1
|
Sukanya S, Bellver-Sanchis A, Singh Choudhary B, Kumar S, Pérez B, Leandro Martínez Rodríguez A, Brea J, Griñán-Ferré C, Malik R. Design, synthesis, and biological evaluation of tetrahydropyrimidine analogue as GSK-3β/Aβ aggregation inhibitor and anti-Alzheimer's agent. Bioorg Chem 2024; 153:107811. [PMID: 39270527 DOI: 10.1016/j.bioorg.2024.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The complex nature of Alzheimer's disease (AD) etiopathology is among the principal hurdles to developing effective anti-Alzheimer agents. Tau pathology and Amyloid-β (Aβ) accumulation are hallmarks and validated therapeutic strategies of AD. GSK-3β is a serine/threonine kinase involved in tau phosphorylation. Its excessive activity also contributes to the production of Aβ plaques, making GSK-3β an attractive AD target. Taking this into account, In this article, we outline the design, synthesis, and biological validation of a focused library of 1,2,3,4-tetrahydropyrimidine based derivatives as inhibitors of GSK-3β, tau phosphorylation, and Aβ accumulation. The inhibitory activity of forty nine synthetic compounds was tested against GSK-3β and other AD-relevant kinases. The kinetic experiments revealed the mode of GSK-3β inhibition by the most potent compound 44. The in- vitro drug metabolism and pharmacokinetic studies were thereafter performed. The anti-aggregation activity of the most potent GSK-3β inhibitor was tested using AD transgenic Caenorhabditis elegans (C. elegans) strain CL2006 for quantification of Aβ plaques and BR5706 C. elegans strain for tau pathology evaluation. We then evaluated the blood-brain barrier permeability and got promising results. Therefore, we present compound 44 as a potential ATP-competitive GSK-3β inhibitor with good metabolism and pharmacokinetic profile, anti-aggregation properties for amyloid beta protein, and reduction in tau-phosphorylation levels. We recommend more investigation into compound 44-based small molecules as possible targets for AD disease-modifying treatments.
Collapse
Affiliation(s)
- Sukanya Sukanya
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Bhanwar Singh Choudhary
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Sunil Kumar
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Antón Leandro Martínez Rodríguez
- Innopharma screening platform, Biofarma research group. Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Brea
- Innopharma screening platform, Biofarma research group. Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Ruchi Malik
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
2
|
Eyilcim Ö, Günay F, Ng YY, Ulucan Açan Ö, Turgut Z, Günkara ÖT. Design, Synthesis, Biological Evaluation and Molecular Docking Studies of a New Series of Maleimide Derivatives. ChemistryOpen 2024; 13:e202400058. [PMID: 39313991 PMCID: PMC11625963 DOI: 10.1002/open.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
A series of novel maleimide derivatives were synthesized, with various heterocyclic compounds serving as side chains in the synthesis process. The structural characteristics of these compounds were elucidated through the application of 1H-NMR spectroscopy, 13C-NMR (APT) spectroscopy, and high-resolution mass spectrometry (HRMS). The anti-cancer potential of these compounds was subsequently assessed in vitro, utilizing two distinct breast cancer cell lines, namely MDA-MB-231 and MCF-7, via MTT assay. Among the 12 newly synthesized compounds, 4 a, 4 b, 4 c, 4 d, 5 a, 5 b, 5 c and 5 d were determined to show the most promising anti-cancer activity against both breast cancer cell lines. Moreover, the morphological changes induced in the cells following a 24-hour incubation period with these compounds were observed using light microscopy. Additionally, molecular dynamics simulations were conducted to assess the stability of the bound conformations of the compounds to the target protein GSK-3β as obtained through molecular docking calculations.
