1
|
Li D, Shen S, Liu C, Guo T, Liu Y, Pan P, Zhao X, Ma Y, Li L, Huang S, Shen W, YoupingZhang, Jiang B, Wang W, Yin Q, Zhang Y. Discovery of novel and highly potent anticancer agents enabled by selenium scanning of noscapine. Eur J Med Chem 2025; 293:117714. [PMID: 40339472 DOI: 10.1016/j.ejmech.2025.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Herein, the structural modification of noscapine via an elegant selenium scanning strategy has been demonstrated, which enables the production of three classes of novel seleno-containing noscapinoids, namely 6', 7', and 9'-seleno-substituted noscapines. Among them, 9'-seleno-substituted noscapines exhibited superior in vitro anti-proliferative activity, and 9'-cycloheptylselenomethyl-noscapine 17a16 with a large hydrophobic cycloheptyl group showed the most potent activity and good selectivity. Unlike most of the reported noscapinoids that induce G2/M phase arrest by targeting microtubules, 17a16 exhibited a distinct ability to induce S-phase arrest and displayed superior potency in inducing apoptosis, which attribute to the activation of two parallel checkpoint pathways orchestrating DNA damage response, including DNA-PKcs-dependent p53 stabilization and ATR-Chk1 axis activation. Dissecting the upstream mechanism revealed that 17a16 targets mitochondria and induces mitochondrial dysfunction. This study elucidates the interplay of mitochondrial stress, DNA damage response, p53 and ATR-Chk1 checkpoint activation in mediating the anticancer effects of 17a16. Furthermore, 17a16 treatment significantly suppressed tumor growth in p53-deficient JeKo-1 subcutaneous xenograft model in vivo, without inducing systemic toxicity. Overall, our findings highlight 17a16 as a promising lead compound in cancer therapy and demonstrate the potential of selenium scanning as a valuable strategy for anticancer drug discovery.
Collapse
Affiliation(s)
- Defeng Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuting Shen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Chuanxu Liu
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Tingyu Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuhuan Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Peng Pan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoyi Zhao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yiwen Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lei Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Shitao Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Wenhao Shen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - YoupingZhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| | - Qianqian Yin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China.
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
2
|
Nemati F, Ata Bahmani Asl A, Salehi P. Synthesis and modification of noscapine derivatives as promising future anticancer agents. Bioorg Chem 2024; 153:107831. [PMID: 39321713 DOI: 10.1016/j.bioorg.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Noscapine, a tetrahydroisoquinoline alkaloid, was first isolated from Papaver somniferum and identified by Rabiquet in 1817. It has been used as an anti-tussive agent since the mid-1950 s. After the discovery of its anti-mitotic potential, it was into the limelight once again. Due to its low toxicity, high bioactivity and oral administration, It was regarded as a formidable framework for subsequent modification and advancement in the pursuit of innovative chemotherapeutic agents. Up to now, the rational derivatives of the noscapine have been designed and the biological activities of these analogues have been extensively investigated. This review provides a comprehensive examination of the chemical characteristics of noscapine and its semi-synthetic derivatives up to the present, encompassing a concise investigation into the biological properties of these compounds and additionally a discussion about biosynthesis and total synthesis of noscapine is also provided. In summary, our aim is to contribute to a more thorough comprehension of this structure. It can be asserted that a promising future lies ahead for noscapine and its engineered derivatives as noteworthy candidates for pharmaceutical drugs.
Collapse
Affiliation(s)
- Faezeh Nemati
- Department of Synthesis of Medicinal Organic Compounds, Institute of Medicinal Chemistry, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran
| | - Amir Ata Bahmani Asl
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran.
