, Heller DS, Singh S, Park MH, Cracchiolo BM, Tricta F, Connelly J, Popowicz AM, Cone RA, Holland B, Pe’ery T, Mathews MB. Drug-induced reactivation of apoptosis abrogates HIV-1 infection. PLoS One 2013; 8:e74414. [PMID: 24086341 PMCID: PMC3781084 DOI: 10.1371/journal.pone.0074414] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal antivirals that eliminate viral infection by destroying infected cells. A drug-based drug discovery program, based on these compounds, is warranted to determine the potential of such agents in clinical trials of HIV-infected patients.
Collapse
Affiliation(s)
- Hartmut M. Hanauske-Abel
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Deepti Saxena
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Paul E. Palumbo
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Axel-Rainer Hanauske
- Oncology Center and Medical Clinic III, Asklepios Clinic St. George, Hamburg, Germany
| | - Augusto D. Luchessi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tavane D. Cambiaghi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Mainul Hoque
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ApoPharma Inc., Toronto, Ontario, Canada
| | | | - Debra S. Heller
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sukhwinder Singh
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute for Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Bernadette M. Cracchiolo
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | | | | | - Anthony M. Popowicz
- Department of Information Technology, Rockefeller University, New York, New York, United States of America
| | - Richard A. Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bart Holland
- Department of Preventive Medicine & Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tsafi Pe’ery
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael B. Mathews
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
32
|
Lukmantara AY, Kalinowski DS, Kumar N, Richardson DR. Structure–activity studies of 4-phenyl-substituted 2′-benzoylpyridine thiosemicarbazones with potent and selective anti-tumour activity. Org Biomol Chem 2013; 11:6414-25. [DOI: 10.1039/c3ob41109e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|