Collapse
Affiliation(s)
- Öznur Eyilcim
- Department of ChemistryFaculty of Arts & ScienceYıldız Technical UniversityDavutpaşa Campus34220EsenlerIstanbulTürkiye
- Food Technology ProgrammeVocational School of Health ServicesÜsküdar UniversityCarsi CampusÜsküdarIstanbulTürkiye
| | - Fulya Günay
- Department of Genetics and BioengineeringFaculty of Engineering and Natural SciencesIstanbul Bilgi UniversityIstanbulTürkiye
| | - Yuk Yin Ng
- Hogeshooldocent Life ScienceInstıtue for Life Science & ChemistryHU University of Applied Sciences UtrechtUtrechtNetherlands
| | - Özlem Ulucan Açan
- Department of Genetics and BioengineeringFaculty of Engineering and Natural SciencesIstanbul Bilgi UniversityIstanbulTürkiye
| | - Zuhal Turgut
- Department of ChemistryFaculty of Arts & ScienceYıldız Technical UniversityDavutpaşa Campus34220EsenlerIstanbulTürkiye
| | - Ömer Tahir Günkara
- Department of ChemistryFaculty of Arts & ScienceYıldız Technical UniversityDavutpaşa Campus34220EsenlerIstanbulTürkiye
| |
Collapse
|
3
|
Hartz RA, Ahuja VT, Luo G, Chen L, Sivaprakasam P, Xiao H, Krause CM, Clarke WJ, Xu S, Tokarski JS, Kish K, Lewis H, Szapiel N, Ravirala R, Mutalik S, Nakmode D, Shah D, Burton CR, Macor JE, Dubowchik GM. Discovery of 2-(Anilino)pyrimidine-4-carboxamides as Highly Potent, Selective, and Orally Active Glycogen Synthase Kinase-3 (GSK-3) Inhibitors. J Med Chem 2023. [PMID: 37235865 DOI: 10.1021/acs.jmedchem.3c00364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that serves as an important regulator of a broad range of cellular functions. It has been linked to Alzheimer's disease as well as various other diseases, including mood disorders, type 2 diabetes, and cancer. There is considerable evidence indicating that GSK-3β in the central nervous system plays a role in the production of abnormal, hyperphosphorylated, microtubule-associated tau protein found in neurofibrillary tangles associated with Alzheimer's disease. A series of analogues containing a pyrimidine-based hinge-binding heterocycle was synthesized and evaluated, leading to the identification of highly potent GSK-3 inhibitors with excellent kinase selectivity. Further evaluation of 34 and 40 in vivo demonstrated that these compounds are orally bioavailable, brain-penetrant GSK-3 inhibitors that lowered levels of phosphorylated tau in a triple-transgenic mouse Alzheimer's disease model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ramu Ravirala
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sayali Mutalik
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Deepa Nakmode
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | | | | | | |
Collapse
|
4
|
Hartz RA, Ahuja VT, Sivaprakasam P, Xiao H, Krause CM, Clarke WJ, Kish K, Lewis H, Szapiel N, Ravirala R, Mutalik S, Nakmode D, Shah D, Burton CR, Macor JE, Dubowchik GM. Design, Structure-Activity Relationships, and In Vivo Evaluation of Potent and Brain-Penetrant Imidazo[1,2- b]pyridazines as Glycogen Synthase Kinase-3β (GSK-3β) Inhibitors. J Med Chem 2023; 66:4231-4252. [PMID: 36950863 DOI: 10.1021/acs.jmedchem.3c00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that regulates numerous cellular processes, including metabolism, proliferation, and cell survival. Due to its multifaceted role, GSK-3 has been implicated in a variety of diseases, including Alzheimer's disease, type 2 diabetes, cancer, and mood disorders. GSK-3β has been linked to the formation of the neurofibrillary tangles associated with Alzheimer's disease that arise from the hyperphosphorylation of tau protein. The design and synthesis of a series of imidazo[1,2-b]pyridazine derivatives that were evaluated as GSK-3β inhibitors are described herein. Structure-activity relationship studies led to the identification of potent GSK-3β inhibitors. In vivo studies with 47 in a triple-transgenic mouse Alzheimer's disease model showed that this compound is a brain-penetrant, orally bioavailable GSK-3β inhibitor that significantly lowered levels of phosphorylated tau.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ramu Ravirala
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sayali Mutalik
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Deepa Nakmode
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | | | | | | |
Collapse
|
5
|
Lin CH, Hsieh YS, Sun YC, Huang WH, Chen SL, Weng ZK, Lin TH, Wu YR, Chang KH, Huang HJ, Lee GC, Hsieh-Li HM, Lee-Chen GJ. Virtual Screening and Testing of GSK-3 Inhibitors Using Human SH-SY5Y Cells Expressing Tau Folding Reporter and Mouse Hippocampal Primary Culture under Tau Cytotoxicity. Biomol Ther (Seoul) 2023; 31:127-138. [PMID: 35790892 PMCID: PMC9810448 DOI: 10.4062/biomolther.2022.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3β from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3β activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3β Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogen-activated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3β kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.