| |
Collapse
|
3
|
Dash SG, Kantevari S, Kumar Naik P. Exploration of efficacy, cellular responses, and safety profile of novel 9-(3-Pyridyl) noscapine derivatives as promising anticancer candidates. J Biomol Struct Dyn 2023; 42:13312-13324. [PMID: 37897183 DOI: 10.1080/07391102.2023.2275177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
This study presented a novel derivative of the antitussive compound noscapine, named 9-3-Pyridyl noscapine (PYNos), to enhance its anticancer potential. Through in silico investigations, PYNos exhibited strong interactions with microtubules, inhibiting cancer cell proliferation both alone and in combination with docetaxel. Docking scores highlighted the affinity of PYNos -5.67 kcal/mol and docetaxel -4.94 kcal/mol to microtubules. When docked with tubulin-DOX co-complex, PYNos displayed a synergistic score of -8.99 kcal/mol. MTT assays on MCF-7 breast cancer cells showed PYNos IC50 values of 11.0 µM (48 h) and 8.4 µM (72 h), while docetaxel had three orders of magnitude lower IC50 values: 0.028 µM (48 h) and 0.015 µM (72 h). Combining PYNos (25 µM) and docetaxel (0.01 µM) reduced proliferation by 50% at both time points. Isobologram analysis confirmed strong antiproliferative synergy (sum FIC <1) at 48 and 72 h. Our comprehensive evaluation encompassing apoptosis and cell cycle arrest patterns further validated the synergistic advantages of this combination. In a xenograft mice model using MCF-7 cells, the PYNos-docetaxel co-treatment resulted in significant tumor regression, showcasing promising induction of apoptosis while mitigating docetaxel-associated toxicity. In summary, our findings underscore the substantial microtubule interactions facilitated by 9-3-Pyridyl noscapine, revealing its synergistic potential with docetaxel and establishing a solid foundation for advancing cancer therapeutic strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Gamya Dash
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, India
| | - Srinivas Kantevari
- Fluoro and agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Pradeep Kumar Naik
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, India
| |
Collapse
|
4
|
Pragyandipta P, Naik MR, Bastia B, Naik PK. Development of 9-( N-arylmethylamino) congeners of noscapine: the microtubule targeting drugs for the management of breast cancer. 3 Biotech 2023; 13:38. [PMID: 36636578 PMCID: PMC9829942 DOI: 10.1007/s13205-022-03445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
Noscapine is a natural lead molecule with anticancer activity at a higher concentrations. So, there is an urge for the development of more potent derivatives of noscapine. In this study, we have approached for development of 9-N-arylmethylamino derivatives of noscapine that kills cancer cells without affecting the normal cells. They were designed by substituting N-aryl methyl pharmacophore at the C-9 position and screened out top-ranked three derivatives 13a-c using molecular docking. Further, their theoretical free energy of binding with tubulin was calculated followed by chemical synthesis and experimental validation. In vitro antiproliferative activity of noscapine and its 9-N-arylmethylamino derivatives (13a-c) was carried out using MCF-7 (a triple receptors positive) and MDA-MB-231 (a triple receptor negative) breast cancer cell lines. Further, cytotoxicity to normal cells was examined using human embryonic kidney cells (HEK cells). Inhibition to cell cycle progression and induction of apoptosis was monitored using FACS. The binding of noscapine and 13a-c with tubulin was examined using fluorescence quenching assay. The 9-N-arylmethylamino derivatives of noscapine (13a-c) were found to inhibit the proliferation of cancer cells at a much lower concentration (IC50 values range between 9.1 to 47.3 µM) compared to noscapine (IC50 value is 45.8-59.3 µM). Surprisingly, the proliferation of HEK cells was not inhibited even at a concentration of 100 µM (cytotoxicity is < 5%). These derivatives induced apoptosis by arresting cells at G2/M-phase and also bind to tubulin. The 9-(N-arylmethylamino) noscapinoids have the potential to be a novel therapeutic agent for the treatment of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03445-3.
