1
|
Sutariya TR, Brahmbhatt GC, Atara HD, Parmar NJ, RajniKant, Gupta VK, Lagunes I, Padrón JM, Murumkar PR, Sharma MK, Yadav MR. An efficient one-pot synthesis and docking studies of bioactive new antiproliferative dispiro[oxindole/acenaphthylenone‒benzofuranone] pyrrolidine scaffolds. Mol Divers 2024; 28:3165-3180. [PMID: 37935912 DOI: 10.1007/s11030-023-10741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/01/2023] [Indexed: 11/09/2023]
Abstract
A new and efficient method has been developed to synthesize dispiro[oxindole/acenaphthylenone-benzofuranone]pyrrolidine compounds. This is done by triggering the 1,3-dipolar cycloaddition reaction of azomethine ylides by reacting isatin/acenaphthoquinone with L-picolinic acid/L-proline/sarcosine/L-thioproline/tetrahydroisoquinolines, in a highly regioselective manner in an ionic liquid [DBU][Ac] with 4'-chloro-auron[2-(4-chlorobenzylidene)benzofuran-3(2H)-one]. Single-crystal X-ray diffraction data support the proposed structures of the new compounds. The heterocycles derived from amino acids such as L-picolinic acid, L-proline, and L-thioproline showed significant inhibitory effects against six human solid tumors, including lung, breast, cervix, colon, and others. These new structures were also tested in the active sites of the MDM2 receptor to further study their antiproliferative effects.
Collapse
Affiliation(s)
- Tushar R Sutariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar Dist. Anand, Gujarat, 388120, India
| | - Gaurangkumar C Brahmbhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar Dist. Anand, Gujarat, 388120, India
| | - Hiralben D Atara
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar Dist. Anand, Gujarat, 388120, India
| | - Narsidas J Parmar
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar Dist. Anand, Gujarat, 388120, India.
| | - RajniKant
- Post-Graduate Department of Physics, University of Jammu, Jammu, Tawi, 180006, India
| | - Vivek K Gupta
- Post-Graduate Department of Physics, University of Jammu, Jammu, Tawi, 180006, India
| | - Irene Lagunes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Mayank Kumar Sharma
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| |
Collapse
|
2
|
Lone MS, Nabi SA, Wani FR, Garg M, Amin S, Samim M, Shafi S, Khan F, Javed K. Design, synthesis and evaluation of 5-chloro-6-methylaurone derivatives as potential anti-cancer agents. J Biomol Struct Dyn 2023; 41:13466-13487. [PMID: 36856061 DOI: 10.1080/07391102.2023.2183716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/24/2023] [Indexed: 03/02/2023]
Abstract
A series of novel 5-chloro-6-methylaurone derivatives (6a-p) were synthesized and characterized by various spectroscopic techniques. The synthesized compounds were tested for anticancer activity against 60-human cancer cell line panel derived from nine cancer types at NCI, Bethesda, USA. Among the synthesized compounds, six compounds (6e, 6f, 6h, 6i, 6k and 6 m) exhibited growth inhibition and cytotoxic activity against various human cancer cell lines in one-dose data. The most potent compound among the series, 6i was active against 55 out of 60 human cancer cell lines. Compound 6i showed remarkable % growth inhibition and cytotoxicity against various cancer cell lines exhibiting % GI in the range 36.05-199.03. The compound 6i was further evaluated for five dose assay and exhibited GI50 1.90 µM and 2.70 µM against melanoma and breast cancer cell lines respectively. Further evaluation of 6i for five-dose assay exhibited a diverse spectrum of anti-cancer activity towards all the 60 human cancer cell line panel with the selectivity index ratio ranging 0.854-1.42 and 0.66-1.35 for GI50 and TGI respectively. Based on one-dose and five-dose data compound 6i was further evaluated for cell apoptosis against MDA-MB-468 breast cancer cell line and was found to induce early apoptosis in cells explaining its mode of action. The in-silico studies for the synthesized compounds as LSD1 inhibitors (2H94) have shown better docking score and binding energy comparable to vafidemstat. All the compounds followed Lipinski rule of five. These findings concluded that the compound 6i could lead to the development of a promising therapeutic anticancer agent.
