1
|
Laureano AF, Vigato AA, Puzer L, de Araujo DR. Recombinant scFv-Fc Anti-kallikrein 7 Antibody-Loaded Thermosensitive Hydrogels Against Skin Desquamation Disorders. ACS APPLIED BIO MATERIALS 2024; 7:4486-4496. [PMID: 38886921 PMCID: PMC11253099 DOI: 10.1021/acsabm.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Human tissue kallikrein-related peptidase 7 (KLK7) is a serine protease implicated in the physiology of skin desquamation, and its uncontrolled activity can lead to chronic diseases such as psoriasis, atopic dermatitis, and Netherton syndrome. For this reason, kallikrein 7 has been identified as a potential therapeutic target. This work aimed to evaluate Pluronic (PL) hydrogels as topical carriers of four specific scFv-Fc antibodies to inhibit KLK7. The hydrogels comprised PL F127 (30% w/v) alone and a binary F127/P123 (28-2% w/v) system. Each formulation was loaded with 1 μg/mL of each antibody and characterized by physicochemical and pharmaceutical techniques, considering antibody-micelle interactions and hydrogel behavior as smart delivery systems. Results showed that the antibodies were successfully loaded into the PL-based systems, and the sol-gel transition temperature was shifted to high values after the P123 addition. The antibodies released from the gels preserved their rheological properties (G' > G'', 35- to 41-fold) and inhibitory activity against KLK7, even after 24 h. This work presented potential agents targeting KLK7 that may provide strategies for treating skin abnormalities.
Collapse
Affiliation(s)
- Ana Flávia
Santarine Laureano
- Department
of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital & Harvard Medical School, CNY149 13th Street, Charlestown, Boston, Massachusetts 02129, United States
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Al. da Universidade, s/n-Anchieta, São
Bernardo do Campo, SP 09606-045, Brazil
| | - Aryane Alves Vigato
- Department
of Biomedical Science (BMV), Faculty of Health and Society, Malmö University, Malmö 20506, Sweden
- Biofilms−Research
Center for Biointerfaces, Malmö University, Malmö 20506, Sweden
| | - Luciano Puzer
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Al. da Universidade, s/n-Anchieta, São
Bernardo do Campo, SP 09606-045, Brazil
| | - Daniele Ribeiro de Araujo
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Av. dos
Estados, 5001, Bloco A, Torre 3, Santo André, SP 09210-580, Brazil
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, Vila Clementino, Sao Paulo, SP 04023-062, Brazil
| |
Collapse
|
2
|
Laureano AFS, Zani MB, Sant'Ana AM, Tognato RC, Lombello CB, do Nascimento MHM, Helmsing S, Fühner V, Hust M, Puzer L. Generation of recombinant antibodies against human tissue kallikrein 7 to treat skin diseases. Bioorg Med Chem Lett 2020; 30:127626. [PMID: 33096161 DOI: 10.1016/j.bmcl.2020.127626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022]
Abstract
Human tissue kallikreins (KLKs) constitute a family of 15 serine proteases that are distributed in various tissues and implicated in several pathological disorders. KLK7 is an unusual serine protease that presents both trypsin-like and chymotrypsin-like specificity and appears to be upregulated in pathologies that are related to skin desquamation processes, such as atopic dermatitis, psoriasis and Netherton syndrome. In recent years, various groups have worked to develop specific inhibitors for this enzyme, as KLK7 represents a potential target for new therapeutic procedures for diseases related to skin desquamation processes. In this work, we selected nine different single-chain variable fragment antibodies (scFv) from a human naïve phage display library and characterized their inhibitory activities against KLK7. The scFv with the lowest IC50 against KLK7 was affinity maturated, which resulted in the generation of four new scFv-specific antibodies for the target protease. These new antibodies were expressed in the scFv-Fc format in HEK293-6E cells, and the characterization of their inhibitory activities against KLK7 showed that three of them presented IC50 values lower than that of the original antibody. The cytotoxicity analysis of these recombinant antibodies demonstrated that they can be safely used in a cellular model. In conclusion, our research showed that in our case, a phage-display methodology in combination with enzymology assays can be a very suitable tool for the development of inhibitors for KLKs, suggesting a new strategy to identify therapeutic protease inhibitors for diseases related to uncontrolled kallikrein activity.