Collapse
Affiliation(s)
- Pratyush Pragyandipta
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019 India
| | - Manas Ranjan Naik
- Department of Pharmacology, SLN Medical College Koraput, Koraput, Odisha 464020 India
| | - Banajit Bastia
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019 India
| | - Pradeep Kumar Naik
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019 India
| |
Collapse
|
5
|
Meher RK, Pragyandipta P, Reddy PK, Pedaparti R, Kantevari S, Naik PK. Development of 1,3-diynyl derivatives of noscapine as potent tubulin binding anticancer agents for the management of breast cancer. J Biomol Struct Dyn 2022; 40:13136-13153. [PMID: 34583618 DOI: 10.1080/07391102.2021.1982008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We developed 1,3-diynyl derivatives of noscapine (an opium alkaloid) through in silico combinatorial approach and screened out a panel of promising derivatives that bind tubulin and display anticancer activity. The selected derivatives such as 9-4-tBu-Ph-Diyne (20p), 9-3,4-Di-Cl-Diyne (20k) and 9-3,4-Di-F-Diyne (22s) noscapinoids revealed improved predicted binding energy of -6.676 kcal/mol for 20p, -7.294 kcal/mol for 20k and -7.750 kcal/mol for 20s respectively in comparison to noscapine (-5.246 kcal/mol). These 1,3-diynyl derivatives (20p, 29k and 20s) were strategically synthesized in high yields by regioselective modification of noscapine scaffold and HPLC purified (purity is >96%). The decrease in intrinsic fluorescence of purified tubulin to 8.39%, 17.39% and 25.47% by 20p, 20k and 20s respectively, compared to control suggests their binding capability to tubulin. Their cytotoxicity activity was validated based on cellular studies using two human breast adenocarcinoma (MCF-7 and MDA-MB-231), a panel of primary breast tumor cells and one normal human embryonic kidney cell (293 T). The 1,3-diynyl noscapinoids, 20p, 20k and 20s inhibited cellular proliferation in all the cancer cells that ranged between 6.2 and 38.9 µM, without affecting the normal healthy cells (cytotoxicity is <5% at 100 µM). Further, these novel derivatives arrest cell cycle in the G2/M-phase, followed by induction of apoptosis to cancer cells. Thus, we conclude that 1,3-diynyl-noscapinoids have great potential to be a novel therapeutic agent for breast cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajesh Kumar Meher
- Centre of Excellence in Natural C and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Odisha, India
| | - Pratyush Pragyandipta
- Centre of Excellence in Natural C and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Odisha, India
| | - Praveen Kumar Reddy
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ravikumar Pedaparti
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Pradeep K Naik
- Centre of Excellence in Natural C and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Odisha, India
| |
Collapse
|
6
|
Nourbakhsh F, Askari VR. Biological and pharmacological activities of noscapine: Focusing on its receptors and mechanisms. Biofactors 2021; 47:975-991. [PMID: 34534373 DOI: 10.1002/biof.1781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
Noscapine has been mentioned as one of the effective drugs with potential therapeutic applications. With few side effects and amazing capabilities, noscapine can be considered different from other opioids-like structure compounds. Since 1930, extensive studies have been conducted in the field of pharmacological treatments from against malaria to control cough and cancer treatment. Furthermore, recent studies have shown that noscapine and some analogues, like 9-bromonoscapine, amino noscapine, and 9-nitronoscapine, can be used to treat polycystic ovaries syndrome, stroke, and other diseases. Given the numerous results presented in this field and the role of different receptors in the therapeutic effects of noscapine, we aimed to review the properties, therapeutic effects, and the role of receptors in the treatment of noscapine.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Meher RK, Pragyandipta P, Pedapati RK, Nagireddy PKR, Kantevari S, Nayek AK, Naik PK. Rational design of novel N-alkyl amine analogues of noscapine, their chemical synthesis and cellular activity as potent anticancer agents. Chem Biol Drug Des 2021; 98:445-465. [PMID: 34051055 DOI: 10.1111/cbdd.13901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 01/12/2023]
Abstract
The scaffold structure of noscapine (an antitussive plant alkaloid) was modified by inducting N-aryl methyl pharmacophore at C-9 position of the isoquinoline ring to rationally design and screened three novel 9-(N-arylmethylamino) noscapinoids, 15-17 with robust binding affinity with tubulin. The selected 9-(N-arylmethylamino) noscapinoids revealed improved predicted binding energy of -6.694 kcal/mol for 15, -7.118 kcal/mol for 16 and -7.732 kcal/mol for 17, respectively in comparison to the lead molecule (-5.135 kcal/mol). These novel derivatives were chemically synthesized and validated their anticancer activity based on cellular studies using two human breast adenocarcinoma, MCF-7 and MDA-MB-231, as well as with a panel of primary breast tumor cells. These derivatives inhibited cellular proliferation in all the cancer cells that ranged between 3.2 and 32.2 μM, which is 11.9 to 1.8 fold lower than that of noscapine. These novel derivatives effectively arrest the cell cycle in the G2/M phase followed by apoptosis and appearance of apoptotic cells. Thus, we conclude that 9-(N-arylmethyl amino) noscapinoids, 15-17 have a high probability to be a novel therapeutic agent for breast cancers.