Collapse
Affiliation(s)
- Mehak Saba Lone
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Syed Ayaz Nabi
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Farhat Ramzan Wani
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Shaista Amin
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Kalim Javed
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| |
Collapse
|
3
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
4
|
Tian T, Li M, Feng W, Ding Y, Li Z, Shi Z, Shen T. Total Syntheses and Cytotoxicity Evaluation of Coryaurone A and Representative Analogues. JOURNAL OF NATURAL PRODUCTS 2022; 85:1634-1640. [PMID: 35671109 DOI: 10.1021/acs.jnatprod.2c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first total synthesis of coryaurone A, which was originally obtained from Psoralea corylifolia L., was achieved via an efficient route with the longest linear sequence of six steps from the commercially available 6-hydroxy-2H-benzofuran-3-one in 37% overall yield. A series of representative analogues were synthesized from the same starting material in 4-7 steps with overall yields of 27-56%. The cytotoxicities of these compounds against the leukemia cell line HL-60 and the colon cancer cell line SW480 were determined. Among them, compounds 12, 14, 21, and 27 exhibited different levels of cytotoxic activity, which were greater than the positive control cisplatin.
Collapse
Affiliation(s)
- Tian Tian
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Minghan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Wei Feng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Yalong Ding
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Zhaoyu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Zheng Shi
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Tong Shen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| |
Collapse
|
5
|
L-Proline-Based Natural Deep Eutectic Solvents as Efficient Solvents and Catalysts for the Ultrasound-Assisted Synthesis of Aurones via Knoevenagel Condensation. Catalysts 2022. [DOI: 10.3390/catal12030249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aurones are minor flavonoids that possess a wide variety of bioactivity, including antioxidant, anticancer, and enzyme inhibitory activity. L-proline-based natural deep eutectic solvents (NaDES) were synthesized and applied as solvents and catalysts for the Knoevenagel condensation reaction between benzofuranone and substituted benzaldehydes to produce aurones in high yields and purity. The reaction between benzofuranone and vanillin served as the model reaction. After screening three NaDESs, and testing microwave, as well as ultrasound as energy sources, we concluded that the optimum results are obtained using L-proline/glycerol 1:2 as catalyst and solvent and ultrasound irradiation. The scope of the reaction was evaluated using a variety of benzaldehydes, and the corresponding aurones were obtained in moderate to satisfactory yields (57–89%) and high purity. An important additional feature of the described methodology is the recyclability and reusability of the NaDES, which was recycled and effectively reused after 6 cycles.
Collapse
|
6
|
Aurones: A Golden Resource for Active Compounds. Molecules 2021; 27:molecules27010002. [PMID: 35011233 PMCID: PMC8746708 DOI: 10.3390/molecules27010002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Deemed as poorly represented in nature, aurones have been often overlooked by researchers compared to other members of the flavonoid superfamily. However, over the past two decades, they have been reassessed by the scientific community, who are increasingly appreciating their ability to modulate several biological pathways. This review summarizes the recent literature on this class of compounds, which has been analyzed from both a chemical and a functional point of view. Original articles, reviews and editorials featured in Pubmed and Scifinder over the last twenty years have been taken into account to provide the readers with a view of the chemical strategies to obtain them, their functional properties, and their potential of technological use. The resulting comprehensive picture aims at raising the awareness of these natural derivatives as effective drug candidates, fostering the development of novel synthetic analogues.
Collapse
|
7
|
Qiu X, Zhu L, Wang H, Tan Y, Yang Z, Yang L, Wan L. From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorg Med Chem 2021; 52:116510. [PMID: 34826681 DOI: 10.1016/j.bmc.2021.116510] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
Histone deacetylases (HDACs) play a key role in the homeostasis of protein acetylation in histones and have recently emerged as a therapeutic target for numerous diseases. The inhibition of HDACs may block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumour cells. Thus, HDAC inhibitors (HDACi) have received increasing attention and many of which are developed from natural sources. In the past few decades, naturally occurring HDACi have been identified to have potent anticancer activities, some of which have demonstrated promising therapeutic effects on haematological malignancies. In this review, we summarized the discovery and modification of HDAC inhibitors from natural sources, novel drug design that uses natural products as parent nuclei, and dual target design strategies that combine HDAC with non-HDAC targets.
