1
|
Xiong Y, Li M, Lu W, Wang D, Tang M, Liu Y, Na B, Qin H, Qing G. Discerning Tyrosine Phosphorylation from Multiple Phosphorylations Using a Nanofluidic Logic Platform. Anal Chem 2021; 93:16113-16122. [PMID: 34841853 DOI: 10.1021/acs.analchem.1c03889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Discerning tyrosine phosphorylation (pTyr) catalyzed by Tyr kinase is central to the revelation of oncogenic mechanisms and the development of targeted anticancer drugs. Despite some techniques, this goal remains challenging, especially when faced with the interference of multiple phosphorylation events, including serine (pSer) and threonine phosphorylation (pThr). We describe here a functional polymer-modified artificial ion nanochannel, which enables the sensitive and selective recognition of phosphotyrosine (pY) peptide by the distinct ionic current change. Such a recognition effect allows for the nanochannel to work in a complex protein digest condition. Further, the implementation of nanofluidic logic functions with the addition of Ca2+ dramatically improves the selectivity of the nanochannel to pY peptide and thus can discern pTyr by the Tyr kinase from pSer by the Ser/Thr kinase through simultaneously monitoring multisite phosphorylation at the same or different peptide substrates in one-pot. This logic sensing platform displays the potential in differentiating Tyr kinase and Ser/Thr kinase and assessing multi-kinase activities in multi-targeted drug design.
Collapse
Affiliation(s)
- Yuting Xiong
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Minmin Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Bing Na
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
2
|
Xiao T, Sun L, Zhang M, Li Z, Haura EB, Schonbrunn E, Ji H. Synthesis and structural characterization of a monocarboxylic inhibitor for GRB2 SH2 domain. Bioorg Med Chem Lett 2021; 51:128354. [PMID: 34506932 DOI: 10.1016/j.bmcl.2021.128354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
A monocarboxylic inhibitor was designed and synthesized to disrupt the protein-protein interaction (PPI) between GRB2 and phosphotyrosine-containing proteins. Biochemical characterizations show compound 7 binds with the Src homology 2 (SH2) domain of GRB2 and is more potent than EGFR1068 phosphopeptide 14-mer. X-ray crystallographic studies demonstrate compound 7 occupies the GRB2 binding site for phosphotyrosine-containing sequences and reveal key structural features for GRB2-inhibitor binding. This compound with a -1 formal charge offers a new direction for structural optimization to generate cell-permeable inhibitors for this key protein target of the aberrant Ras-MAPK signaling cascade.
Collapse
Affiliation(s)
- Tao Xiao
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Luxin Sun
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Zilu Li
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Ernst Schonbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States.
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
3
|
Roy R, Paul S. Potential of ATP toward Prevention of hIAPP Oligomerization and Destabilization of hIAPP Protofibrils: An In Silico Perspective. J Phys Chem B 2021; 125:3510-3526. [PMID: 33792323 DOI: 10.1021/acs.jpcb.1c00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aggregation of an intrinsically disordered protein, human islet amyloid polypeptide (hIAPP), leads to one of the most prevalent endocrine disorders, type II diabetes mellitus (T2DM). Hence inhibition of hIAPP aggregation provides a possible therapeutic approach for the treatment of T2DM. In this regard, a new aspect of adenosine triphosphate (ATP), which is widely known as the energy source for biological reactions, has recently been discovered, where it can inhibit the formation of protein aggregates and simultaneously dissolve preformed aggregates at a millimolar concentration scale. In this work, we investigate the effect of ATP on the aggregation of an amyloidogenic segment of hIAPP, hIAPP22-28, and also of the full length sequence. Using all-atom classical molecular dynamics simulations, we observe that the tendency of hIAPP to oligomerize into β-sheet conformers is inhibited by ATP, due to which the peptides remain distant, loosely packed random monomers. Moreover, it can also disassemble preformed hIAPP protofibrils. ATP preferentially interacts with the hydrophobic residues of hIAPP22-28 fragment and the terminal and turn residues of the full length peptide. The hydrogen bonding, hydrophobic, π-π, and N-H-π stacking interactions are the driving forces for the ATP induced inhibition of hIAPP aggregation. Interestingly, the hydrophobic adenosine of ATP is found to be more in contact with the peptide residues than the hydrophilic triphosphate moiety. The insight into the inhibitory mechanism of ATP on hIAPP aggregation can prove to be beneficial for the design of novel amyloid inhibitors in the future.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
4
|