Collapse
Affiliation(s)
- Chih-Hsin Lin
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Shao Hsieh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wun-Han Huang
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shu-Ling Chen
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Zheng-Kui Weng
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
| | - Guan-Chiun Lee
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| | - Hsiu Mei Hsieh-Li
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| | - Guey-Jen Lee-Chen
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| |
Collapse
|
6
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
7
|
Khan I, Tantray MA, Hamid H, Sarwar Alam M, Sharma K, Kesharwani P. Design, synthesis, in vitro antiproliferative evaluation and GSK-3β kinase inhibition of a new series of pyrimidin-4-one based amide conjugates. Bioorg Chem 2021; 119:105512. [PMID: 34861627 DOI: 10.1016/j.bioorg.2021.105512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/01/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022]
Abstract
A new series of novel amide conjugates of pyrimidin-4-one and aromatic/heteroaromatic /secondary cyclic amines has been synthesized and their in vitro antiproliferative activities against a panel of 60 human cancer cell lines of nine different cancer types were tested at NCI. Among the synthesized compounds, compound (4i) showed significant anti-proliferative activity. Compound (4i) displayed most potent activity against the breast tumor cell line T-47D and CNS tumor cell line SNB-75 exhibiting a growth of 1.93 % and 14.63 %, respectively. ADMET studies of the synthesized compounds were also performed and they were found to exhibit good drug like properties. Compound (4i) was found to exhibit potential inhibitory effect over GSK-3β with IC50 value of 71 nM. The molecular docking studies revealed that (4i) showed good binding affinity to GSK-3β and revealed multiple H-bonding and p-cation interactions with important amino acid residues on the receptor site. Compound (4i) may thus serve as a potential candidate for further development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Imran Khan
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi 110 062, India
| | - Mushtaq A Tantray
- Chemistry Research Lab, Department of Chemistry, Govt. Degree College Baramulla, J&K 193103, India
| | - Hinna Hamid
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi 110 062, India.
| | - Mohammad Sarwar Alam
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi 110 062, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110 062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| |
Collapse
|
8
|
Yao H, Uras G, Zhang P, Xu S, Yin Y, Liu J, Qin S, Li X, Allen S, Bai R, Gong Q, Zhang H, Zhu Z, Xu J. Discovery of Novel Tacrine-Pyrimidone Hybrids as Potent Dual AChE/GSK-3 Inhibitors for the Treatment of Alzheimer's Disease. J Med Chem 2021; 64:7483-7506. [PMID: 34024109 DOI: 10.1021/acs.jmedchem.1c00160] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Based on a multitarget strategy, a series of novel tacrine-pyrimidone hybrids were identified for the potential treatment of Alzheimer's disease (AD). Biological evaluation results demonstrated that these hybrids exhibited significant inhibitory activities toward acetylcholinesterase (AChE) and glycogen synthase kinase 3 (GSK-3). The optimal compound 27g possessed excellent dual AChE/GSK-3 inhibition both in terms of potency and equilibrium (AChE: IC50 = 51.1 nM; GSK-3β: IC50 = 89.3 nM) and displayed significant amelioration on cognitive deficits in scopolamine-induced amnesia mice and efficient reduction against phosphorylation of tau protein on Ser-199 and Ser-396 sites in glyceraldehyde (GA)-stimulated differentiated SH-SY5Y cells. Furthermore, compound 27g exhibited eligible pharmacokinetic properties, good kinase selectivity, and moderate neuroprotection against GA-induced reduction in cell viability and neurite damage in SH-SY5Y-derived neurons. The multifunctional profiles of compound 27g suggest that it deserves further investigation as a promising lead for the prospective treatment of AD.
