1
|
Mohammed HHH, Ali DME, Badr M, Habib AGK, Mahmoud AM, Farhan SM, Gany SSHAE, Mohamad SA, Hayallah AM, Abbas SH, Abuo-Rahma GEDA. Synthesis and molecular docking of new N4-piperazinyl ciprofloxacin hybrids as antimicrobial DNA gyrase inhibitors. Mol Divers 2023; 27:1751-1765. [PMID: 36152132 PMCID: PMC10415461 DOI: 10.1007/s11030-022-10528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
A series of N-4 piperazinyl ciprofloxacin derivatives as urea-tethered ciprofloxacin-chalcone hybrids 2a-j and thioacetyl-linked ciprofloxacin-pyrimidine hybrids 5a-i were synthesized. The target compounds were investigated for their antibacterial activity against S. aureus, P. aeruginosa, E. coli, and C. albicans strains, respectively. Ciprofloxacin derivatives 2a-j and 5a-i revealed broad antibacterial activity against either Gram positive or Gram negative strains, with MIC range of 0.06-42.23 µg/mL compared to ciprofloxacin with an MIC range of 0.15-3.25 µg/mL. Among the tested compounds, hybrids 2b, 2c, 5a, 5b, 5h, and 5i exhibited remarkable antibacterial activity with MIC range of 0.06-1.53 µg/mL against the tested bacterial strains. On the other hand, compounds 2c, 2e, 5c, and 5e showed comparable antifungal activity to ketoconazole against candida albicans with MIC range of 2.03-3.89 µg/mL and 2.6 µg/mL, respectively. Further investigations showed that some ciprofloxacin hybrids have inhibitory activity against DNA gyrase as potential molecular target compared to ciprofloxacin with IC50 range of 0.231 ± 0.01-7.592 ± 0.40 µM and 0.323 ± 0.02 µM, respectively. Docking studies of compounds 2b, 2c, 5b, 5c, 5e, 5h, and 5i on the active site of DNA gyrase (PDB: 2XCT) confirmed their ability to form stable complex with the target enzyme like that of ciprofloxacin.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City, 61768, Egypt.
| | | | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Ahmed G K Habib
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Abobakr Mohamed Mahmoud
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia City, 61768, Egypt
| | - Sarah M Farhan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia City, 61768, Egypt
| | | | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University, New Minia, Minya, 61768, Egypt
| | - Alaa M Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, El Fateh, 71526, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City, 61768, Egypt.
| |
Collapse
|
2
|
Sheikh A, Nadeem H, Khan MT, Saeed A, Murtaza B. Antibacterial Potential of Novel Acetamide Derivatives of 2-Mercaptobenzothiazole: Synthesis and Docking Studies. ACS OMEGA 2023; 8:9785-9796. [PMID: 36969428 PMCID: PMC10035015 DOI: 10.1021/acsomega.2c05782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
2-Mercaptobenzothiazole and its derivatives are widely known for their diverse biological activities, particularly antimicrobial and anticancer potential. In the present study, a series of new hybrid compounds consisting of 2-mercaptobenzothiazole and different aryl amines 2(a-j) were synthesized and characterized by Fourier transform infrared (FTIR), 1H NMR, and 13C NMR spectral data. The synthesized compounds were screened for in vitro antibacterial activities through agar well diffusion assay. Among the series, 2b, 2c, and 2i exhibited significant antibacterial activity comparable to the standard drug levofloxacin. Based on their antibacterial potential, these compounds were further tested for their antibiofilm activity. All of the three compounds showed promising antibiofilm potential, even better than the standard drug cefadroxil at 100 μg/100 μL concentration. Molecular docking studies were performed to explore the antibacterial mechanism of these compounds. Strikingly, the molecule 2i shared the same hydrophobic pockets as those of levofloxacin in case of bacterial kinases and DNA gyrases. In addition, 2i exhibited satisfactory antibiofilm activity in comparison to the standard. Our study therefore suggested that the synthetic compound 2i possesses remarkable antibacterial activity and may serve as a lead molecule for the discovery of potent antibacterial agents.
Collapse
Affiliation(s)
- Ahmed
Sadiq Sheikh
- Department
of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Humaira Nadeem
- Department
of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Muhammad Tariq Khan
- Faculty
of Pharmacy, Capital University of Science
and Technology, Islamabad 44000, Pakistan
| | - Adil Saeed
- Department
of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Babar Murtaza
- Department
of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
3
|
Gattu R, Ramesh SS, Nadigar S, D CG, Ramesh S. Conjugation as a Tool in Therapeutics: Role of Amino Acids/Peptides-Bioactive (Including Heterocycles) Hybrid Molecules in Treating Infectious Diseases. Antibiotics (Basel) 2023; 12:532. [PMID: 36978399 PMCID: PMC10044335 DOI: 10.3390/antibiotics12030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Peptide-based drugs are gaining significant momentum in the modern drug discovery, which is witnessed by the approval of new drugs by the FDA in recent years. On the other hand, small molecules-based drugs are an integral part of drug development since the past several decades. Peptide-containing drugs are placed between small molecules and the biologics. Both the peptides as well as the small molecules (mainly heterocycles) pose several drawbacks as therapeutics despite their success in curing many diseases. This gap may be bridged by utilising the so called 'conjugation chemistry', in which both the partners are linked to one another through a stable chemical bond, and the resulting conjugates are found to possess attracting benefits, thus eliminating the stigma associated with the individual partners. Over the past decades, the field of molecular hybridisation has emerged to afford us new and efficient molecular architectures that have shown high promise in medicinal chemistry. Taking advantage of this and also considering our experience in this field, we present herein a review concerning the molecules obtained by the conjugation of peptides (amino acids) to small molecules (heterocycles as well as bioactive compounds). More than 125 examples of the conjugates citing nearly 100 references published during the period 2000 to 2022 having therapeutic applications in curing infectious diseases have been covered.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Sanjay S. Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Siddaram Nadigar
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Channe Gowda D
- Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru 570005, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| |
Collapse
|
4
|
Koran K, Çalışkan E, Altay Öztürk D, Çapan İ, Tekin S, Sandal S, Orhan Görgülü A. The first peptide derivatives of dioxybiphenyl-bridged spiro cyclotriphosphazenes: In vitro cytotoxicity activities and DNA damage studies. Bioorg Chem 2023; 132:106338. [PMID: 36603512 DOI: 10.1016/j.bioorg.2022.106338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
In this study, we aimed to synthesize new peptide-substituted cyclotriphosphazenes from a series of tyrosine-based peptides and dioxyphenyl-substituted spirocyclotriphosphazenes, and to evaluate their in vitro cytotoxicity and genotoxicity activities. Genotoxicity studies were conducted to understand whether the cytotoxic compounds cause cell death through DNA damage. The structures of the novel series of phosphazenes were characterized by FT-IR, elemental analysis, MS, 1D (31P, 1H, and 13C-APT NMR), and 2D (HETCOR) NMR spectroscopic techniques. In vitro cytotoxic activities were carried out against human breast (MCF-7), ovarian (A2780), prostate (PC-3), colon (Caco-2) cancer cell lines and human normal epithelial cell line (MCF-10A) at different concentrations by using an MTT assay. The compounds showed considerable reductions in cell viability against all human cancer cell lines. Especially, the compounds exhibited notable effects in A2780 cell lines (p < 0.05). The IC50 values of the compounds in the A2780 cell line were calculated to be 1.914 µM for TG, 20.21 µM for TV, 20.45 µM for TA, 4.643 µM for TP, 5.615 µM for BTG, 1.047 µM for BTV, 27.02 µM for BTA, 0.7734 µM for BTP, 21.5 µM for DTG, 1.65 µM for DTV, 2.89 µM for DTA and 4.599 µM for DTP. DNA damage studies of the compounds were conducted by the comet assay method using tail length, tail density, olive tail moment, head length, and head density parameters, and the results showed that the cell death occurred through DNA damage mechanism. In a nutshell, these compounds show promising cytotoxic effects and can be considered powerful candidate molecules for pharmaceutical applications.