Cramer DL, Cheng B, Tian J, Clements JH, Wypych RM, Martin SF. Some thermodynamic effects of varying nonpolar surfaces in protein-ligand interactions. Eur J Med Chem 2020; 208:112771. [PMID: 32916312 PMCID: PMC7680455 DOI: 10.1016/j.ejmech.2020.112771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/18/2022]
Abstract
Understanding how making structural changes in small molecules affects their binding affinities for targeted proteins is central to improving strategies for rational drug design. To assess the effects of varying the nature of nonpolar groups upon binding entropies and enthalpies, we designed and prepared a set of Grb2-SH2 domain ligands, Ac-pTyr-Ac6c-Asn-(CH2)n-R, in which the size and electrostatic nature of R groups at the pTyr+3 site were varied. The complexes of these ligands with the Grb2-SH2 domain were evaluated in a series of studies in which the binding thermodynamics were determined using isothermal titration calorimetry, and binding interactions were examined in crystallographic studies of two different complexes. Notably, adding nonpolar groups to the pTyr+3 site leads to higher binding affinities, but the magnitude and energetic origins of these effects vary with the nature of the R substituent. For example, enhancements to binding affinities using aliphatic R groups are driven by more favorable changes in binding entropies, whereas aryl R groups improve binding free energies through a combination of more favorable changes in binding enthalpies and entropies. However, enthalpy/entropy compensation plays a significant role in these associations and mitigates against any significant variation in binding free energies, which vary by only 0.8 kcal•mol-1, with changes in the electrostatic nature and size of the R group. Crystallographic studies show that differences in ΔG° or ΔH° correlate with buried nonpolar surface area, but they do not correlate with the total number of polar or van der Waals contacts. The relative number of ordered water molecules and relative order in the side chains at pTyr+3 correlate with differences in -TΔS°. Overall, these studies show that burial of nonpolar surface can lead to enhanced binding affinities arising from dominating entropy- or enthalpy-driven hydrophobic effects, depending upon the electrostatic nature of the apolar R group.
Collapse
Affiliation(s)
- David L Cramer
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Bo Cheng
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Jianhua Tian
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - John H Clements
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Rachel M Wypych
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Stephen F Martin
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Roy R, Paul S. Theoretical Investigation of the Inhibitory Mechanism of Norepinephrine on hIAPP Amyloid Aggregation and the Destabilization of Protofibrils. J Phys Chem B 2020; 124:10913-10929. [DOI: 10.1021/acs.jpcb.0c07830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Li M, Xiong Y, Lu W, Wang X, Liu Y, Na B, Qin H, Tang M, Qin H, Ye M, Liang X, Qing G. Functional Nanochannels for Sensing Tyrosine Phosphorylation. J Am Chem Soc 2020; 142:16324-16333. [PMID: 32894673 DOI: 10.1021/jacs.0c06510] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tyrosine phosphorylation (pTyr), much of which occurred on localized multiple sites, initiates cellular signaling, governs cellular functions, and its dysregulation is implicated in many diseases, especially cancers. pTyr-specific sensing is of great significance for understanding disease states and developing targeted anticancer drugs, however, it is very challenging due to the slight difference from serine (pSer) or threonine phosphorylation (pThr). Here we present polyethylenimine-g-phenylguanidine (PEI-PG)-modified nanochannels that can address the challenge. Rich guanidinium groups enabled PEI-PG to form multiple interactions with phosphorylated residues, especially pTyr residue, which triggered the conformational change of PEI-PG. By taking advantage of the "OFF-ON" change of the ion flux arising from the conformational shrinkage of the grafted PEI-PG, the nanochannels could distinguish phosphorylated peptide (PP) from nonmodified peptide, recognize PPs with pSer, pThr, or pTyr residue and PPs with different numbers of identical residues, and importantly could sense pTyr peptides in a biosample. Benefiting from the strong interaction between the guanidinium group and the pTyr side-chain, the specific sensing of pTyr peptide was achieved by performing a simple logic operation based on PEI-PG-modified nanochannels when Ca2+ was introduced as an interferent. The excellent pTyr sensing capacity makes the nanochannels available for real-time monitoring of the pTyr process by c-Abl kinase on a peptide substrate, even under complicated conditions, and the proof-of-concept study of monitoring the kinase activity demonstrates its potential in kinase inhibitor screening.