Collapse
Affiliation(s)
- Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Giuseppe Uras
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Pengfei Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ying Yin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jie Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Shuai Qin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xinuo Li
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Stephanie Allen
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
9
|
Jabir NR, Shakil S, Tabrez S, Khan MS, Rehman MT, Ahmed BA. In silico screening of glycogen synthase kinase-3β targeted ligands against acetylcholinesterase and its probable relevance to Alzheimer's disease. J Biomol Struct Dyn 2020; 39:5083-5092. [PMID: 32588759 DOI: 10.1080/07391102.2020.1784796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a growing global health concern that affects 10% of the population aged above 65 years. A growing body of evidence indicates that multi-targeted drugs might be useful therapeutic options owing to the heterogeneity of AD pathology. The current study exploited advanced computational biology tools to identify ligands that might display effective binding to two protein targets in the context of AD. The present study used in silico virtual screening of small molecules library to identify effectiveness against two AD targets viz. acetyl cholinesterase (AChE) and glycogen synthase kinase-3β (GSK-3β). PyRX-Python prescription with AutodockVina was used to generate binding energy profiles. Further screening was accomplished using SwissADME and molecular interaction studies. The present study obtained 48 ligands (absolute binding energy >8 kcal/mol), by virtual screening of 100 ligands. Among those, 13 ligands (BRW, 6VK, 6Z5, SMH, X37, 55E, 65 A, IQ6, 6VL, 6VM, F1B, 6Z2 and GVP) were selected based on blood brain barrier (BBB) permeability, acceptable ADME properties as well as their molecular interaction profiles with the aforementioned AD-targets. The present study has predicted certain molecules that appear worthy to be tested for effectiveness against two AD targets, namely AChE and GSK-3β. However, the results warrant further wet laboratory validation, as computational studies are merely predictive in nature. This approach might be useful for future treatment of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| |
Collapse
|
10
|
Wright SW, Simpson B, Chinigo G, Perry MA, Maguire RJ. Reduction of 2-hydroxy-3-arylmorpholines to 3-aryl morpholines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer's disease in rodents. Sci Rep 2019; 9:18045. [PMID: 31792284 PMCID: PMC6888874 DOI: 10.1038/s41598-019-54557-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) has been identified as a promising target for the treatment of Alzheimer’s disease (AD), where abnormal activation of this enzyme has been associated with hyperphosphorylation of tau proteins. This study describes the effects of the selective GSK3 inhibitor, SAR502250, in models of neuroprotection and neuropsychiatric symptoms (NPS) associated with AD. In P301L human tau transgenic mice, SAR502250 attenuated tau hyperphosphorylation in the cortex and spinal cord. SAR502250 prevented the increase in neuronal cell death in rat embryonic hippocampal neurons following application of the neurotoxic peptide, Aβ25–35. In behavioral studies, SAR502250 improved the cognitive deficit in aged transgenic APP(SW)/Tau(VLW) mice or in adult mice after infusion of Aβ25–35. It attenuated aggression in the mouse defense test battery and improved depressive-like state of mice in the chronic mild stress procedure after 4 weeks of treatment. Moreover, SAR502250 decreased hyperactivity produced by psychostimulants. In contrast, the drug failed to modify anxiety-related behaviors or sensorimotor gating deficit. This profile confirms the neuroprotective effects of GSK3 inhibitors and suggests an additional potential in the treatment of some NPS associated with AD.
Collapse
|
12
|
Shen Y, Xie HK, Liu ZY, Lu T, Yu ZL, Zhang LH, Zhou DY, Wang T. Characterization of glycerophospholipid molecular species in muscles from three species of cephalopods by direct infusion-tandem mass spectrometry. Chem Phys Lipids 2019; 226:104848. [PMID: 31705861 DOI: 10.1016/j.chemphyslip.2019.104848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 11/30/2022]
Abstract
More than 200 molecular species of glycerophospholipids (GP) including glycerophosphocholine (GPC), glycerophosphoethanolamine (GPE), glycerophosphoserine (GPS), lysoglycerophosphocholine (LGPC), lysoglycerophosphoethanolamine (LGPE) and lysoglycerophosphoserine (LGPS), as well as 18 kinds of sphingomyelin (SM) were characterized by using a direct infusion-tandem mass (MS/MS) spectrometry method for lipids from the muscles of cephalopods Sepiella maindroni, Octopus ocellatus and Loligo chinensis for the first time. The majority of the GP molecular species contained long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Therefore, cephalopods can be a good possible source of dietary GP carrying n-3 LC-PUFA. The total lipids were composed of phospholipid (PL, 72.29-83.32 wt% of total lipids), cholesterol (12.70-23.60 wt% of total lipids), triacylglycerol (1.86-2.93 wt% of total lipids), diacylglycerol (0.15-1.09 wt% of total lipids), monoacylglycerol (0.06-0.18 wt% of total lipids) and free fatty acid (0.72-1.86 wt% of total lipids). For PL, phosphatidylcholine (44.47-62.30 mol%), phosphatidylethanolamine (22.57-39.08 mol%), phosphatidylserine (6.15-10.18 mol%), phosphatidylglycerol (0.68-3.11 mol%), phosphatidylinositol (2.41-7.15 mol%) and lysophosphatidylcholine (1.84-5.24 mol%) were detected. Furthermore, the total lipids from the muscles of cephalopods Sepiella maindroni, Octopus ocellatus and Loligo chinensis contained 41.80-50.02 mol% of saturated fatty acids, 11.53-21.54 mol% of monounsaturated fatty acids and 36.67-40.82 mol% of PUFA, whilst DHA (15.25-26.71 mol%) and EPA (6.29-16.57 mol%) were found to account for the majority of the PUFA. With these data presented, cephalopod muscle can be considered as a healthy food for humans.