Collapse
Affiliation(s)
- Xiang Qiu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lv Zhu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
8
|
Venkateswarlu S, Murty GN, Satyanarayana M, Siddaiah V. Design, synthesis, and biological activity studies of a new class of sulfonated aurones: First synthesis of acidoaurone isolated from
Phyllanthus acidus
. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | - Vidavalur Siddaiah
- Department of Organic Chemistry, School of Chemistry Andhra University Visakhapatnam India
| |
Collapse
|
9
|
Ashraf J, Mughal EU, Alsantali RI, Sadiq A, Jassas RS, Naeem N, Ashraf Z, Nazir Y, Zafar MN, Mumtaz A, Mirzaei M, Saberi S, Ahmed SA. 2-Benzylidenebenzofuran-3(2 H)-ones as a new class of alkaline phosphatase inhibitors: synthesis, SAR analysis, enzyme inhibitory kinetics and computational studies. RSC Adv 2021; 11:35077-35092. [PMID: 35493176 PMCID: PMC9042899 DOI: 10.1039/d1ra07379f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
The excelling role of organic chemistry in the medicinal field continues to be one of the main leads in the drug development process. Particularly, this industry requires organic chemists to discover small molecular structures with powerful pharmacological potential. Herein, a diverse range of chalcone (1–11) and aurone (12–22) derivatives was designed and synthesized and for the first time, and both motifs were evaluated as potent inhibitors of alkaline phosphatases (APs). Structural identification of the target compounds (1–22) was accomplished using common spectroscopic techniques. The effect of the nature and position of the substituent was interestingly observed and justified based on the detailed structure–activity relationship (SAR) of the target compounds against AP. It was concluded from the obtained results that all the newly synthesized compounds exhibit high inhibitory potential against the AP enzyme. Among them, compounds 12 (IC50 = 2.163 ± 0.048 μM), 15 (IC50 = 2.146 ± 0.056 μM), 16 (IC50 = 2.132 ± 0.034 μM), 18 (IC50 = 1.154 ± 0.043 μM), 20 (IC50 = 1.055 ± 0.029 μM) and 21 (IC50 = 2.326 ± 0.059 μM) exhibited excellent inhibitory activity against AP, and even better/more active than KH2PO4 (standard) (IC50 = 2.80 ± 0.065 μM). Remarkably, compound 20 (IC50 = 1.055 ± 0.029 μM) may serve as a lead structure to design more potent inhibitors of alkaline phosphatase. To the best of our knowledge, these synthetic compounds are the most potent AP inhibitors with minimum IC50 values reported to date. Furthermore, a molecular modeling study was performed against the AP enzyme (1EW2) to check the binding interaction of the synthesized compounds 1–22 against the target protein. The Lineweaver–Burk plots demonstrated that most potential derivative 20 inhibited h-IAP via a non-competitive pathway. Finally, molecular dynamic (MD) simulations were performed to evaluate the dynamic behavior, stability of the protein–ligand complex, and binding affinity of the compounds, resulting in the identification of compound 20 as a potential inhibitor of AP. Accordingly, excellent correlation was observed between the experimental and theoretical results. The pharmacological studies revealed that the synthesized analogs 1–22 obey Lipinski's rule. The assessment of the ADMET parameters showed that these compounds possess considerable lead-like characteristics with low toxicity and can serve as templates in drug design. Aurones are the plant secondary metabolites belonging to the flavonoid’s family. The bioactivities of aurones are very promising, thus these heterocyclic compounds can be considered as an alluring scaffold for drug design and development.![]()
Collapse
Affiliation(s)
- Jamshaid Ashraf
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | | | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University Islamabad-44000 Pakistan
| | - Yasir Nazir
- Department of Chemistry, Allama Iqbal Open University Islamabad-44000 Pakistan.,Department of Chemistry, University of Sialkot Sialkot-51300 Pakistan
| | | | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad Abbottabad Pakistan