Collapse
Affiliation(s)
- Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Bing Na
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
7
|
Wypych RM, LaPlante SR, White PW, Martin SF. Structure-thermodynamics-relationships of hepatitis C viral NS3 protease inhibitors. Eur J Med Chem 2020; 192:112195. [PMID: 32151833 DOI: 10.1016/j.ejmech.2020.112195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Thermodynamic parameters were determined for structurally-related inhibitors of HCV NS3 protease to assess how binding entropies and enthalpies vary with incremental changes at the P2 and P3 inhibitor subsites. Changing the heterocyclic substituent at P2 from a pyridyl to a 7-methoxy-2-phenyl-4-quinolyl group leads to a 710-fold increase in affinity. Annelating a benzene ring onto a pyridine ring leads to quinoline-derived inhibitors having higher affinities, but the individual enthalpy and entropy contributions are markedly different for each ligand pair. Introducing a phenyl group at C2 of the heterocyclic ring at P2 uniformly leads to higher affinity analogs with more favorable binding entropies, while adding a methoxy group at C7 of the quinoline ring at P2 provides derivatives with more favorable binding enthalpies. Significant enthalpy/entropy compensation is observed for structural changes made to inhibitors lacking a 2-phenyl substituent, whereas favorable changes in both binding enthalpies and entropies accompany structural modifications when a 2-phenyl group is present. Overall, binding energetics of inhibitors having a 2-phenyl-4-quinolyl group at P2 are dominated by entropic effects, whereas binding of the corresponding norphenyl analogs are primarily enthalpy driven. Notably, the reversal from an entropy driven association to an enthalpy driven one for this set of inhibitors also correlates with alternate binding modes. When the steric bulk of the side chain at P3 is increased from a hydrogen atom to a tert-butyl group, there is a 770-fold improvement in affinity. The 30-fold increase resulting from the first methyl group is solely the consequence of a more favorable change in entropy, whereas subsequent additions of methyl groups leads to modest increases in affinity that arise primarily from incremental improvements in binding enthalpies accompanied with smaller favorable entropic contributions.
Collapse
Affiliation(s)
- Rachel M Wypych
- The University of Texas at Austin, Department of Chemistry, 105 E 24th St Station A5300, Austin, TX, 78712-1224, USA
| | - Steven R LaPlante
- Université du Québec, INRS-Centre Armand Frappier Santé et Biotechnologie, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Peter W White
- Boehringer Ingelheim (Canada) Limited, Research and Development, 2100 rue Cunard, Laval, Quebec, H7S 2G5, Canada
| | - Stephen F Martin
- The University of Texas at Austin, Department of Chemistry, 105 E 24th St Station A5300, Austin, TX, 78712-1224, USA.