Collapse
Affiliation(s)
- Ana Flávia S Laureano
- Universidade Federal do ABC - Centro de Ciências Naturais e Humanas, São Bernardo do Campo, São Paulo, Brazil
| | - Marcelo B Zani
- Universidade Federal do ABC - Centro de Ciências Naturais e Humanas, São Bernardo do Campo, São Paulo, Brazil
| | - Aquiles M Sant'Ana
- Universidade Federal do ABC - Centro de Ciências Naturais e Humanas, São Bernardo do Campo, São Paulo, Brazil
| | - Rafael C Tognato
- Universidade Federal do ABC - Centro de Ciências Naturais e Humanas, São Bernardo do Campo, São Paulo, Brazil
| | - Christiane B Lombello
- Universidade Federal do ABC - Centro de Engenharia, Modelagem e Ciências Sociais aplicadas, São Bernardo do Campo, São Paulo, Brazil
| | - Mônica Helena M do Nascimento
- Universidade Federal do ABC - Centro de Engenharia, Modelagem e Ciências Sociais aplicadas, São Bernardo do Campo, São Paulo, Brazil
| | - Saskia Helmsing
- Technische Universität Braunschweig - Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig - Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig - Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Braunschweig, Germany
| | - Luciano Puzer
- Universidade Federal do ABC - Centro de Ciências Naturais e Humanas, São Bernardo do Campo, São Paulo, Brazil.
| |
Collapse
|
3
|
Albuquerque SO, Barros TG, Dias LRS, Lima CHDS, Azevedo PHRDA, Flores-Junior LAP, Dos Santos EG, Loponte HF, Pinheiro S, Dias WB, Muri EMF, Todeschini AR. Biological evaluation and molecular modeling of peptidomimetic compounds as inhibitors for O-GlcNAc transferase (OGT). Eur J Pharm Sci 2020; 154:105510. [PMID: 32801002 DOI: 10.1016/j.ejps.2020.105510] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023]
Abstract
The vital enzyme O-linked β-N-acetylglucosamine transferase (OGT) catalyzes the O-GlcNAcylation of intracellular proteins coupling the metabolic status to cellular signaling and transcription pathways. Aberrant levels of O-GlcNAc and OGT have been linked to metabolic diseases as cancer and diabetes. Here, a new series of peptidomimetic OGT inhibitors was identified highlighting the compound LQMed 330, which presented better IC50 compared to the most potent inhibitors found in the literature. Molecular modeling study of selected inhibitors into the OGT binding site provided insight into the behavior by which these compounds interact with the enzyme. The results obtained in this study provided new perspectives on the design and synthesis of highly specific OGT inhibitors.
Collapse
Affiliation(s)
- Suraby O Albuquerque
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Thalita G Barros
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiza R S Dias
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camilo H da S Lima
- Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, RJ, Brazil
| | - Pedro H R de A Azevedo
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiz A P Flores-Junior
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Eldio G Dos Santos
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hector F Loponte
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Sergio Pinheiro
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Wagner B Dias
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Estela M F Muri
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Adriane R Todeschini
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
de Souza AS, Pacheco BDC, Pinheiro S, Muri EMF, Dias LRS, Lima CHS, Garrett R, de Moraes MBM, de Souza BEG, Puzer L. 3-Acyltetramic acids as a novel class of inhibitors for human kallikreins 5 and 7. Bioorg Med Chem Lett 2019; 29:1094-1098. [PMID: 30833107 DOI: 10.1016/j.bmcl.2019.02.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/30/2022]
Abstract
Human kallikreins 5 and 7 (KLK5 and KLK7) exhibit trypsin- and chymotrypsin-like activities and are involved in pathologies related to skin desquamation process. A series of new 3-acyltetramic acids were developed as a novel class of inhibitors of KLK5, KLK7 and trypsin enzymes. The nature and length of the acyl chain is crucial to the KLK5, KLK7 and trypsin inhibition activities, and the most potent compounds (but not the most selective) 2b, 2c and 2g showed low micromolar IC50 values. While very few of the compounds were selective for KLK5, the selective inhibition of trypsin against chymotrypsin was achieved. Our molecular modelling studies revealed that the double bond in 2g provided the best fit in the binding site of KLK5, while the hydrogen bonding interactions modulated the best fit of 2c in the binding site of KLK7 due to the hydrophobicity of the cavity.