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad-9177948974 Iran
| | - Satar Saberi
- Department of Chemistry, Faculty of Science, Farhangian University Tehran Iran
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia .,Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
10
|
Kostopoulou I, Tzani A, Polyzos NI, Karadendrou MA, Kritsi E, Pontiki E, Liargkova T, Hadjipavlou-Litina D, Zoumpoulakis P, Detsi A. Exploring the 2'-Hydroxy-Chalcone Framework for the Development of Dual Antioxidant and Soybean Lipoxygenase Inhibitory Agents. Molecules 2021; 26:2777. [PMID: 34066803 PMCID: PMC8125951 DOI: 10.3390/molecules26092777] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022] Open
Abstract
2'-hydroxy-chalcones are naturally occurring compounds with a wide array of bioactivity. In an effort to delineate the structural features that favor antioxidant and lipoxygenase (LOX) inhibitory activity, the design, synthesis, and bioactivity profile of a series of 2'-hydroxy-chalcones bearing diverse substituents on rings A and B, are presented. Among all the synthesized derivatives, chalcone 4b, bearing two hydroxyl substituents on ring B, was found to possess the best combined activity (82.4% DPPH radical scavenging ability, 82.3% inhibition of lipid peroxidation, and satisfactory LOX inhibition value (IC50 = 70 μM). Chalcone 3c, possessing a methoxymethylene substituent on ring A, and three methoxy groups on ring B, exhibited the most promising LOX inhibitory activity (IC50 = 45 μM). A combination of in silico techniques were utilized in an effort to explore the crucial binding characteristics of the most active compound 3c and its analogue 3b, to LOX. A common H-bond interaction pattern, orienting the hydroxyl and carbonyl groups of the aromatic ring A towards Asp768 and Asn128, respectively, was observed. Regarding the analogue 3c, the bulky (-OMOM) group does not seem to participate in a direct binding, but it induces an orientation capable to form H-bonds between the methoxy groups of the aromatic ring B with Trp130 and Gly247.
Collapse
Affiliation(s)
- Ioanna Kostopoulou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (N.-I.P.); (M.-A.K.)
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (N.-I.P.); (M.-A.K.)
| | - Nestor-Ioannis Polyzos
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (N.-I.P.); (M.-A.K.)
| | - Maria-Anna Karadendrou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (N.-I.P.); (M.-A.K.)
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Eleni Pontiki
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (T.L.); (D.H.-L.)
| | - Thalia Liargkova
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (T.L.); (D.H.-L.)
| | - Dimitra Hadjipavlou-Litina
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (T.L.); (D.H.-L.)
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (N.-I.P.); (M.-A.K.)
| |
Collapse
|
11
|
|
12
|
A novel thermophilic laccase-like multicopper oxidase from Thermothelomyces thermophila and its application in the oxidative cyclization of 2′,3,4-trihydroxychalcone. N Biotechnol 2019; 49:10-18. [DOI: 10.1016/j.nbt.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 01/03/2023]
|
13
|
Alsayari A, Muhsinah AB, Hassan MZ, Ahsan MJ, Alshehri JA, Begum N. Aurone: A biologically attractive scaffold as anticancer agent. Eur J Med Chem 2019; 166:417-431. [PMID: 30739824 DOI: 10.1016/j.ejmech.2019.01.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Aurones are very simple, promising anticancer lead molecules containing three rings (A, B and C). A very slight structural variation in the aurones elicits diverse affinity and specificity towards different molecular targets. The present review discusses the design, discovery and development of natural and synthetic aurones as small molecule anticancer agents. Detailed structure-activity relationship and intermolecular interactions at different targets are also discussed. Due to their rare occurrence in nature and minimal mention in literature, the anticancer potential of aurones is rather recent but in constant progress.