Collapse
Affiliation(s)
- Kenan Koran
- Kenan Koran - Department of Chemistry, Faculty of Science, Fırat University, Elazig 23119, Turkey.
| | - Eray Çalışkan
- Department of Chemistry, Faculty of Science, Bingöl University, Bingöl 12000, Turkey
| | - Dilara Altay Öztürk
- Department of Physiology, Faculty of Medicine, Turgut Ozal University, Malatya 44210, Turkey
| | - İrfan Çapan
- Department of Materials and Material Processing Techn. Polymer Technology Program, Vocational School of Technical Sciences, Gazi University, Ankara 06560, Turkey
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey
| | - Süleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey
| | - Ahmet Orhan Görgülü
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Pyrazole‐Clubbed Piperazinyl Urea Derivatives: Synthesis, Characterization and Antimicrobial Studies toward Generating an Antibiotic/Antifungal Resistance Sensor. ChemistrySelect 2023. [DOI: 10.1002/slct.202204419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Franklin Ebenazer A, Saravanabhavan M, Ramesh KS, Muhammad S, Al-Sehemi AG, Sampathkumar N. Synthesis, spectral characterization, crystal structure and computational investigation of 2-formyl-6-methoxy-3-carbethoxy quinoline as potential SARS-CoV inhibitor. THE JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 2022; 170:110886. [PMID: 35847561 PMCID: PMC9273294 DOI: 10.1016/j.jpcs.2022.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The recent COVID-19 outbreak caused by the novel coronavirus SARS-CoV-2 has an immense impact on global health and economy. Although vaccines are being used, urgent need of drugs based on natural products with high efficacy and safety is a pressing priority. Quinoline alkaloids are well known for their therapeutic action against malaria; initially, it was tried against Coronaviruses. It is a basic vital scaffold to design drugs with required biological and pharmacological activities. In this present study, a new quinoline compound was synthesized and characterized by spectroscopy techniques. Crystal structure was established by SCXRD analysis and data is used as an input to perform various computations. Additionally, using state-of-the-art quantum computational techniques, the geometry optimization and calculation of UV-Vis spectrum of 2F6M3CQ were performed at B3LYP/6-311G* level of theory. The optimized molecular geometric parameters as well as UV-Vis spectrum values are found to be in good agreement with their respective experimental results. The visualization of 3-D plots of FMO and MEP indicated the structure and reactivity trends of 2F6M3CQ molecule. Molecular docking methods were utilized to find the drug ability of 2F6M3CQ with Mproprotein of SARS-CoV-2. There were many intermolecular interactions between Mpro protein and 2F6M3CQ molecule which lead to good binding energy (-5.5 kcal/mol) between them which was found to be better than the binding energy of chloroquinine molecule (-4.5 kcal/mol) as studied under same docking protocols. Finally, drug likeness and ADME properties of 2F6M3CQ were also analyzed. There is no violation found for RO5 in our 2F6M3CQ compound. ADME analysis shows drug like properties of compound 2F6M3CQ which predicts that it might be a potential candidate for inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- A Franklin Ebenazer
- Post-Graduate and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur, 641 602, Tamil Nadu, India
| | - M Saravanabhavan
- Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, 641 407, Tamil Nadu, India
| | - K S Ramesh
- Department of Chemistry, Adithya Institute of Technology, Coimbatore, 641 107, Tamil Nadu, India
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - N Sampathkumar
- Post-Graduate and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur, 641 602, Tamil Nadu, India
| |
Collapse
|
7
|
Evecen M, Çelik F, Bektaş E, Güler Hİ, Ünver Y. Experimental and Theoretical Investigations, Enzyme inhibition activity and Docking Study of 5-methyl-4-(2-(piperazin-1-yl)ethyl)-2,4-dihydro-3H-1,2,4-triazol-3-one. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Fluoroquinolones Hybrid Molecules as Promising Antibacterial Agents in the Fight against Antibacterial Resistance. Pharmaceutics 2022; 14:pharmaceutics14081749. [PMID: 36015376 PMCID: PMC9414178 DOI: 10.3390/pharmaceutics14081749] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of bacterial resistance has motivated researchers to discover new antibacterial agents. Nowadays, fluoroquinolones keep their status as one of the essential classes of antibacterial agents. The new generations of fluoroquinolones are valuable therapeutic tools with a spectrum of activity, including Gram-positive, Gram-negative, and atypical bacteria. This review article surveys the design of fluoroquinolone hybrids with other antibacterial agents or active compounds and underlines the new hybrids' antibacterial properties. Antibiotic fluoroquinolone hybrids have several advantages over combined antibiotic therapy. Thus, some challenges related to joining two different molecules are under study. Structurally, the obtained hybrids may contain a cleavable or non-cleavable linker, an essential element for their pharmacokinetic properties and mechanism of action. The design of hybrids seems to provide promising antibacterial agents helpful in the fight against more virulent and resistant strains. These hybrid structures have proven superior antibacterial activity and less susceptibility to bacterial resistance than the component molecules. In addition, fluoroquinolone hybrids have demonstrated other biological effects such as anti-HIV, antifungal, antiplasmodic/antimalarial, and antitumor activity. Many fluoroquinolone hybrids are in various phases of clinical trials, raising hopes that new antibacterial agents will be approved shortly.
Collapse
|
9
|
Yang P, Luo JB, Wang ZZ, Zhang LL, Xie XB, Shi QS, Zhang XG. Synthesis and in vitro antibacterial activity of N-acylarylhydrazone-ciprofloxacin hybrids as novel fluoroquinolone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zang W, Li D, Gao L, Gao S, Hao P, Bian H. The antibacterial potential of ciprofloxacin hybrids against Staphylococcus aureus. Curr Top Med Chem 2022; 22:1020-1034. [PMID: 35301951 DOI: 10.2174/1568026622666220317162132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus (S. aureus), an important pathogen of both humans and animals, is able to cause a variety of infections at any site of the body. The evolution of S. aureus resistance is notorious, and the widespread of drug-resistant S. aureus, especially methicillin-resistant S. aureus (MRSA), has made the treatment difficult in recent decades. Nowadays, S. aureus is among the leading causes of bacterial infections, creating an urgent need for the development of novel antibacterial agents. Ciprofloxacin, characterized by high clinical efficacy, is a broad-spectrum antibacterial agent with frequency of prescription for various Gram-positive and Gram-negative pathogens, many of which are resistant to a wide range of antibiotics. However, the long-term and widespread use of this antibiotic has led to the emergence of ciprofloxacin-resistant pathogens, and ciprofloxacin-resistant S. aureus has been noted in clinical practice. Ciprofloxacin hybrids have been recognized as advanced chemical entities to simultaneously modulate multiple drug targets in bacteria, so ciprofloxacin hybrids have the potential to overcome drug resistance. The present review provides an overview of ciprofloxacin hybrids with anti-S. aureus potential that have been reported in the last decade with emphasis on their structure-activity relationships and mechanisms of action.