| |
Collapse
|
8
|
Krone MW, Albanese KI, Leighton GO, He CQ, Lee GY, Garcia-Borràs M, Guseman AJ, Williams DC, Houk KN, Brustad EM, Waters ML. Thermodynamic consequences of Tyr to Trp mutations in the cation-π-mediated binding of trimethyllysine by the HP1 chromodomain. Chem Sci 2020; 11:3495-3500. [PMID: 34109021 PMCID: PMC8152637 DOI: 10.1039/d0sc00227e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Evolution has converged on cation–π interactions for recognition of quaternary alkyl ammonium groups such as trimethyllysine (Kme3). While computational modelling indicates that Trp provides the strongest cation–π interaction of the native aromatic amino acids, there is limited corroborative data from measurements within proteins. Herein we investigate a Tyr to Trp mutation in the binding pocket of the HP1 chromodomain, a reader protein that recognizes Kme3. Binding studies demonstrate that the Trp-mediated cation–π interaction is about −5 kcal mol−1 stronger, and the Y24W crystal structure shows that the mutation is not perturbing. Quantum mechanical calculations indicate that greater enthalpic binding is predominantly due to increased cation–π interactions. NMR studies indicate that differences in the unbound state of the Y24W mutation lead to enthalpy–entropy compensation. These results provide direct experimental quantification of Trp versus Tyr in a cation–π interaction and afford insight into the conservation of aromatic cage residues in Kme3 reader domains. In this work, we experimentally validate that tryptophan provides the strongest cation–π binding interaction among aromatic amino acids and also lend insight into the importance of residue identity in trimethyllysine recognition by reader proteins.![]()
Collapse
Affiliation(s)
- Mackenzie W Krone
- University of North Carolina at Chapel Hill 131 South Road, Campus Box 3290 Chapel Hill NC 27599 USA
| | - Katherine I Albanese
- University of North Carolina at Chapel Hill 131 South Road, Campus Box 3290 Chapel Hill NC 27599 USA
| | - Gage O Leighton
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 120 Mason Farm Rd, Campus Box 7260 Chapel Hill NC 27599 USA
| | - Cyndi Qixin He
- Department of Chemistry and Biochemistry, University of California at Los Angeles 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 USA
| | - Ga Young Lee
- Department of Chemistry and Biochemistry, University of California at Los Angeles 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 USA
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California at Los Angeles 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 USA
| | - Alex J Guseman
- University of North Carolina at Chapel Hill 131 South Road, Campus Box 3290 Chapel Hill NC 27599 USA
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill Campus Box 7525, Brinkhous-Bullitt Building Chapel Hill NC 27599 USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 450 West Drive Chapel Hill NC 27599 USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 USA
| | - Eric M Brustad
- University of North Carolina at Chapel Hill 131 South Road, Campus Box 3290 Chapel Hill NC 27599 USA
| | - Marcey L Waters
- University of North Carolina at Chapel Hill 131 South Road, Campus Box 3290 Chapel Hill NC 27599 USA
| |
Collapse
|
9
|
Zou Y, Qian Z, Chen Y, Qian H, Wei G, Zhang Q. Norepinephrine Inhibits Alzheimer's Amyloid-β Peptide Aggregation and Destabilizes Amyloid-β Protofibrils: A Molecular Dynamics Simulation Study. ACS Chem Neurosci 2019; 10:1585-1594. [PMID: 30605312 DOI: 10.1021/acschemneuro.8b00537] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The abnormal self-assembly of amyloid-β (Aβ) peptides into toxic fibrillar aggregates is associated with the pathogenesis of Alzheimer's disease (AD). The inhibition of β-sheet-rich oligomer formation is considered as the primary therapeutic strategy for AD. Previous experimental studies reported that norepinephrine (NE), one of the neurotransmitters, is able to inhibit Aβ aggregation and disaggregate the preformed fibrils. Moreover, exercise can markedly increase the level of NE. However, the underlying inhibitory and disruptive mechanisms remain elusive. In this work, we performed extensive replica-exchange molecular dynamic (REMD) simulations to investigate the conformational ensemble of Aβ1-42 dimer with and without NE molecules. Our results show that without NE molecules, Aβ1-42 dimer transiently adopts a β-hairpin-containing structure, and the β-strand regions of this β-hairpin (residues 15QKLVFFA21 and 33GLMVGGVV40) strongly resemble those of the Aβ fibril structure (residues 15QKLVFFA21 and 30AIIGLMVG37) reported in an electron paramagnetic resonance spectroscopy study. NE molecules greatly reduce the interpeptide β-sheet content and suppress the formation of the above-mentioned β-hairpin, leading to a more disordered coil-rich Aβ dimer. Five dominant binding sites are identified, and the central hydrophobic core 16KLVFFA21 site and C-terminal 31IIGLMV36 hydrophobic site are the two most favorable ones. Our data reveal that hydrophobic, aromatic stacking, hydrogen-bonding and cation-π interactions synergistically contribute to the binding of NE molecules to Aβ peptides. MD simulations of Aβ1-42 protofibril show that NE molecules destabilize Aβ protofibril by forming H-bonds with residues D1, A2, D23, and A42. This work reveals the molecular mechanism by which NE molecules inhibit Aβ1-42 aggregation and disaggregate Aβ protofibrils, providing valuable information for developing new drug candidates and exercise therapy against AD.