Collapse
Affiliation(s)
| | | | | | | | | | - Naseem Begum
- College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
14
|
Saito Y, Mizokami A, Tsurimoto H, Izumi K, Goto M, Nakagawa-Goto K. 5'-Chloro-2,2'-dihydroxychalcone and related flavanoids as treatments for prostate cancer. Eur J Med Chem 2018; 157:1143-1152. [PMID: 30189396 DOI: 10.1016/j.ejmech.2018.08.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/07/2018] [Accepted: 08/25/2018] [Indexed: 12/27/2022]
Abstract
Several flavonoids and their biosynthetic precursor chalcones were designed and synthesized to improve the biological effects of the lead compound 2'-hydroxyflavonone against androgen receptor (AR)-dependent transcriptional stimulation. Newly synthesized chalcones 19 and 26 suppressed AR-dependent transcription as well as DHT-dependent growth stimulation at a low micromolar level. These compounds were also effective against ligand-independent constitutively active mutant AR derived from castration-resistant PCa (CRPC). Compounds 19 and 26 showed broad spectrum antiproliferative activity at 5-10 μM against multiple tumor cell lines including androgen-independent and taxane-resistant prostate cancer as well as a multidrug-resistant subline. Mode of action studies suggested that 19 induced sub-G1 accumulation in PC-3 cells by disrupting the microtubule network without affecting cell cycle progression. Furthermore, the in vivo effectiveness of chalcone 19 was confirmed in a xenograft model antitumor assay. Thus, chalcone 19 has the potential to be a bifunctional lead for treatment of AR-dependent PCa at lower doses as well as AR-independent PCa, including CRPC, at higher doses.
Collapse
Affiliation(s)
- Yohei Saito
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Hiroyuki Tsurimoto
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Masuo Goto
- Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Kyoko Nakagawa-Goto
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, 920-1192, Japan; Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
15
|
Kumboonma P, Senawong T, Saenglee S, Yenjai C, Phaosiri C. New histone deacetylase inhibitors from the twigs of Melanorrhoea usitata. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2209-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Shao PL, Li ZR, Wang ZP, Zhou MH, Wu Q, Hu P, He Y. [3 + 2] Cycloaddition of Azaoxyallyl Cations with Cyclic Ketones: Access to Spiro-4-oxazolidinones. J Org Chem 2017; 82:10680-10686. [DOI: 10.1021/acs.joc.7b01728] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pan-Lin Shao
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| | - Zi-Rui Li
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| | - Zhi-Peng Wang
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| | - Ming-Hui Zhou
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| | - Qi Wu
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| | - Ping Hu
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| | - Yun He
- Chongqing Key Laboratory
of Natural Product Synthesis and Drug Research, School of Pharmaceutical
Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| |
Collapse
|
17
|
Muzychka OV, Kobzar OL, Popova AV, Frasinyuk MS, Vovk AI. Carboxylated aurone derivatives as potent inhibitors of xanthine oxidase. Bioorg Med Chem 2017; 25:3606-3613. [DOI: 10.1016/j.bmc.2017.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 01/16/2023]
|
18
|
Synthesis and anti-inflammatory activities of novel dihydropyranoaurone derivatives. Arch Pharm Res 2017; 40:695-703. [DOI: 10.1007/s12272-017-0910-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/17/2017] [Indexed: 11/28/2022]
|
19
|
Hau M, Zenk F, Ganesan A, Iovino N, Jung M. Cellular analysis of the action of epigenetic drugs and probes. Epigenetics 2017; 12:308-322. [PMID: 28071961 DOI: 10.1080/15592294.2016.1274472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Small molecule drugs and probes are important tools in drug discovery, pharmacology, and cell biology. This is of course also true for epigenetic inhibitors. Important examples for the use of established epigenetic inhibitors are the study of the mechanistic role of a certain target in a cellular setting or the modulation of a certain phenotype in an approach that aims toward therapeutic application. Alternatively, cellular testing may aim at the validation of a new epigenetic inhibitor in drug discovery approaches. Cellular and eventually animal models provide powerful tools for these different approaches but certain caveats have to be recognized and taken into account. This involves both the selectivity of the pharmacological tool as well as the specificity and the robustness of the cellular system. In this article, we present an overview of different methods that are used to profile and screen for epigenetic agents and comment on their limitations. We describe not only diverse successful case studies of screening approaches using different assay formats, but also some problematic cases, critically discussing selected applications of these systems.