Collapse
Affiliation(s)
- Wenhua Zang
- Zhang Zhongjing College of Traditional Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, Henan, China;
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang 473004, Henan, China
| | - Danxia Li
- Zhang Zhongjing College of Traditional Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, Henan, China;
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang 473004, Henan, China
| | - Li Gao
- Zhang Zhongjing College of Traditional Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, Henan, China;
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang 473004, Henan, China
| | - Shuang Gao
- Zhang Zhongjing College of Traditional Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, Henan, China;
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang 473004, Henan, China
| | - Pengfei Hao
- Zhang Zhongjing College of Traditional Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, Henan, China;
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang 473004, Henan, China
| | - Hua Bian
- Zhang Zhongjing College of Traditional Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, Henan, China;
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang 473004, Henan, China
| |
Collapse
|
11
|
Ranganatha VL, Ramu R, V R, Martiz RM, Khanum SA. Synthesis, characterization, and antimicrobial analysis of 5-phenyl-4-((2-(piperazin-1-yl)ethyl)thio)-1,2,3-oxadiazole analogs through in vitro and in silico approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Bokhtia RM, Girgis AS, Ibrahim TS, Rasslan F, Nossier ES, Barghash RF, Sakhuja R, Abdel-Aal EH, Panda SS, Al-Mahmoudy AMM. Synthesis, Antibacterial Evaluation, and Computational Studies of a Diverse Set of Linezolid Conjugates. Pharmaceuticals (Basel) 2022; 15:191. [PMID: 35215303 PMCID: PMC8880098 DOI: 10.3390/ph15020191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
The development of new antibiotics to treat multidrug-resistant (MDR) bacteria or possess broad-spectrum activity is one of the challenging tasks. Unfortunately, there are not many new antibiotics in clinical trials. So, the molecular hybridization approach could be an effective strategy to develop potential drug candidates using the known scaffolds. We synthesized a total of 31 diverse linezolid conjugates 3, 5, 7, 9, 11, 13, and 15 using our established benzotriazole chemistry with good yield and purity. Some of the synthesized conjugates exhibited promising antibacterial properties against different strains of bacteria. Among all the synthesized compounds, 5d is the most promising antibacterial agent with MIC 4.5 µM against S. aureus and 2.25 µM against B. subtilis. Using our experimental data pool, we developed a robust QSAR (R2 = 0.926, 0.935; R2cvOO = 0.898, 0.915; R2cvMO = 0.903, 0.916 for the S. aureus and B. subtilis models, respectively) and 3D-pharmacophore models. We have also determined the drug-like properties of the synthesized conjugates using computational tools. Our findings provide valuable insight into the possible linezolid-based antibiotic drug candidates.
Collapse
Affiliation(s)
- Riham M. Bokhtia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (A.S.G.); (R.F.B.)
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fatma Rasslan
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11651, Egypt;
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (A.S.G.); (R.F.B.)
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India;
| | - Eatedal H. Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Amany M. M. Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
| |
Collapse
|
13
|
Cebeci YU, Ceylan Ş, Karaoğlu ŞA. Conventional and microwave irradiated synthesis, biological activity evaluation of highly substituted indole-triazole hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021; 26:7153. [PMID: 34885734 PMCID: PMC8658791 DOI: 10.3390/molecules26237153] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
Broad antibacterial spectrum, high oral bioavailability and excellent tissue penetration combined with safety and few, yet rare, unwanted effects, have made the quinolones class of antimicrobials one of the most used in inpatients and outpatients. Initially discovered during the search for improved chloroquine-derivative molecules with increased anti-malarial activity, today the quinolones, intended as antimicrobials, comprehend four generations that progressively have been extending antimicrobial spectrum and clinical use. The quinolone class of antimicrobials exerts its antimicrobial actions through inhibiting DNA gyrase and Topoisomerase IV that in turn inhibits synthesis of DNA and RNA. Good distribution through different tissues and organs to treat Gram-positive and Gram-negative bacteria have made quinolones a good choice to treat disease in both humans and animals. The extensive use of quinolones, in both human health and in the veterinary field, has induced a rise of resistance and menace with leaving the quinolones family ineffective to treat infections. This review revises the evolution of quinolones structures, biological activity, and the clinical importance of this evolving family. Next, updated information regarding the mechanism of antimicrobial activity is revised. The veterinary use of quinolones in animal productions is also considered for its environmental role in spreading resistance. Finally, considerations for the use of quinolones in human and veterinary medicine are discussed.
Collapse
Affiliation(s)
- Ana R. Millanao
- Facultad de Ciencias, Instituto de Farmacia, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Aracely Y. Mora
- Programa de Doctorado en Bioquímica, Universidad de Chile, Santiago 8380544, Chile;
| | - Nicolás A. Villagra
- Escuela de Tecnología Médica, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Sergio A. Bucarey
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago 8370071, Chile
| |
Collapse
|
15
|
Potapov VA, Ishigeev RS, Belovezhets LA, Amosova SV. A Novel Family of [1,4]Thiazino[2,3,4- ij]quinolin-4-ium Derivatives: Regioselective Synthesis Based on Unsaturated Heteroatom and Heterocyclic Compounds and Antibacterial Activity. Molecules 2021; 26:5579. [PMID: 34577049 PMCID: PMC8472155 DOI: 10.3390/molecules26185579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
A novel family of [1,4]thiazino[2,3,4-ij]quinolin-4-ium derivatives was synthesized by annulation reactions of 8-quinolinesulfenyl chloride with unsaturated heteroatom and heterocyclic compounds. It was found that the reactions with 4-pentenoic and 5-hexenoic acids, allyl chloride and bromide, allyl cyanate and vinyl heterocyclic compounds (N-vinyl pyrrolidin-2-one and 1-vinylimidazole) proceeded in a regioselective mode but with the opposite regiochemistry. The reactions with vinyl heterocyclic compounds included electrophilic addition of the sulfur atom of 8-quinolinesulfenyl chloride to the β-carbon atom of the vinyl group. In the case of other substrates, the annulation proceeded with the attachment of the sulfur atom to the α-carbon atom of the vinyl group. The antibacterial activity of novel water-soluble compounds against Enterococcus durans, Bacillus subtilis and Escherichia coli was evaluated. Compounds with high antibacterial activity were found.
Collapse
Affiliation(s)
- Vladimir A. Potapov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia; (R.S.I.); (L.A.B.); (S.V.A.)
| | | | | | | |
Collapse
|
16
|
Mokhtar M, Alghamdi KS, Ahmed NS, Bakhotmah D, Saleh TS. Design and green synthesis of novel quinolinone derivatives of potential anti-breast cancer activity against MCF-7 cell line targeting multi-receptor tyrosine kinases. J Enzyme Inhib Med Chem 2021; 36:1454-1471. [PMID: 34210212 PMCID: PMC8259865 DOI: 10.1080/14756366.2021.1944126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A new set of 4,6,7,8-tetrahydroquinolin-5(1H)-ones were designed as cytotoxic agents against breast cancer cell line (MCF-7) and synthesised under ultrasonic irradiation using chitosan decorated copper nanoparticles (CS/CuNPs) catalyst. The new compounds 4b, 4j, 4k, and 4e exhibited the most potent cytotoxic activity of IC50 values (0.002 − 0.004 µM) comparing to Staurosporine of IC50; 0.005 μM. The latter derivatives exhibited a promising safety profile against the normal human WI38 cells of IC50 range 0.0149 − 0.048 µM. Furthermore, the most promising cytotoxic compounds 4b, 4j were evaluated as multi-targeting agents against the RTK protein kinases; EGFR, HER-2, PDGFR-β, and VEGFR-2. Compound 4j showed promising inhibitory activity against HER-2 and PDGFR-β of IC50 values 0.17 × 10−3, 0.07 × 10−3 µM in comparison with the reference drug sorafenib of IC50; 0.28 × 10−3, 0.13 × 10−3 µM, respectively. In addition, 4j induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells.