Collapse
Affiliation(s)
- Rajesh Kumar Meher
- Department of Biotechnology and Bioinformatics, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Sambalpur, India
| | - Pratyush Pragyandipta
- Department of Biotechnology and Bioinformatics, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Sambalpur, India
| | - Ravi K Pedapati
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Praveen K R Nagireddy
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Arnab K Nayek
- Department of Biotechnology and Bioinformatics, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Sambalpur, India
| | - Pradeep K Naik
- Department of Biotechnology and Bioinformatics, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Sambalpur, India
| |
Collapse
|
8
|
Patel AK, Meher RK, Reddy PK, Pedapati RK, Pragyandipta P, Kantevari S, Naik MR, Naik PK. Rational design, chemical synthesis and cellular evaluation of novel 1,3-diynyl derivatives of noscapine as potent tubulin binding anticancer agents. J Mol Graph Model 2021; 106:107933. [PMID: 33991960 DOI: 10.1016/j.jmgm.2021.107933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022]
Abstract
We present a new class of derivatives of noscapine, 1,3-diynyl-noscapinoids of an antitussive plant alkaloid, noscapine based on our in silico efforts that binds tubulin and displays anticancer activity against a panel of breast cancer cells. Structure-activity analyses pointed the C-9 position of the isoquinoline ring which was modified by coupling of 1,3-diynyl structural motifs to rationally design and screened a series of novel 1,3-diynyl-noscapinoids (20-22) with robust binding affinity with tubulin. The selected 1,3-diynyl-noscapinoids, 20-22 revealed improved predicted binding energy of -6.568 kcal/mol for 20, -7.367 kcal/mol for 21 and -7.922 kcal/mol for 22, respectively in comparison to the lead molecule (-5.246 kcal/mol). These novel derivatives were chemically synthesized and validated their anticancer activity based on cellular studies using two human breast adenocarcinoma, MCF-7 and MDAMB-231, as well as with a panel of primary breast cancer cells isolated from patients. Interestingly, all these derivatives inhibited cellular proliferation in all the cancer cells that ranged between 6.2 to 38.9 μM, which is 6.7 to 1.5 fold lower than that of noscapine. Unlike previously reported derivatives of noscapine that arrests cells in the S-phase, these novel derivatives effectively inhibit proliferation of cancer cells, arrests cell cycle in the G2/M-phase followed by apoptosis and appearance of apoptotic cells. Thus, we conclude that 1,3-diynyl-noscapinoids have great potential to be a novel therapeutic agent for breast cancers.
Collapse
Affiliation(s)
- Amiya Kumar Patel
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur-768019, Odisha, India
| | - Rajesh Kumar Meher
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur-768019, Odisha, India
| | - Praveen Kumar Reddy
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Ravi Kumar Pedapati
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Pratyush Pragyandipta
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur-768019, Odisha, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Manas Ranjan Naik
- Department of Pharmacology, SLN Medical College, Koraput-764020, Odisha, India
| | - Pradeep Kumar Naik
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur-768019, Odisha, India.