Collapse
Affiliation(s)
- Mirjam Hau
- a University of Freiburg, Institute for Pharmaceutical Sciences , Freiburg , Germany
| | - Fides Zenk
- b Max Planck Institute of Immunobiology and Epigenetics , Freiburg , Germany
| | - A Ganesan
- c School of Pharmacy, University of East Anglia , Norwich NR4 7TJ , United Kingdom.,d Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg , Freiburg , Germany
| | - Nicola Iovino
- b Max Planck Institute of Immunobiology and Epigenetics , Freiburg , Germany
| | - Manfred Jung
- a University of Freiburg, Institute for Pharmaceutical Sciences , Freiburg , Germany.,d Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg , Freiburg , Germany
| |
Collapse
|
20
|
Espinosa-Bustos C, Cortés-Arriagada D, Soto-Arriaza MA, Robinson-Duggon J, Pizarro N, Cabrera AR, Fuentealba D, Salas CO. Fluorescence properties of aurone derivatives: an experimental and theoretical study with some preliminary biological applications. Photochem Photobiol Sci 2017. [DOI: 10.1039/c7pp00078b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we explored the fluorescence properties of eight aurone derivatives bearing methoxy groups and bromine atoms as substituents in the benzene rings.
Collapse
Affiliation(s)
- Christian Espinosa-Bustos
- Departamento de Química Orgánica
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Santiago 6094411
- Chile
| | - Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación
- Desarrollo e Innovación. Universidad Tecnológica Metropolitana
- Santiago
- Chile
| | - Marco A. Soto-Arriaza
- Departamento de Química Física
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Santiago 6094411
- Chile
| | - José Robinson-Duggon
- Departamento de Química Física
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Santiago 6094411
- Chile
| | - Nancy Pizarro
- Departamento de Ciencias Químicas
- Facultad de Ciencias Exactas
- Universidad Andrés Bello
- Viña del Mar 2531015
- Chile
| | - Alan R. Cabrera
- Departamento de Química Orgánica
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Santiago 6094411
- Chile
| | - Denis Fuentealba
- Departamento de Química Física
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Santiago 6094411
- Chile
| | - Cristian O. Salas
- Departamento de Química Orgánica
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Santiago 6094411
- Chile
| |
Collapse
|
21
|
Goracci L, Deschamps N, Randazzo GM, Petit C, Dos Santos Passos C, Carrupt PA, Simões-Pires C, Nurisso A. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors. Sci Rep 2016; 6:29086. [PMID: 27404291 PMCID: PMC4941420 DOI: 10.1038/srep29086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development.
Collapse
Affiliation(s)
- Laura Goracci
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland.,Laboratory for Cheminformatics and Molecular Modeling, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Nathalie Deschamps
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Giuseppe Marco Randazzo
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Charlotte Petit
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Carolina Dos Santos Passos
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Pierre-Alain Carrupt
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Claudia Simões-Pires
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland.,Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| |
Collapse
|
22
|
Baiceanu E, Nguyen KA, Gonzalez-Lobato L, Nasr R, Baubichon-Cortay H, Loghin F, Le Borgne M, Chow L, Boumendjel A, Peuchmaur M, Falson P. 2-Indolylmethylenebenzofuranones as first effective inhibitors of ABCC2. Eur J Med Chem 2016; 122:408-418. [PMID: 27393949 DOI: 10.1016/j.ejmech.2016.06.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
ABC-transporters play a vital role in drugs bioavailability. They prevent intracellular accumulation of toxic compounds, rendering them a major defense mechanism against harmful substances. In this large family, ABCC2 is an apical efflux pump representing about 10% of all membrane proteins in liver and small intestine, and up to 25% in colon. In these tissues, ABCC2 plays a major role in the pharmacokinetics and pharmacodynamics of endo- and xenobiotics. To gain insight in the function of this crucial protein, we have investigated and developed the first effective inhibitors of this pump. Firstly, we set up a cellular flow cytometry assay for monitoring the drug efflux carried out by ABCC2, and used it for the screening of chemical libraries derived from several chemical classes. We found that 2-indolylmethylenebenzofuranone derivatives as promising candidates. Optimization of the hits provided new compounds that inhibit ABCC2 in the micromolar range, making them the first potent ABCC2 inhibitors reported so far. Such compounds would constitute valuable tools to further investigate the role of ABCC2 in the pharmacokinetics and pharmacodynamics of drugs.