Collapse
Affiliation(s)
- Mohamed Mokhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadijah S Alghamdi
- Chemistry Department, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Nesreen S Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Cairo,Egypt
| | - Dina Bakhotmah
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tamer S Saleh
- Department of Chemistry, University of Jeddah, College of Science, Jeddah, Saudi Arabia.,Green Chemistry Department, National Research Centre, Giza, Egypt
| |
Collapse
|
17
|
Potapov VA, Ishigeev RS, Amosova SV. Efficient Regioselective Synthesis of Novel Water-Soluble 2 H,3 H-[1,4]thiazino[2,3,4- ij]quinolin-4-ium Derivatives by Annulation Reactions of 8-quinolinesulfenyl Halides. Molecules 2021; 26:1116. [PMID: 33672444 PMCID: PMC7923262 DOI: 10.3390/molecules26041116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Regioselective synthesis of novel 2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium derivatives has been developed by annulation reactions of 8-quinolinesulfenyl halides with vinyl chalcogenides (vinyl ethers, divinyl sulfide, divinyl selenide and phenyl vinyl sulfide) and tetravinyl silane. The novel reagent 8-quinolinesulfenyl bromide was used in the annulation reactions. The influence of the substrate structure and the nature of heteroatoms on the direction of the reactions and on product yields has been studied. The opposite regiochemistry was observed in the reactions with vinyl chalcogenides and tetravinyl silane. The obtained condensed heterocycles are novel water-soluble functionalized compounds with promising biological activity.
Collapse
Affiliation(s)
- Vladimir A. Potapov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of The Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia; (R.S.I.); (S.V.A.)
| | | | | |
Collapse
|
18
|
Bokhtia RM, Panda SS, Girgis AS, Honkanadavar HH, Ibrahim TS, George RF, Kashef MT, Fayad W, Sakhuja R, Abdel-Aal EH, Al-Mahmoudy AMM. Fluoroquinolone-3-carboxamide Amino Acid Conjugates: Synthesis, Antibacterial Properties And Molecular Modeling Studies. Med Chem 2020; 17:71-84. [DOI: 10.2174/1573406415666190904143852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022]
Abstract
Background:
Bacterial infections are considered as one of the major global health
threats, so it is very essential to design and develop new antibacterial agents to overcome the
drawbacks of existing antibacterial agents.
Method:
The aim of this work is to synthesize a series of new fluoroquinolone-3-carboxamide
amino acid conjugates by molecular hybridization. We utilized benzotriazole chemistry to synthesize
the desired hybrid conjugates.
Result:
All the conjugates were synthesized in good yields, characterized, evaluated for their antibacterial
activity. The compounds were screened for their antibacterial activity using methods
adapted from the Clinical and Laboratory Standards Institute. Synthesized conjugates were tested
for activity against medically relevant pathogens; Escherichia coli (ATCC 25922), Pseudomonas
aeruginosa (ATCC 27856) Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis
(ATCC 19433).
Conclusion:
The observed antibacterial experimental data indicates the selectivity of our synthesized
conjugates against E.Coli. The protecting group on amino acids decreases the antibacterial
activity. The synthesized conjugates are non-toxic to the normal cell lines. The experimental data
were supported by computational studies.
Collapse
Affiliation(s)
- Riham M. Bokhtia
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, United States
| | - Siva S. Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, United States
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | | | - Tarek S. Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Riham F. George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona T. Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Eatedal H. Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amany M. M. Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
19
|
Srour AM, Ahmed NS, Abd El-Karim SS, Anwar MM, El-Hallouty SM. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg Med Chem 2020; 28:115657. [PMID: 32828424 DOI: 10.1016/j.bmc.2020.115657] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Heterocyclic rings such as thiazole and benzimidazole are considered as privileged structures, since they constitute several FDA-approved drugs for cancer treatment. In this work, a new set of 2-(2-(substituted) hydrazinyl)-4-(1-methyl-1H-benzo[d]imidazol-2-yl) thiazoles 4a-q were designed as epidermal growth factor receptor (EGFR) inhibitors and synthesized using concise synthetic methods. The new target compounds have been evaluated in vitro for their suppression activity against EGFR TK. Compounds 4n, 4h, 4i, 4a and 4d exhibited significant potency in comparison with erlotinib which served as a reference drug (IC50, 71.67-152.59 nM; IC50 erlotinib, 152.59 nM). Furthermore, MTT assay revealed that compounds 4j, 4a, 4f, 4h, 4n produced the most promising cytotoxic potency against the human breast cancer cell line (MCF-7) (IC50; 5.96-11.91 µM; IC50 erlotinib; 4.15 µM). Compound 4a showed promising activity as EGFR TK inhibitor as well as anti-breast cancer agent. In addition, 4a induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells. Moreover, 4a upregulated the oncogenic parameters; caspase-3, p53, Bax/Bcl-2 as well as it inhibited the level of PARP-1 enzyme. QSAR study was carried out for the new derivatives and it revealed the goodness of the models. Furthermore, molecular docking studies represented the binding modes of the promising compounds in the active pocket of EGFR.
Collapse
Affiliation(s)
- Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Nesreen S Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Salwa M El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Department of Pharmacognosy, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
20
|
Zanni R, Galvez-Llompart M, Garcia-Domenech R, Galvez J. What place does molecular topology have in today’s drug discovery? Expert Opin Drug Discov 2020; 15:1133-1144. [DOI: 10.1080/17460441.2020.1770223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Riccardo Zanni
- Molecular Topology and Drug Design Unit, Department of Physical Chemistry, University of Valencia, Valencia, Spain
- Departamento de Microbiologia, Facultad de Ciencias, Universidad de Malaga, Málaga, Spain
| | - Maria Galvez-Llompart
- Molecular Topology and Drug Design Unit, Department of Physical Chemistry, University of Valencia, Valencia, Spain
- Instituto de Tecnología Química, UPV-CSIC, Universidad Politécnica de Valencia, Valencia, Spain
| | - Ramon Garcia-Domenech
- Molecular Topology and Drug Design Unit, Department of Physical Chemistry, University of Valencia, Valencia, Spain
| | - Jorge Galvez
- Molecular Topology and Drug Design Unit, Department of Physical Chemistry, University of Valencia, Valencia, Spain
| |
Collapse
|
21
|
Bouzian Y, Karrouchi K, Sert Y, Lai CH, Mahi L, Ahabchane NH, Talbaoui A, Mague JT, Essassi EM. Synthesis, spectroscopic characterization, crystal structure, DFT, molecular docking and in vitro antibacterial potential of novel quinoline derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127940] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Bouzian Y, Kansiz S, Mahi L, Ahabchane NH, Mague JT, Dege N, Karrouchi K, Essassi EM. Crystal structure and Hirshfeld surface analysis of hexyl 1-hexyl-2-oxo-1,2-di-hydro-quinoline-4-carboxyl-ate. Acta Crystallogr E Crystallogr Commun 2020; 76:642-645. [PMID: 32431924 PMCID: PMC7199246 DOI: 10.1107/s2056989020004521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/01/2020] [Indexed: 11/11/2022]
Abstract
The asymmetric unit of the title compound, C22H31NO3, comprises of one mol-ecule. The mol-ecule is not planar, with the carboxyl-ate ester group inclined by 33.47 (4)° to the heterocyclic ring. Individual mol-ecules are linked by aromaticC-H⋯Ocarbon-yl hydrogen bonds into chains running parallel to [001]. Slipped π-π stacking inter-actions between quinoline moieties link these chains into layers extending parallel to (100). Hirshfeld surface analysis, two-dimensional fingerprint plots and mol-ecular electrostatic potential surfaces were used to qu-antify the inter-molecular inter-actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (72%), O⋯H/H⋯O (14.5%) and C⋯H/H⋯C (5.6%) inter-actions.