Collapse
Affiliation(s)
- Yan Shen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Hong-Kai Xie
- National Engineering Research Center of Seafood, Dalian, 116034, PR China; Beijing Advanced Innovation Centre of Food Nutrition and Human Health, China Agricultural University, Beijing, 100083, PR China
| | - Zhong-Yuan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Ting Lu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Zhuo-Liang Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Li-Hua Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; National Engineering Research Center of Seafood, Dalian, 116034, PR China.
| | - Tong Wang
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
13
|
Receptor-based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3β inhibitors. J Mol Model 2019; 25:171. [PMID: 31129879 DOI: 10.1007/s00894-019-4032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/07/2019] [Indexed: 10/26/2022]
Abstract
Considering the emerging importance of glycogen synthase kinase 3 beta (GSK-3β) inhibitors in treatment of Alzheimer's disease, multi-protein structure receptor-based pharmacophore modeling was adopted to generate a 3D pharmacophore model for (GSK-3β) inhibitors. The generated 3D pharmacophore was then validated using a test set of 1235 compounds. The ZINCPharmer web tool was used to virtually screen the public ZINC database using the generated 3D pharmacophore. A set of 12,251 hits was produced and then filtered according to their lead-like properties, predicted central nervous system (CNS) activity, and Pan-assay interference compounds (PAINS) fragments to 630 compounds. Scaffold Hunter was then used to cluster the filtered compounds according to their chemical structure framework. From the different clusters, 123 compounds were selected to cover the whole chemical space of the obtained hits. The SwissADME online tool was then used to filter out the compounds with undesirable pharmacokinetic properties giving a set of 91 compounds with promising predicted pharmacodynamic and pharmacokinetic properties. To confirm their binding capability to the GSK-3β binding site, molecular docking simulations were performed for the final 91 compounds in the GSK-3β binding site. Twenty-five compounds showed acceptable binding poses that bind to the key amino acids in the binding site Asp133 and Val135 with good binding scores. The quinolin-2-one derivative ZINC67773573 was found to be a promising lead for designing new GSK-3β inhibitors for Alzheimer's disease treatment. Graphical abstract A 3D pharmacophore model for the discovery of novel (GSK-3β) inhibitors.
Collapse
|
14
|
Li H, Wang X, Yu H, Zhu J, Jin H, Wang A, Yang Z. Combining in vitro and in silico Approaches to Find New Candidate Drugs Targeting the Pathological Proteins Related to the Alzheimer's Disease. Curr Neuropharmacol 2018; 16:758-768. [PMID: 29086699 PMCID: PMC6080099 DOI: 10.2174/1570159x15666171030142108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/24/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
Background: Alzheimer’s disease (AD) as the most common cause of dementia among older people has aroused the universal concern of the whole world. However, until now there is still none effective treatments. Consequently, the development of new drugs targeting this complicated brain disorder is urgent and needs more efforts. In this review, we detailed the current state of knowledge about new candidate drugs targeting the pathological proteins especially the drugs which are employed using the combined methods of in vitro and in silico. Methods: We looked up and reviewed online papers related to the pathogenesis and new drugs development of AD. Then, articles up to the requirements were respectively analyzed and summaried to provide the latest knowledge about the pathogenic effect and the new candidate drugs targeting Aβ and Tau proteins. Results: New candidate drugs targeting the Aβ include decreasing the production, promoting the clearence and preventing aggregation. However these drugs have mostly failed in Phase III clinical trial stage due to the unsuccessful of reversing cognition symptoms. As to tau protein, the prevention of tau aggregation and propagation is a promising strategy to synthesize/design mechanism-based drugs against tauopathies. Some candidate drugs are under research. Moreover, because of the complex pathogenesis of AD, multi-target drugs have also shed light on the treatment of AD. Conclusion: Given to the consecutive failure of Aβ-directed drugs and the feasibilities of tau-targeted therapy, more and more researchers suggested that the AD treatment should be moved from Aβ to tau or focused on considering the soluble form of Aβ and tau as a whole. Moreover, the novel in silico methods also have great potential in drug discovery, drug repositioning, virtual screening of chemical libraries. No matter how many difficulties and challenges in prevention and treatment of AD, we firmly believe that the effective and safe drugs will be found using the combined methods in the immediate future with the global effort.