Collapse
Affiliation(s)
- Acácio S de Souza
- Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n, Centro, 24020-141 Niterói, RJ, Brazil
| | - Barbara D C Pacheco
- Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n, Centro, 24020-141 Niterói, RJ, Brazil
| | - Sergio Pinheiro
- Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n, Centro, 24020-141 Niterói, RJ, Brazil.
| | - Estela M F Muri
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Luiza R S Dias
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camilo H S Lima
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana B M de Moraes
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno E G de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Luciano Puzer
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| |
Collapse
|
5
|
Afshari R, Shaabani A. Materials Functionalization with Multicomponent Reactions: State of the Art. ACS COMBINATORIAL SCIENCE 2018; 20:499-528. [PMID: 30106275 DOI: 10.1021/acscombsci.8b00072] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of neoteric synthetic routes for materials functionalization is an interesting phenomenon in materials chemistry. In particular, the union of materials chemistry with multicomponent reactions (MCRs) opens a new avenue leading to the realm of highly innovative functionalized architectures with unique features. MCRs have recently been recognized as considerable part of the synthetic chemist's toolbox due to their great efficiency, inherent molecular diversity, atom and pot economy along with operational simplicity. Also, MCRs can improve E-factor and mass intensity as important green chemistry metrics. By rational tuning of the materials, as well as the MCRs, wide ranges of functionalized materials can be produced with tailorable properties that can play important roles in the plethora of applications. To date, there has not reported any exclusive review of a materials functionalization with MCRs. This critical review highlights the state-of-the-art on the one-pot functionalization of carbonaceous and siliceous materials, polysaccharides, proteins, enzymes, synthetic polymers, etc., via diverse kind of MCRs like Ugi, Passerini, Petasis, Khabachnik-Fields, Biginelli, and MALI reactions through covalent or noncovalent manners. Besides the complementary discussion of synthetic routes, superior properties and detailed applicability of each functionalized material in modern technologies are discussed. Our outlook also emphasizes future strategies for this unprecedented area and their use as materials for industrial implementation. With no doubt, MCRs-functionalization of materials bridges the gap between materials science domain and applied chemistry.
Collapse
Affiliation(s)
- Ronak Afshari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, Tehran 1983963113, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, Tehran 1983963113, Iran
| |
Collapse
|
6
|
Pan L, Wei N, Jia H, Gao M, Chen X, Wei R, Sun Q, Gu S, Du B, Xing A, Zhang Z. Genome-wide transcriptional profiling identifies potential signatures in discriminating active tuberculosis from latent infection. Oncotarget 2017; 8:112907-112916. [PMID: 29348876 PMCID: PMC5762561 DOI: 10.18632/oncotarget.22889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
To better understand the host immune response involved in the progression from latent tuberculosis infection (LTBI) to active tuberculosis (TB) and identify the potential signatures for discriminating TB from LTBI, we performed a genome-wide transcriptional profile of Mycobacterium tuberculosis (M.TB)–specific antigens-stimulated peripheral blood mononuclear cells (PBMCs) from patients with TB, LTBI individuals and healthy controls (HCs). A total of 209 and 234 differentially expressed genes were detected in TB vs. LTBI and TB vs. HCs, respectively. Nineteen differentially expressed genes with top fold change between TB and the other 2 groups were validated using quantitative real-time PCR (qPCR), and showed 94.7% consistent expression pattern with microarray test. Six genes were selected for further validation in an independent sample set of 230 samples. Expression of the resistin (RETN) and kallikrein 1 (KLK1) genes showed the greatest difference between the TB and LTBI or HC groups (P < 0.0001). Receiver operating characteristic curve (ROC) analysis showed that the areas under the curve (AUC) for RETN and KLK1 were 0.844 (0.783–0.904) and 0.833 (0.769–0.897), respectively, when discriminating TB from LTBI. The combination of these two genes achieved the best discriminative capacity [AUC = 0.916 (0.872–0.961)], with a sensitivity of 71.2% (58.7%–81.7%) and a specificity of 93.6% (85.7%–97.9%). Our results provide a new potentially diagnostic signature for discriminating TB and LTBI and have important implications for better understanding the pathogenesis involved in the transition from latent infection to TB activation.
Collapse
Affiliation(s)
- Liping Pan
- Beijing Chest Hospital, Capital Medical University, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Na Wei
- Medical Laboratory, Linyi Chest Hospital, Linyi 276000, China
| | - Hongyan Jia
- Beijing Chest Hospital, Capital Medical University, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Mengqiu Gao
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Xiaoyou Chen
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Rongrong Wei
- Beijing Chest Hospital, Capital Medical University, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Qi Sun
- Beijing Chest Hospital, Capital Medical University, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Shuxiang Gu
- Beijing Chest Hospital, Capital Medical University, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Boping Du
- Beijing Chest Hospital, Capital Medical University, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Aiying Xing
- Beijing Chest Hospital, Capital Medical University, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Zongde Zhang
- Beijing Chest Hospital, Capital Medical University, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
7
|
Masurier N, Arama DP, El Amri C, Lisowski V. Inhibitors of kallikrein-related peptidases: An overview. Med Res Rev 2017; 38:655-683. [DOI: 10.1002/med.21451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Dominique P. Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256; Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology; Paris France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| |
Collapse
|