Collapse
Affiliation(s)
- Younos Bouzian
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Sevgi Kansiz
- Department of Fundamental Sciences, Faculty of Engineering, Samsun University, Samsun 55420, Turkey
| | - Lhassane Mahi
- Moroccan Foundation for Advanced Science Innovation and Research (Mascir), Department of Nanotechnology, Rabat Design Center, Rue Mohamed Al Jazouli-Madinat Al Irfane, Rabat 10 100, Morocco
| | - Noureddine Hamou Ahabchane
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohamed V University, Rabat, Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
23
|
Anil SM, Rajeev N, Kiran KR, Swaroop TR, Mallesha N, Shobith R, Sadashiva MP. Multi-pharmacophore Approach to Bio-therapeutics: Piperazine Bridged Pseudo-peptidic Urea/Thiourea Derivatives as Anti-oxidant Agents. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Seliem IA, Panda SS, Girgis AS, Nagy YI, George RF, Fayad W, Fawzy NG, Ibrahim TS, Al‐Mahmoudy AMM, Sakhuja R, Abdel‐samii ZKM. Design, synthesis, antimicrobial, and DNA gyrase inhibitory properties of fluoroquinolone–dichloroacetic acid hybrids. Chem Biol Drug Des 2019; 95:248-259. [DOI: 10.1111/cbdd.13638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/30/2019] [Accepted: 10/12/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Israa A. Seliem
- Department of Chemistry and Physics Augusta University Augusta GA USA
- Department of Pharmaceutical Organic Chemistry Faculty of Pharmacy Zagazig University Zagazig Egypt
| | - Siva S. Panda
- Department of Chemistry and Physics Augusta University Augusta GA USA
| | - Adel S. Girgis
- Department of Pesticide Chemistry National Research Centre Giza Egypt
| | - Yosra I. Nagy
- Microbiology and Immunology Department Faculty of Pharmacy Cairo University Cairo Egypt
| | - Riham F. George
- Pharmaceutical Chemistry Department Faculty of Pharmacy Cairo University Cairo Egypt
| | - Walid Fayad
- Drug Bioassay‐Cell Culture Laboratory Pharmacognosy Department National Research Centre Giza Egypt
| | - Nehmedo G. Fawzy
- Department of Pesticide Chemistry National Research Centre Giza Egypt
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Organic Chemistry Faculty of Pharmacy Zagazig University Zagazig Egypt
- Department of Pharmaceutical Chemistry Faculty of Pharmacy King Abdulaziz University Jeddah Saudi Arabia
| | - Amany M. M. Al‐Mahmoudy
- Department of Pharmaceutical Organic Chemistry Faculty of Pharmacy Zagazig University Zagazig Egypt
| | - Rajeev Sakhuja
- Department of Chemistry Birla Institute of Technology and Science Pilani India
| | | |
Collapse
|
25
|
Arya R, Gupta SP, Paliwal S, Kesar S, Mishra A, Prabhakar YS. QSAR and Molecular Modeling Studies on a Series of Pyrrolidine Analogs Acting as BACE-1 Inhibitors. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180627124422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
β-Site amyloidal precursor protein (APP) cleavage enzyme (BACE-1) is
reported as prime cause for progession of Alzheimer’s disease (AD). It is a form of dementia characterized
by degeneration of neurones in brain. Therefore, attempts have been made to find potent
inhibitors of this enzyme.
Methods:
The paper presents an division-based 2D quantitative structure-activity relationship
(QSAR) study on a series of BACE-1 inhibitors to analyse the structural features that may be important
to increase the potency of the compounds.
Results:
The study led to predict some potential leads for the development of potent inhibitors of
BACE-1. One of the molecule with pyrrolidine and pyrrolidinone substitutions exhibited drugreceptor
interactions comparable with reference drug.
Conclusion:
The hydrogen-bond interactions between the molecules and the receptor basically
control the BACE-1 inhibition activity of the compounds.
Collapse
Affiliation(s)
- Richa Arya
- Department of Pharmacy, Banasthali Vidyapeeth, Rajasthan, India
| | | | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapeeth, Rajasthan, India
| | - Seema Kesar
- Department of Pharmacy, Banasthali Vidyapeeth, Rajasthan, India
| | - Achal Mishra
- Department of Pharmacy, Banasthali Vidyapeeth, Rajasthan, India
| | | |
Collapse
|
26
|
Bouzian Y, Karrouchi K, Anouar EH, Bouhfid R, Arshad S, Essassi EM. Crystal structure, DFT study and Hirshfeld surface analysis of ethyl 6-chloro-2-eth-oxy-quinoline-4-carboxyl-ate. Acta Crystallogr E Crystallogr Commun 2019; 75:912-916. [PMID: 31391993 PMCID: PMC6658954 DOI: 10.1107/s2056989019007473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/22/2019] [Indexed: 11/20/2022]
Abstract
In the title quinoline derivative, C14H14ClNO3, there is an intra-molecular C-H⋯O hydrogen bond forming an S(6) graph-set motif. The mol-ecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-eth-oxy-quinoline mean plane. In the crystal, offset π-π inter-actions with a centroid-to-centroid distance of 3.4731 (14) Å link inversion-related mol-ecules into columns along the c-axis direction. Hirshfeld surface analysis indicates that H⋯H contacts make the largest contribution (50.8%) to the Hirshfeld surface.
Collapse
Affiliation(s)
- Younos Bouzian
- Laboratory of Heterocyclic Organic Chemistry, URAC 21, Pole of Competence, Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, PO Box 830, Al Kharj, Saudi Arabia
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco
| | - Suhana Arshad
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry, URAC 21, Pole of Competence, Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
27
|
Mermer A, Faiz O, Demirbas A, Demirbas N, Alagumuthu M, Arumugam S. Piperazine-azole-fluoroquinolone hybrids: Conventional and microwave irradiated synthesis, biological activity screening and molecular docking studies. Bioorg Chem 2019; 85:308-318. [PMID: 30654222 DOI: 10.1016/j.bioorg.2019.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/01/2019] [Accepted: 01/06/2019] [Indexed: 01/18/2023]
Abstract
A series of new 1,2,4-triazole and 1,3,4-oxadiazole derivatives was obtained via several steps sequential reactions of phenyl piperazine. Then, these compounds were converted to the corresponding fluoroquinolone hybrids via one pot three component Mannich reaction. All the reactions were examined under conventional and microwave mediated conditions, and optimum conditions were determined. The effect of different solvents and microwave power on microwave prompted reactions was investigated as well. All the newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR and EI MS spectral techniques. The antimicrobial activity, DNA gyrase and Topoisomerase IV inhibition potentials were performed. The results obtained showed that fluoroquinolone hybrids possess good antimicrobial activity. Moreover, Fluoroquinolone-azole-piperazine hybrids synthesized in the present study displayed excellent DNA gyrase inhibition. To unveil the interaction mode of compounds to receptor, a molecular docking study was performed. With an average least binding energy of -9.5 kcal/mol, all compounds were found to have remarkable inhibitory potentials against DNA gyrase (E. coli).