Collapse
Affiliation(s)
- Hui Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaobing Wang
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongmei Yu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Hongtao Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Aiping Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, 43210, United States
| |
Collapse
|
15
|
Ambure P, Bhat J, Puzyn T, Roy K. Identifying natural compounds as multi-target-directed ligands against Alzheimer's disease: an in silico approach. J Biomol Struct Dyn 2018; 37:1282-1306. [PMID: 29578387 DOI: 10.1080/07391102.2018.1456975] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Alzheimer's disease (AD) is a multi-factorial disease, which can be simply outlined as an irreversible and progressive neurodegenerative disorder with an unclear root cause. It is a major cause of dementia in old aged people. In the present study, utilizing the structural and biological activity information of ligands for five important and mostly studied vital targets (i.e. cyclin-dependant kinase 5, β-secretase, monoamine oxidase B, glycogen synthase kinase 3β, acetylcholinesterase) that are believed to be effective against AD, we have developed five classification models using linear discriminant analysis (LDA) technique. Considering the importance of data curation, we have given more attention towards the chemical and biological data curation, which is a difficult task especially in case of big data-sets. Thus, to ease the curation process we have designed Konstanz Information Miner (KNIME) workflows, which are made available at http://teqip.jdvu.ac.in/QSAR_Tools/ . The developed models were appropriately validated based on the predictions for experiment derived data from test sets, as well as true external set compounds including known multi-target compounds. The domain of applicability for each classification model was checked based on a confidence estimation approach. Further, these validated models were employed for screening of natural compounds collected from the InterBioScreen natural database ( https://www.ibscreen.com/natural-compounds ). Further, the natural compounds that were categorized as 'actives' in at least two classification models out of five developed models were considered as multi-target leads, and these compounds were further screened using the drug-like filter, molecular docking technique and then thoroughly analyzed using molecular dynamics studies. Finally, the most potential multi-target natural compounds against AD are suggested.
Collapse
Key Words
- 3D, three-dimensional
- ACh, acetylcholine
- AChE, acetylcholinesterase
- AD, Alzheimer’s disease
- ADME, absorption, distribution, metabolism, and elimination
- APP, amyloid precursor protein
- AUROC, area under the ROC curve
- Alzheimer’s disease
- Aβ, amyloid beta
- BACE1, beta-APP-cleaving enzyme 1
- CDK5, cyclin-dependant kinase 5
- FDA, food and drug administration
- FN, false negative
- FP, false positive
- GSK-3β, glycogen synthase kinase 3β
- HTVS, high-throughput virtual screening
- InChI, International Chemical Identifier
- KNIME, Konstanz Information Miner
- LBDD, ligand-based drug design
- LDA, linear discriminant analysis
- MAO-B, monoamine oxidase B
- MMGBSA, molecular mechanics/generalized born surface area
- MMPBSA, molecular mechanics/Poisson–Boltzmann surface area
- MMPs, matched molecular pairs
- MSA, molecular spectrum analysis
- MTDLs, multi-target-directed ligands
- NMDA, N-methyl-D-aspartate
- PDB, protein data bank
- PP, posterior probability
- QSAR, quantitative structure–activity relationship
- RMSD, root-mean-square deviation
- ROC, receiver operating curve
- ROS, reactive oxygen species
- SBDD, structure-based drug design
- SDF, structure data format
- SMILES, simplified molecular-input line-entry system
- TN, true negative
- TP, true positive
- big data
- data curation
- linear discriminant analysis
- molecular docking
- molecular dynamics
- multi-target drug design
- natural compounds
Collapse
Affiliation(s)
- Pravin Ambure
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata 700 032 , India
| | - Jyotsna Bhat
- b Laboratory of Environmental Chemometrics, Faculty of Chemistry , University of Gdańsk , ul. Wita Stwosza 63, Gdańsk 80-308 , Poland
| | - Tomasz Puzyn
- b Laboratory of Environmental Chemometrics, Faculty of Chemistry , University of Gdańsk , ul. Wita Stwosza 63, Gdańsk 80-308 , Poland
| | - Kunal Roy
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata 700 032 , India
| |
Collapse
|
16
|
Young RJ, Leeson PD. Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. J Med Chem 2018; 61:6421-6467. [DOI: 10.1021/acs.jmedchem.8b00180] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Robert J. Young
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul D. Leeson
- Paul Leeson Consulting Ltd., The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K
| |
Collapse
|
17
|
Kohara T, Nakayama K, Watanabe K, Kusaka SI, Sakai D, Tanaka H, Fukunaga K, Sunada S, Nabeno M, Saito KI, Eguchi JI, Mori A, Tanaka S, Bessho T, Takiguchi-Hayashi K, Horikawa T. Discovery of novel 2-(4-aryl-2-methylpiperazin-1-yl)-pyrimidin-4-ones as glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett 2017; 27:3733-3738. [DOI: 10.1016/j.bmcl.2017.06.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
|
18
|
Usui Y, Uehara F, Hiki S, Watanabe K, Tanaka H, Shouda A, Yokoshima S, Aritomo K, Adachi T, Fukunaga K, Sunada S, Nabeno M, Saito KI, Eguchi JI, Yamagami K, Asano S, Tanaka S, Yuki S, Yoshii N, Fujimura M, Horikawa T. Discovery of novel 2-(3-phenylpiperazin-1-yl)-pyrimidin-4-ones as glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett 2017; 27:3726-3732. [PMID: 28712708 DOI: 10.1016/j.bmcl.2017.06.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
We herein describe the results of further evolution of glycogen synthase kinase (GSK)-3β inhibitors from our promising compounds containing a 2-phenylmorpholine moiety. Transformation of the morpholine moiety into a piperazine moiety resulted in potent GSK-3β inhibitors. SAR studies focused on the phenyl moiety revealed that a 4-fluoro-2-methoxy group afforded potent inhibitory activity toward GSK-3β. Based on docking studies, new hydrogen bonding between the nitrogen atom of the piperazine moiety and the oxygen atom of the main chain of Gln185 has been indicated, which may contribute to increased activity compared with that of the corresponding phenylmorpholine analogues. Effect of the stereochemistry of the phenylpiperazine moiety is also discussed.