Collapse
Affiliation(s)
- Yu Zou
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People’s Republic of China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People’s Republic of China
| | - Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
| | - Hongsheng Qian
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People’s Republic of China
| |
Collapse
|
10
|
Hosoe Y, Numoto N, Inaba S, Ogawa S, Morii H, Abe R, Ito N, Oda M. Structural and functional properties of Grb2 SH2 dimer in CD28 binding. Biophys Physicobiol 2019; 16:80-88. [PMID: 30923665 PMCID: PMC6435016 DOI: 10.2142/biophysico.16.0_80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein that plays a critical role in cellular signal transduction. It contains a central Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains. Binding of Grb2 SH2 to the cytoplasmic region of CD28, phosphorylated Tyr (pY) containing the peptide motif pY-X-N-X, is required for costimulatory signaling in T cells. In this study, we purified the dimer and monomer forms of Grb2 SH2, respectively, and analyzed their structural and functional properties. Size exclusion chromatography analysis showed that both dimer and monomer exist as stable states. Thermal stability analysis using circular dichroism showed that the dimer mostly dissociates into the monomer around 50°C. CD28 binding experiments showed that the affinity of the dimer to the phosphopeptide was about three fold higher than that of the monomer, possibly due to the avidity effect. The present crystal structure analysis of Grb2 SH2 showed two forms; one is monomer at 1.15 Å resolution, which is currently the highest resolution analysis, and another is dimer at 2.00 Å resolution. In the dimer structure, the C-terminal region, comprising residues 123–152, was extended towards the adjacent molecule, in which Trp121 was the hinge residue. The stable dimer purified using size exclusion chromatography would be due to the C-terminal helix “swapping”. In cases where a mutation caused Trp121 to be replaced by Ser in Grb2 SH2, this protein still formed dimers, but lost the ability to bind CD28.
Collapse
Affiliation(s)
- Yuhi Hosoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satomi Inaba
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.,Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Shuhei Ogawa
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Hisayuki Morii
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan.,Present address: Strategic Innovation and Research Center, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
11
|
Di Costanzo L, Dutta S, Burley SK. Amino acid modifications for conformationally constraining naturally occurring and engineered peptide backbones: Insights from the Protein Data Bank. Biopolymers 2018; 109:e23230. [PMID: 30368772 DOI: 10.1002/bip.23230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
Extensive efforts invested in understanding the rules of protein folding are now being applied, with good effect, in de novo design of proteins/peptides. For proteins containing standard α-amino acids alone, knowledge derived from experimentally determined three-dimensional (3D) structures of proteins and biologically active peptides are available from the Protein Data Bank (PDB), and the Cambridge Structural Database (CSD). These help predict and design protein structures, with reasonable confidence. However, our knowledge of 3D structures of biomolecules containing backbone modified amino acids is still evolving. A major challenge in de novo protein/peptide design concerns the engineering of conformationally constrained molecules with specific structural elements and chemical groups appropriately positioned for biological activity. This review explores four classes of amino acid modifications that constrain protein/peptide backbone structure. Systematic analysis of peptidic molecule structures (eg, bioactive peptides, inhibitors, antibiotics, and designed molecules), containing these backbone-modified amino acids, found in the PDB and CSD are discussed. The review aims to provide structure-function insights that will guide future design of proteins/peptides.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Shuchismita Dutta
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, U.S.A.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| |
Collapse
|
12
|
Abstract
Diverse structural types of natural products and their mimics have served as targets of opportunity in our laboratory to inspire the discovery and development of new methods and strategies to assemble polyfunctional and polycyclic molecular architectures. Furthermore, our efforts toward identifying novel compounds having useful biological properties led to the creation of new targets, many of which posed synthetic challenges that required the invention of new methodology. In this Perspective, selected examples of how we have exploited a diverse range of natural products and their mimics to create, explore, and solve a variety of problems in chemistry and biology will be discussed. The journey was not without its twists and turns, but the unexpected often led to new revelations and insights. Indeed, in our recent excursion into applications of synthetic organic chemistry to neuroscience, avoiding the more-traveled paths was richly rewarding.