Collapse
Affiliation(s)
- Arif Mermer
- Karadeniz Technical University, Department of Chemistry 61080 Trabzon, Turkey
| | - Ozlem Faiz
- Recep Tayyip Erdogan University, Department of Chemistry, 53100 Rize, Turkey
| | - Ahmet Demirbas
- Karadeniz Technical University, Department of Chemistry 61080 Trabzon, Turkey
| | - Neslihan Demirbas
- Karadeniz Technical University, Department of Chemistry 61080 Trabzon, Turkey.
| | - Manikandan Alagumuthu
- Dept. of Biotechnology, School of Bio-Sciences and Technology, VIT, Vellore 632014, India
| | - Sivakumar Arumugam
- Dept. of Biotechnology, School of Bio-Sciences and Technology, VIT, Vellore 632014, India
| |
Collapse
|
28
|
Quinoline and quinolone dimers and their biological activities: An overview. Eur J Med Chem 2019; 161:101-117. [DOI: 10.1016/j.ejmech.2018.10.035] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/28/2023]
|
29
|
Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN. Design, synthesis, and biological evaluation of 1,8-naphthyridine glucosamine conjugates as antimicrobial agents. Drug Dev Res 2018; 80:179-186. [PMID: 30570767 DOI: 10.1002/ddr.21508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
In the quest for discovering potent antimicrobial agents with lower toxicity, we envisioned the design and synthesis of nalidixic acid-D-(+)-glucosamine conjugates. The novel compounds were synthesized and evaluated for their in vitro antimicrobial activity against Gram positive bacteria, Gram negative bacteria and fungi. Cytotoxicity using MTT assay over L6 skeletal myoblast cell line, ATCC CRL-1458 was carried out. In vitro antimicrobial assay revealed that 1-ethyl-7-methyl-4-oxo-N-(1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucopyranose-2-yl)-[1,8]-naphthyridine-3-carboxamide (5) and 1-ethyl-7-methyl-4-oxo-N-(2-deoxy-D-glucopyranose-2-yl)-[1,8]-naphthyridine-3-carboxamide(6) possess growth inhibitory activity against resistant Escherichia coli NCTC, 11954 (MIC 0.1589 mM) and Methicillin resistant Staphylococcus aureus ATCC, 33591 (MIC 0.1589 mM). Compound (5) was more active against Listeria monocytogenes ATCC 19115 (MIC 0.1113 mM) in comparison with the reference nalidixic acid (MIC 1.0765 mM). Interestingly, compound (6) had potential antifungal activity against Candida albicans ATCC 10231 (MIC <0.0099 mM). Remarkably, the tested compounds had low cytotoxic effect. This study indicated that glucosamine moiety inclusion into the chemical structure of the marketed nalidixic acid enhances antimicrobial activity and safety.
Collapse
Affiliation(s)
- Aya A M Mohammed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ghadeer A R Y Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mayadah B Shehadeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Patrick N Okechukwu
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Demirci S, Demirbaş N, Menteşe M, Özdemir S, Karaoğlu ŞA. Synthesis and antimicrobial activity evaluation of new norfloxacine-azole hybrids. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2018-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Norfloxacin-azole hybrids 3 and 6a,b were synthesized starting from norfloxacin. The treatment of these compounds with amines as a one-pot three-component reaction produced the corresponding amino derivatives 4a,b, 7a–g and 8a,b in good yields. The conventional and microwave-assisted methods were used with the latter method being more efficient. The structures of the synthesized compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR and MS. All compounds were screened for their antimicrobial activities. Most of them exhibit excellent antibacterial activity but are not active against selected fungi.
Collapse
|
31
|
Basoglu Ozdemir S, Demirbas N, Demirbas A, Ayaz FA, Çolak N. Microwave‐Assisted Synthesis, Antioxidant, and Antimicrobial Evaluation of Piperazine‐Azole‐Fluoroquinolone Based 1,2,4‐Triazole Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Serap Basoglu Ozdemir
- Department of Chemistry, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Neslihan Demirbas
- Department of Chemistry, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Ahmet Demirbas
- Department of Chemistry, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Faik Ahmet Ayaz
- Department of Biology, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Nesrin Çolak
- Department of Biology, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| |
Collapse
|
32
|
Ezelarab HAA, Abbas SH, Hassan HA, Abuo-Rahma GEDA. Recent updates of fluoroquinolones as antibacterial agents. Arch Pharm (Weinheim) 2018; 351:e1800141. [DOI: 10.1002/ardp.201800141] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Hend A. A. Ezelarab
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | - Samar H. Abbas
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | - Heba A. Hassan
- Faculty of Pharmacy, Department of Medicinal Chemistry; Minia University; Minia Egypt
| | | |
Collapse
|
33
|
Jiang D. 4-Quinolone Derivatives and Their Activities Against Gram-negative Pathogens. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dan Jiang
- School of Nuclear Technology and Chemistry & Biology; Hubei University of Science and Technology; Xianning Hubei China
| |
Collapse
|
34
|
Fedorowicz J, Sączewski J. Modifications of quinolones and fluoroquinolones: hybrid compounds and dual-action molecules. MONATSHEFTE FUR CHEMIE 2018; 149:1199-1245. [PMID: 29983452 PMCID: PMC6006264 DOI: 10.1007/s00706-018-2215-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 01/27/2023]
Abstract
ABSTRACT This review is aimed to provide extensive survey of quinolones and fluoroquinolones for a variety of applications ranging from metal complexes and nanoparticle development to hybrid conjugates with therapeutic uses. The review covers the literature from the past 10 years with emphasis placed on new applications and mechanisms of pharmacological action of quinolone derivatives. The following are considered: metal complexes, nanoparticles and nanodrugs, polymers, proteins and peptides, NO donors and analogs, anionic compounds, siderophores, phosphonates, and prodrugs with enhanced lipophilicity, phototherapeutics, fluorescent compounds, triazoles, hybrid drugs, bis-quinolones, and other modifications. This review provides a comprehensive resource, summarizing a broad range of important quinolone applications with great utility as a resource concerning both chemical modifications and also novel hybrid bifunctional therapeutic agents. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
35
|
Ozdemir SB, Demirbas N, Demirbas A, Colak N, Ayaz FA. Design, Microwave-Assisted and Conventional Synthesis of New Hybrid Compounds Derived From 1-(4-Fluorophenyl)piperazine and Screening for Their Biological Activities. ChemistrySelect 2018. [DOI: 10.1002/slct.201800019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Neslihan Demirbas
- Department of Chemistry; Karadeniz Technical University; 61080 Trabzon Turkey
| | - Ahmet Demirbas
- Department of Chemistry; Karadeniz Technical University; 61080 Trabzon Turkey
| | - Nesrin Colak
- Department of Biology; Karadeniz Technical University; 61080 Trabzon Turkey
| | - Faik Ahmet Ayaz
- Department of Biology; Karadeniz Technical University; 61080 Trabzon Turkey
| |
Collapse
|
36
|
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018; 146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infections represent a significant health threat globally, and are responsible for the majority of hospital-acquired infections, leading to extensive mortality and burden on global healthcare systems. The second generation fluoroquinolone ciprofloxacin which exhibits excellent antimicrobial activity and pharmacokinetic properties as well as few side effects is introduced into clinical practice for the treatment of various bacterial infections for around 3 decades. The emergency and widely spread of drug-resistant pathogens making ciprofloxacin more and more ineffective, so it's imperative to develop novel antibacterials. Numerous of ciprofloxacin derivatives have been synthesized for seeking for new antibacterials, and some of them exhibited promising potency. This review aims to summarize the recent advances made towards the discovery of ciprofloxacin derivatives as antibacterial agents and the structure-activity relationship of these derivatives was also discussed.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Hubei, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China.