| |
Collapse
|
9
|
Dash SG, Suri C, Nagireddy PKR, Kantevari S, Naik PK. Rational design of 9-vinyl-phenyl noscapine as potent tubulin binding anticancer agent and evaluation of the effects of its combination on Docetaxel. J Biomol Struct Dyn 2020; 39:5276-5289. [PMID: 32608323 DOI: 10.1080/07391102.2020.1785945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Docetaxel (DOX) based combination therapy is a novel therapeutic strategy that attracts great interest in breast cancer treatment but its clinical utility got limited due to side effects. In contrast, noscapine, an antitussive drug showed antitumor activity against many cancers without any side effects that targets microtubules and attenuates its dynamic instability. In the quest for an increase in the anticancer activity of noscapine, we strategically designed a novel derivative, 9-vinyl phenyl noscapine (VPN), based on our in silico molecular docking and molecular dynamics simulation effort. Molecular docking of VPN and DOX onto microtubule revealed a docking score of -4.82 kcal/mol and -6.67 kcal/mol respectively, while the docking score of VPN was changed to -3.23 kcal/mol when it was docked onto the co-complex of tubulin-DOX. Further, the binding free energy (ΔGbind,PBSA) of VPN and DOX with tubulin showed -24.04 and -18.65 kcal/mol respectively, while the binding free energy of DOX was increased further in combination with VPN (ΔGbind, PBSA was reduced to -21.41 kcal/mol), denoting combination effect of both ligands. The IC50 value amounted to 30.17 µM and 19.92 µM for VPN and 0.621 µM and 0.193 µM for DOX, respectively for 48 h and 72 h. The dose dependent cytotoxicity of DOX has been reduced considerably with the combination dose regimen of VPN. Further, the combine effect of both the agents improved the apoptotic cell death 28.5% compared to single agent treatment 5.71% and 10.5% for VPN and DOX, respectively. Both agents bind effectively to tubulin in single and in combination to interfere with cell cycle progression in G2/M transition. This study provides novel concept of combination treatment of DOX and VPN to amend efficiency in breast cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Gamya Dash
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Odisha, India
| | - Charu Suri
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Pali, Haryana, India
| | | | - Srinivas Kantevari
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Pradeep Kumar Naik
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Odisha, India
| |
Collapse
|
10
|
Kumar Reddy Nagireddy P, Krishna Kommalapati V, Siva Krishna V, Sriram D, Devi Tangutur A, Kantevari S. Anticancer Potential of
N
‐Sulfonyl Noscapinoids: Synthesis and Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - Vagolu Siva Krishna
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Anjana Devi Tangutur
- Department of Applied BiologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
11
|
Mandavi S, Verma SK, Banjare L, Dubey A, Bhatt R, Thareja S, Jain AK. A Comprehension into Target Binding and Spatial Fingerprints of Noscapinoid Analogues as Inhibitors of Tubulin. Med Chem 2020; 17:611-622. [PMID: 31951171 DOI: 10.2174/1573406416666200117120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Owing to its potential to interfere in microtubule dynamics in the mitotic phase of cell cycle and selectively induce apoptosis in cancer cells without affecting normal cells, noscapine and its synthetic analogues have been investigated by other research groups in different cell lines for their capability to be used as anti-cancer agents. OBJECTIVE The present study is focused on the investigation of the mode of binding of noscapinoids with tubulin, prediction of target binding affinities and mapping of their spatial fingerprints (shape and electrostatic). METHODS Molecular docking assisted alignment based 3D-QSAR was used on a dataset (43 molecules) having an inhibitory activity (IC50 = 1.2-250 μM) against human lymphoblast (CEM) cell line. RESULTS AND CONCLUSION Key amino acid residues of target tubulin were mapped for the binding of most potent noscapine analogue (Compound 11) and were compared with noscapine. Spatial fingerprints of noscapinoids for favorable tubulin inhibitory activity were generated and are proposed herewith for further pharmacophoric amendments of noscapine analogues to design and develop novel potent noscapine based anti-cancer agents that may enter into drug development pipeline.