Collapse
Affiliation(s)
- Stephen F Martin
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
13
|
Tu T, Li Y, Su X, Meng K, Ma R, Wang Y, Yao B, Lin Z, Luo H. Probing the role of cation-π interaction in the thermotolerance and catalytic performance of endo-polygalacturonases. Sci Rep 2016; 6:38413. [PMID: 27929074 PMCID: PMC5143973 DOI: 10.1038/srep38413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding the dynamics of the key pectinase, polygalacturonase, and improving its thermotolerance and catalytic efficiency are of importance for the cost-competitive bioconversion of pectic materials. By combining structure analysis and molecular dynamics (MD) simulations, eight mutagenesis sites having the potential to form cation-π interactions were identified in the widely used fungal endo-polygalacturonase PG63. In comparison to the wild-type, three single mutants H58Y, T71Y and T304Y showed improved thermostability (the apparent Tms increased by 0.6-3.9 °C) and catalytic efficiency (by up to 32-fold). Chromatogram analysis of the hydrolysis products indicated that a larger amount of shorter sugars were released from the polygalacturonic acid by these three mutants than by the wild-type. MD analysis of the enzyme-substrate complexes illustrated that the mutants with introduced cation-π interaction have modified conformations of catalytic crevice, which provide an enviable environment for the catalytic process. Moreover, the lower plasticity of T3 loop 2 at the edge of the subsite tunnel appears to recruit the reducing ends of oligogalacturonide into the active site tunnel and initiates new hydrolysis reactions. This study demonstrates the importance of cation-π interaction in protein conformation and provides a realistic strategy to enhance the thermotolerance and catalytic performance of endo-polygalacturonases.
Collapse
Affiliation(s)
- Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Yeqing Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Kun Meng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Zhemin Lin
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, P. R. China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, P. R. China
| |
Collapse
|
14
|
Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation. Sci Rep 2016; 6:33076. [PMID: 27620620 PMCID: PMC5020610 DOI: 10.1038/srep33076] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
Small oligomers formed early along human islet amyloid polypeptide (hIAPP) aggregation is responsible for the cell death in Type II diabetes. The epigallocatechin gallate (EGCG), a green tea extract, was found to inhibit hIAPP fibrillation. However, the inhibition mechanism and the conformational distribution of the smallest hIAPP oligomer – dimer are mostly unknown. Herein, we performed extensive replica exchange molecular dynamic simulations on hIAPP dimer with and without EGCG molecules. Extended hIAPP dimer conformations, with a collision cross section value similar to that observed by ion mobility-mass spectrometry, were observed in our simulations. Notably, these dimers adopt a three-stranded antiparallel β-sheet and contain the previously reported β-hairpin amyloidogenic precursor. We find that EGCG binding strongly blocks both the inter-peptide hydrophobic and aromatic-stacking interactions responsible for inter-peptide β-sheet formation and intra-peptide interaction crucial for β-hairpin formation, thus abolishes the three-stranded β-sheet structures and leads to the formation of coil-rich conformations. Hydrophobic, aromatic-stacking, cation-π and hydrogen-bonding interactions jointly contribute to the EGCG-induced conformational shift. This study provides, on atomic level, the conformational ensemble of hIAPP dimer and the molecular mechanism by which EGCG inhibits hIAPP aggregation.
Collapse
|