Collapse
Affiliation(s)
- Elisabeta Baiceanu
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France; Toxicology Department, Faculty of Pharmacy, Univ. Medicine and Pharmacy ¨Iuliu Hatieganu¨, Cluj-Napoca, Romania
| | - Kim-Anh Nguyen
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041 Grenoble, France; CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Lucia Gonzalez-Lobato
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Rachad Nasr
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Hélène Baubichon-Cortay
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, Univ. Medicine and Pharmacy ¨Iuliu Hatieganu¨, Cluj-Napoca, Romania
| | - Marc Le Borgne
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France
| | - Larry Chow
- Department of Applied Biology and Chemical Technology, and State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region
| | - Ahcène Boumendjel
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041 Grenoble, France; CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041 Grenoble, France; CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Pierre Falson
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France.
| |
Collapse
|
23
|
Biphenyl-4-yl-acrylohydroxamic acids: Identification of a novel indolyl-substituted HDAC inhibitor with antitumor activity. Eur J Med Chem 2016; 112:99-105. [DOI: 10.1016/j.ejmech.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/06/2015] [Accepted: 02/02/2016] [Indexed: 02/01/2023]
|
24
|
Zwick V, Nurisso A, Simões-Pires C, Bouchet S, Martinet N, Lehotzky A, Ovadi J, Cuendet M, Blanquart C, Bertrand P. Cross metathesis with hydroxamate and benzamide BOC-protected alkenes to access HDAC inhibitors and their biological evaluation highlighted intrinsic activity of BOC-protected dihydroxamates. Bioorg Med Chem Lett 2016; 26:154-9. [DOI: 10.1016/j.bmcl.2015.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
|
25
|
Itoh Y, Suzuki M, Matsui T, Ota Y, Hui Z, Tsubaki K, Suzuki T. False HDAC Inhibition by Aurone Compound. Chem Pharm Bull (Tokyo) 2016; 64:1124-8. [DOI: 10.1248/cpb.c16-00123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Miki Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Taiji Matsui
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University
| | - Yosuke Ota
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Zi Hui
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Kazunori Tsubaki
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
26
|
Xue Y, Dou Y, An L, Zheng Y, Zhang L, Liu Y. Electronic structure and spectral properties of aurones as visible range fluorescent probes: a DFT/TDDFT study. RSC Adv 2016. [DOI: 10.1039/c5ra25733f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A DFT and TDDFT study was performed to understand the electronic and optical properties of aurone and its amine-substituted derivatives as potential fluorescent probes.
Collapse
Affiliation(s)
- Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Yunyan Dou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Lin An
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Youguang Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| |
Collapse
|
27
|
Investigation on the ZBG-functionality of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase inhibitors. Bioorg Med Chem Lett 2015; 25:4457-60. [DOI: 10.1016/j.bmcl.2015.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022]
|
28
|
Lucas SD, Carrasco MP, Gonçalves LM, Moreira R, Guedes RC. Discovery of C-shaped aurone human neutrophil elastase inhibitors. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00164a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aurones were discovered as sub-micromolar HNE inhibitors. The activity is rationalized by a C-shape conformation that allows tight binding to HNE S1 and S2 pockets.
Collapse
Affiliation(s)
- S. D. Lucas
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - M. P. Carrasco
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - L. M. Gonçalves
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - R. Moreira
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - R. C. Guedes
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|