Collapse
Affiliation(s)
- Yoshihiro Usui
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Fumiaki Uehara
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Shinsuke Hiki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kazutoshi Watanabe
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| | - Hiroshi Tanaka
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Aya Shouda
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Satoshi Yokoshima
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Keiichi Aritomo
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Takashi Adachi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kenji Fukunaga
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Shinji Sunada
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Mika Nabeno
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Ken-Ichi Saito
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Jun-Ichi Eguchi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Keiji Yamagami
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Shouichi Asano
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Shinji Tanaka
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Satoshi Yuki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Narihiko Yoshii
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masatake Fujimura
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Takashi Horikawa
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| |
Collapse
|
19
|
Arafa RK, Elghazawy NH. Personalized Medicine and Resurrected Hopes for the Management of Alzheimer's Disease: A Modular Approach Based on GSK-3β Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:199-224. [PMID: 28840559 DOI: 10.1007/978-3-319-60733-7_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurological disorders with vast reaching worldwide prevalence. Research attempts to decipher what's happening to the human mind have shown that pathogenesis of AD is associated with misfolded protein intermediates displaying tertiary structure conformational changes eventually leading to forming large polymers of unwanted aggregates. The two hallmarks of AD pathological protein aggregates are extraneuronal β-amyloid (Aβ) based senile plaques and intraneuronal neurofibrillary tangles (NFTs). As such, AD is categorized as a protein misfolding neurodegenerative disease (PMND) . Therapeutic interventions interfering with the formation of these protein aggregates have been widely explored as potential pathways for thwarting AD progression. One such tactic is modulating the function of enzymes involved in the metabolic pathways leading to formation of these misfolded protein aggregates. Much evidence has shown that glycogen synthase kinase-3β (GSK-3β) plays a key role in hyperphosphorylation of tau protein leading eventually to its aggregation to form NFTs. Data presented hereby will display a plethora of information as to how to interfere with progression of AD through the route of GSK-3β activity control.
Collapse
Affiliation(s)
- Reem K Arafa
- Zewail City of Science and Technology, Cairo, 12588, Egypt.
| | | |
Collapse
|
20
|
Synthesis of pyrimidin-4-one-1,2,3-triazole conjugates as glycogen synthase kinase-3β inhibitors with anti-depressant activity. Bioorg Chem 2016; 68:41-55. [DOI: 10.1016/j.bioorg.2016.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/10/2016] [Accepted: 07/17/2016] [Indexed: 01/06/2023]
|
21
|
Khan I, Tantray MA, Alam MS, Hamid H. Natural and synthetic bioactive inhibitors of glycogen synthase kinase. Eur J Med Chem 2016; 125:464-477. [PMID: 27689729 DOI: 10.1016/j.ejmech.2016.09.058] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/26/2016] [Accepted: 09/18/2016] [Indexed: 01/19/2023]
Abstract
Glycogen synthase kinase-3 is a multi-functional serine-threonine kinase and is involved in diverse physiological processes, including metabolism, cell cycle, and gene expression by regulating a wide variety of known substrates like glycogen synthase, tau-protein and β-catenin. Aberrant GSK-3 has been involved in diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. In this review, we present an overview of the involvement of GSK-3 in various signalling pathways, resulting in a number of adverse pathologies due to its dysregulation. In addition, a detailed description of the small molecule inhibitors of GSK-3 with different mode of action discovered or specifically developed for GSK-3 has been presented. Furthermore, some clues for the future optimization of these promising molecules to develop specific drugs inhibiting GSK-3, for the treatment of associated disease conditions have also been discussed.