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China.
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
37
|
Girgis AS, Aziz MN, Shalaby EM, Asaad FM, Farag IA. Synthesis and X-ray Studies of Novel Azaphenanthrenes. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15183538282993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two azaphenanthrenes were synthesised by a facile synthetic pathway and characterised by X-ray crystallography. Molecular packing of 4-(2,4-dichlorophenyl)-2-methoxy-5,6-dihydrobenzo[ h]quinoline-3-carbonitrile exhibits C–H…N and C–H…Cl hydrogen bonds in addition to intermolecular C–H…π, Cl…π and π…π (π-ring) stacking interactions. However, molecules of the 2-ethoxy derivative are linked into chains by one hydrogen bond of the C–H…N type and the crystal structure reveals an intermolecular C–H…π (π-ring) interaction. Computational studies by AM1, PM3, and density functional theory (DFT) techniques provide good approximations to the experimental X-ray data. The root mean square errors between the experimental and calculated bond lengths using AM1, PM3 and DFT methods for the 2-methoxy and 2-ethoxy derivatives are 0.0187, 0.0193, 0.0120 and 0.0197, 0.0195 and 0.0116 respectively.
Collapse
Affiliation(s)
- Adel S. Girgis
- Pesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Marian N. Aziz
- Pesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - ElSayed M. Shalaby
- X-Ray Crystallography Laboratory, Physics Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Fahmy M. Asaad
- Pesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - I.S. Ahmed Farag
- X-Ray Crystallography Laboratory, Physics Division, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
38
|
Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates. Eur J Med Chem 2018; 143:1524-1534. [DOI: 10.1016/j.ejmech.2017.10.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 12/14/2022]
|
39
|
Cebeci YU, Ozdemir SB, Ceylan S, Bayrak H, Demirbas A, Alpay-Karaoglu S, Demirbas N. Microwave-Assisted Synthesis of Some Hybrid Molecules Derived from Morpholine and Investigation of Their Antimicrobial Activities. ChemistrySelect 2017. [DOI: 10.1002/slct.201702097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yıldız Uygun Cebeci
- Department of Chemistry; Karadeniz Technical University, Department of Chemistry; 61080 Trabzon Turkey
| | - Serap Basoglu Ozdemir
- Department of Chemistry; Karadeniz Technical University, Department of Chemistry; 61080 Trabzon Turkey
| | - Sule Ceylan
- Department of Occupational Health and Safety; ArtvinCoruh University; Artvin Turkey
| | - Hacer Bayrak
- Department of Chemistry and Chemical Processing Technology; Karadeniz Technical University; Trabzon Turkey
| | - Ahmet Demirbas
- Department of Chemistry; Karadeniz Technical University, Department of Chemistry; 61080 Trabzon Turkey
| | | | - Neslihan Demirbas
- Department of Chemistry; Karadeniz Technical University, Department of Chemistry; 61080 Trabzon Turkey
| |
Collapse
|
40
|
4-Quinolone hybrids and their antibacterial activities. Eur J Med Chem 2017; 141:335-345. [DOI: 10.1016/j.ejmech.2017.09.050] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 01/28/2023]
|
41
|
Zhang GF, Zhang S, Pan B, Liu X, Feng LS. 4-Quinolone derivatives and their activities against Gram positive pathogens. Eur J Med Chem 2017; 143:710-723. [PMID: 29220792 DOI: 10.1016/j.ejmech.2017.11.082] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Gram-positive bacteria are responsible for a broad range of infectious diseases, and the emergency and wide spread of drug-resistant Gram-positive pathogens including MRSA and MRSE has caused great concern throughout the world. 4-Quinolones which are exemplified by fluoroquinolones are mainstays of chemotherapy against various bacterial infections including Gram-positive pathogen infections, and their value and role in the treatment of bacterial infections continues to expand. However, the resistance of Gram-positive organisms to 4-quinolones develops rapidly and spreads widely, making them more and more ineffective. To overcome the resistance and reduce the toxicity, numerous of 4-quinolone derivatives were synthesized and screened for their in vitro and in vivo activities against Gram-positive pathogens, and some of them exhibited excellent potency. This review aims to outlines the recent advances made towards the discovery of 4-quinolone-based derivatives as anti-Gram-positive pathogens agents and the critical aspects of design as well as the structure-activity relationship of these derivatives. The enriched SAR paves the way to the further rational development of 4-quinolones with a unique mechanism of action different from that of the currently used drugs to overcome the resistance, well-tolerated and low toxic profiles.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Life Science, Hubei University of Science and Technology, Hubei, PR China
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China.
| |
Collapse
|
42
|
Wang M, Rakesh KP, Leng J, Fang WY, Ravindar L, Channe Gowda D, Qin HL. Amino acids/peptides conjugated heterocycles: A tool for the recent development of novel therapeutic agents. Bioorg Chem 2017; 76:113-129. [PMID: 29169078 DOI: 10.1016/j.bioorg.2017.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
Amino acids/peptide conjugated heterocycles represent an important class of therapeutical agents. Biologically active heterocycles are conjugated with amino acids or peptides to increase the drug resistance. Furthermore, the amino acid/peptide based drugs have low toxicity, ample bioavailability and permeability, modest potency and good metabolic and pharmacokinetic properties. Synthetic amino acid/peptides based heterocyclic conjugates constitute a promising choice for the development of new, less toxic and safer conventional pharmaceutical drugs in the near future. In this review, we discuss and highlight the recent findings of the structural features that encourage biological applications of amino acid/peptides based conjugates.
Collapse
Affiliation(s)
- Meng Wang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China
| | - K P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China.
| | - Jing Leng
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China
| | - Wan-Yin Fang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China
| | - L Ravindar
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China
| | - D Channe Gowda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India.
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China.
| |
Collapse
|
43
|
Synthesis and 2D-QSAR Study of Active Benzofuran-Based Vasodilators. Molecules 2017; 22:molecules22111820. [PMID: 29072621 PMCID: PMC6150240 DOI: 10.3390/molecules22111820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/22/2017] [Indexed: 02/03/2023] Open
Abstract
A new series of 2-alkyloxy-pyridine-3-carbonitrile-benzofuran hybrids (4a–x) was synthesized. All the new derivatives were examined via the standard technique for their vasodilation activity. Some of the investigated compounds exhibited a remarkable activity, with compounds 4w, 4e, 4r, 4s, 4f and 4g believed to be the most active hits in this study with IC50 values 0.223, 0.253, 0.254, 0.268, 0.267 and 0.275 mM, respectively, compared with amiodarone hydrochloride, the reference standard used (IC50 = 0.300 mM). CODESSA PRO was employed to obtain a statistically significant 2-Dimensional Quantitative Structure Activity Relationship (2D-QSAR) model describing the bioactivity of the newly synthesized analogs (N = 24, n = 4, R2 = 0.816, R2cvOO = 0.731, R2cvMO = 0.772, F = 21.103, s2 = 6.191 × 10−8).