Collapse
Affiliation(s)
- Seema Mandavi
- Department of Biotechnology, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Sant Kumar Verma
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Laxmi Banjare
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Amit Dubey
- Chhattisgarh Council of Science and Technology, Raipur-492 014 (C.G.), India
| | - Renu Bhatt
- Department of Biotechnology, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Suresh Thareja
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Akhlesh Kumar Jain
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| |
Collapse
|
12
|
Nagireddy PKR, Sridhar B, Kantevari S. Copper‐Catalyzed Glaser‐Hey‐Type Cross Coupling of 9‐Ethynyl‐α‐Noscapine Leading to Unsymmetrical 1,3‐Diynyl Noscapinoids. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Praveen K. R. Nagireddy
- Fluoro& Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Balasubramanian Sridhar
- Laboratory of X-ray CrystallographyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Srinivas Kantevari
- Fluoro& Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
13
|
Reddy Nagireddy PK, Kommalapati VK, Manchukonda NK, Sridhar B, Tangutur AD, Kantevari S. Synthesis and Antiproliferative Activity of 9‐Formyl and 9‐Ethynyl Noscapines. ChemistrySelect 2019. [DOI: 10.1002/slct.201900666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Naresh K. Manchukonda
- Fluoro & Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
| | - Balasubramanian Sridhar
- X-Ray crystallographyDepartment of Analytical ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
| | - Anjana Devi Tangutur
- Department of Applied BiologyCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
| |
Collapse
|
14
|
Swain SS, Paidesetty SK, Padhy RN. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother 2017; 90:760-776. [PMID: 28419973 DOI: 10.1016/j.biopha.2017.04.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
Infections from multidrug resistant (MDR) pathogenic bacteria, fungi and Mycobacterium tuberculosis remain progressively intractable. The search of effective antimicrobials from other possible non-conventional sources against MDR pathogenic bacteria, fungi and mycobacteria is call of the day. This review considers 121 cyanobacterial compounds or cyano-compounds with antimicrobial activities. Chemical structures of cyano-compounds were retrieved from ChemSpider and PubChem databases and were visualized by the software ChemDraw Ultra. Chemical information on cyano-compounds pertaining to Lipinski rules of five was assessed. The reviewed cyano-compounds belong to the following chemical classes (with examples): alkaloids (ambiguine isonitriles and 12-epi-hapalindole E isonitrile), aromatic compounds (benzoic acid and cyanobacterin), cyclic depsipeptides (cryptophycin 52 and lyngbyabellin A), cyclic peptides (calophycin and tenuecyclamides), cyclic undecapeptides (kawaguchipeptins and lyngbyazothrin A), cyclophane (carbamidocyclophane), extracellular pigment (nostocine A), fatty acids (alpha-dimorphecolic acid and majusculonic acid), linear peptides (muscoride A), lipopeptides (fischerellins and scytonemin A), nucleosides (tolytoxin and tubercidin), phenols (ambigols and 4-4'-hydroxybiphenyl), macrolides (scytophycin A and tolytoxin), polyketides (malyngolide and nostocyclyne), polyphenyl ethers (crossbyanol A), porphinoids (tolyporphin J) and terpenoids (noscomin and scytoscalarol). Cyanobacteria appear to be a diverse source of compounds with antimicrobial activity. Further attention is required to elucidate whether those could be applied as pharmaceuticals.
Collapse
Affiliation(s)
- Shasank S Swain
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
15
|
Manchukonda NK, Nagireddy PKR, Sridhar B, Kantevari S. Synthesis and click reaction of tubulin polymerization inhibitor 9-azido-α-noscapine. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2773-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Rida PCG, LiVecche D, Ogden A, Zhou J, Aneja R. The Noscapine Chronicle: A Pharmaco-Historic Biography of the Opiate Alkaloid Family and its Clinical Applications. Med Res Rev 2015; 35:1072-96. [PMID: 26179481 DOI: 10.1002/med.21357] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Given its manifold potential therapeutic applications and amenability to modification, noscapine is a veritable "Renaissance drug" worthy of commemoration. Perhaps the only facet of noscapine's profile more astounding than its versatility is its virtual lack of side effects and addictive properties, which distinguishes it from other denizens of Papaver somniferum. This review intimately chronicles the rich intellectual and pharmacological history behind the noscapine family of compounds, the length of whose arms was revealed over decades of patient scholarship and experimentation. We discuss the intriguing story of this family of nontoxic alkaloids, from noscapine's purification from opium at the turn of the 19th century in Paris to the recent torrent of rationally designed analogs with tremendous anticancer potential. In between, noscapine's unique pharmacology; impact on cellular signaling pathways, the mitotic spindle, and centrosome clustering; use as an antimalarial drug and cough suppressant; and exceptional potential as a treatment for polycystic ovarian syndrome, strokes, and diverse malignancies are catalogued. Seminal experiments involving some of its more promising analogs, such as amino-noscapine, 9-nitronoscapine, 9-bromonoscapine, and reduced bromonoscapine, are also detailed. Finally, the bright future of these oftentimes even more exceptional derivatives is described, rounding out a portrait of a truly remarkable family of compounds.
Collapse
Affiliation(s)
- Padmashree C G Rida
- Novazoi Theranostics, Inc, Plano, Texas, 75025, USA.,Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Dillon LiVecche
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|