Collapse
Affiliation(s)
- Imran Khan
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Mushtaq A Tantray
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Mohammad Sarwar Alam
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Hinna Hamid
- Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110 062, India.
| |
Collapse
|
22
|
Khan I, Tantray MA, Hamid H, Alam MS, Kalam A, Shaikh F, Shah A, Hussain F. Synthesis of Novel Pyrimidin-4-One Bearing Piperazine Ring-Based Amides as Glycogen Synthase Kinase-3βInhibitors with Antidepressant Activity. Chem Biol Drug Des 2016; 87:764-72. [DOI: 10.1111/cbdd.12710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/23/2015] [Accepted: 12/01/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Imran Khan
- Department of Chemistry; Faculty of Science; Hamdard University; New Delhi 110 062 India
| | - Mushtaq A. Tantray
- Department of Chemistry; Faculty of Science; Hamdard University; New Delhi 110 062 India
| | - Hinna Hamid
- Department of Chemistry; Faculty of Science; Hamdard University; New Delhi 110 062 India
| | - Mohammad Sarwar Alam
- Department of Chemistry; Faculty of Science; Hamdard University; New Delhi 110 062 India
| | - Abul Kalam
- Department of Pharmacology; Faculty of Pharmacy; Hamdard University; New Delhi 110 062 India
| | - Faraz Shaikh
- National Facility for Drug Discovery; Department of Chemistry; Saurashtra University; Gujarat 360005 India
| | - Anamik Shah
- National Facility for Drug Discovery; Department of Chemistry; Saurashtra University; Gujarat 360005 India
| | - Firasat Hussain
- Department of Chemistry; Faculty of Science; University of Delhi; New Delhi 110 062 India
| |
Collapse
|
23
|
Furlotti G, Alisi MA, Cazzolla N, Dragone P, Durando L, Magarò G, Mancini F, Mangano G, Ombrato R, Vitiello M, Armirotti A, Capurro V, Lanfranco M, Ottonello G, Summa M, Reggiani A. Hit Optimization of 5-Substituted-N-(piperidin-4-ylmethyl)-1H-indazole-3-carboxamides: Potent Glycogen Synthase Kinase-3 (GSK-3) Inhibitors with in Vivo Activity in Model of Mood Disorders. J Med Chem 2015; 58:8920-37. [PMID: 26486317 DOI: 10.1021/acs.jmedchem.5b01208] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3β (GSK-3β) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3β inhibitors having the common N-[(1-alkylpiperidin-4-yl)methyl]-1H-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound 5 with GSK-3β. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3β inhibitors with good cell activity. Among the compounds assessed in the in vivo PK experiments, 14i showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound 14i was selected for further in vitro/in vivo pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3β inhibitors as new tools in the development of new treatments for mood disorders.
Collapse
Affiliation(s)
- Guido Furlotti
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Maria Alessandra Alisi
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Nicola Cazzolla
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Patrizia Dragone
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Lucia Durando
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Gabriele Magarò
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Francesca Mancini
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Giorgina Mangano
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Rosella Ombrato
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Marco Vitiello
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Andrea Armirotti
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Valeria Capurro
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Massimiliano Lanfranco
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Giuliana Ottonello
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Angelo Reggiani
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
24
|
Luescher MU, Bode JW. Catalytic Synthesis of N-Unprotected Piperazines, Morpholines, and Thiomorpholines from Aldehydes and SnAP Reagents. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Luescher MU, Bode JW. Catalytic Synthesis of N-Unprotected Piperazines, Morpholines, and Thiomorpholines from Aldehydes and SnAP Reagents. Angew Chem Int Ed Engl 2015. [PMID: 26212589 DOI: 10.1002/anie.201505167] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Commercially available SnAP (stannyl amine protocol) reagents allow the transformation of aldehydes and ketones into a variety of N-unprotected heterocycles. By identifying new ligands and reaction conditions, a robust catalytic variant that expands the substrate scope to previously inaccessible heteroaromatic substrates and new substitution patterns was realized. It also establishes the basis for a catalytic enantioselective process through the use of chiral ligands.
Collapse
Affiliation(s)
- Michael U Luescher
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich (Switzerland) http://www.bode.ethz.ch
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich (Switzerland) http://www.bode.ethz.ch.
| |
Collapse
|