Collapse
|
44
|
Identification of some novel xanthine-based derivatives with bronchodilator activity. Future Med Chem 2017; 9:1731-1747. [PMID: 28871831 DOI: 10.4155/fmc-2017-0092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM The discovery of new bronchodilators with higher efficacy than theophylline is an important issue for asthmatic patients. MATERIALS & METHODS Theophylline 2, 8-bromotheophylline 4 and theobromine 6 were reacted with different 2/3-chloro-N-phenylacetamides 1a-d or their propanamide analogs 1e-g to obtain 3a-g, 5a-g and 7a-g, respectively. The target compounds were screened for their in vitro bronchodilator activity using isolated guinea pig tracheal rings precontracted with histamine and compared with their precursors. RESULTS Many compounds exhibited promising activity especially 3d, 3f, 5d, 7d and 7e. 2D-QSAR study resulted in a significant model (N = 24, n = 5, R 2 = 0.848, R 2cvOO = 0.748, R 2cvMO = 0.745, F = 21.215, s 2 = 0.0002) using CODESSA-Pro software. CONCLUSION These compounds can be considered as promising hits for potent bronchodilators that may be useful for further investigations. [Formula: see text].
Collapse
|
45
|
Soliman EA, Panda SS, Aziz MN, Shalaby EM, Mishriky N, Asaad FM, Girgis AS. Synthesis, molecular modeling studies and bronchodilation properties of nicotinonitrile containing-compounds. Eur J Med Chem 2017; 138:920-931. [PMID: 28753516 DOI: 10.1016/j.ejmech.2017.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 12/13/2022]
Abstract
Facile synthetic pathway for nicotinonitriles 5a‒o, 7a‒i was demonstrated through reaction of ketones 4a‒k, 6a‒f with ylidenemalononitrile 3 in the presence of sodium alkoxide. Meanwhile, nucleophilic attack of amines on 2-bromonicotinonitrile 9 (obtained through reaction of propenone 8 with malononitrile, followed by bromination with bromine in acetic acid) afforded 3-pyridinecarbonitriles 11a‒d. Single crystal X-ray of compound 7i reveals the monoclinic space group C2/c with 8 molecules per unit cell. Optimized structure of 7i [DFT/B3LYP, 6-31G(d,p)] shows close correlations to that of X-ray study. Compound 5l seems superior among all the synthesized analogues exhibiting bronchodilation properties about three folds potency compared to theophylline (standard reference) through pre-contracted tracheal rings with histamine standard method. Also compound 5a reveals promising observations (about two folds potency of the standard reference). Molecular modeling studies (3D-pharmacophore and 2D-QSAR) supported the observed biological properties.
Collapse
Affiliation(s)
- E A Soliman
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Siva S Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| | - Marian N Aziz
- Pesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - ElSayed M Shalaby
- X-ray Crystallography Laboratory, Physics Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Nawal Mishriky
- Pesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Fahmy M Asaad
- Pesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Adel S Girgis
- Pesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt.
| |
Collapse
|
46
|
Wang T, Yuan XS, Wu MB, Lin JP, Yang LR. The advancement of multidimensional QSAR for novel drug discovery - where are we headed? Expert Opin Drug Discov 2017; 12:769-784. [PMID: 28562095 DOI: 10.1080/17460441.2017.1336157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The Multidimensional quantitative structure-activity relationship (multidimensional-QSAR) method is one of the most popular computational methods employed to predict interesting biochemical properties of existing or hypothetical molecules. With continuous progress, the QSAR method has made remarkable success in various fields, such as medicinal chemistry, material science and predictive toxicology. Areas covered: In this review, the authors cover the basic elements of multidimensional -QSAR including model construction, validation and application. It includes and emphasizes the very recent developments of multidimensional -QSAR such as: HQSAR, G-QSAR, MIA-QSAR, multi-target QSAR. The advantages and disadvantages of each method are also discussed and typical examples of their application are detailed. Expert opinion: Although there are defects in multidimensional-QSAR modeling, it is still of enormous help to chemists, biologists and other researchers in various fields. In the authors' opinion, the latest more precise and feasible QSAR models should be further developed by integrating new descriptors, algorithms and other relevant computational techniques. Apart from being applied in traditional fields (e.g. lead optimization and predictive risk assessment), QSAR should be used more widely as a routine method in other emerging research fields including the modeling of nanoparticles(NPs), mixture toxicity and peptides.
Collapse
Affiliation(s)
- Tao Wang
- a School of biological science , Jining Medical University , Jining , China.,b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Xin-Song Yuan
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Mian-Bin Wu
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Jian-Ping Lin
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Li-Rong Yang
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| |
Collapse
|
47
|
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34:832-885. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to the end of 2016Novel antimicrobial drugs are continuously needed to counteract bacterial resistance development. An innovative molecular design strategy for novel antibiotic drugs is based on the hybridization of an antibiotic with a second functional entity. Such conjugates can be grouped into two major categories. In the first category (antimicrobial hybrids), both functional elements of the hybrid exert antimicrobial activity. Due to the dual targeting, resistance development can be significantly impaired, the pharmacokinetic properties can be superior compared to combination therapies with the single antibiotics, and the antibacterial potency is often enhanced in a synergistic manner. In the second category (antimicrobial conjugates), one functional moiety controls the accumulation of the other part of the conjugate, e.g. by mediating an active transport into the bacterial cell or blocking the efflux. This approach is mostly applied to translocate compounds across the cell envelope of Gram-negative bacteria through membrane-embedded transporters (e.g. siderophore transporters) that provide nutrition and signalling compounds to the cell. Such 'Trojan Horse' approaches can expand the antibacterial activity of compounds against Gram-negative pathogens, or offer new options for natural products that could not be developed as standalone antibiotics, e.g. due to their toxicity.
Collapse
Affiliation(s)
- P Klahn
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. and Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - M Brönstrup
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
48
|
Basoglu Ozdemir S, Uygun Cebeci Y, Bayrak H, Mermer A, Ceylan S, Demirbas A, Alpay Karaoglu S, Demirbas N. Synthesis and antimicrobial activity of new piperazine-based heterocyclic compounds. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe hydrazide
Collapse
|
49
|
Akhtar R, Yousaf M, Naqvi SAR, Irfan M, Zahoor AF, Hussain AI, Chatha SAS. Synthesis of ciprofloxacin-based compounds: A review. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1234622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rabia Akhtar
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Yousaf
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | | | |
Collapse
|
50
|
Faidallah HM, Panda SS, Serrano JC, Girgis AS, Khan KA, Alamry KA, Therathanakorn T, Meyers MJ, Sverdrup FM, Eickhoff CS, Getchell SG, Katritzky AR. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg Med Chem 2016; 24:3527-39. [DOI: 10.1016/j.bmc.2016.05.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/23/2016] [Accepted: 05/28/2016] [Indexed: 10/24/2022]
|