1
|
Pagán OR. The complexities of ligand/receptor interactions: Exploring the role of molecular vibrations and quantum tunnelling. Bioessays 2024; 46:e2300195. [PMID: 38459808 DOI: 10.1002/bies.202300195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
Molecular vibrations and quantum tunneling may link ligand binding to the function of pharmacological receptors. The well-established lock-and-key model explains a ligand's binding and recognition by a receptor; however, a general mechanism by which receptors translate binding into activation, inactivation, or modulation remains elusive. The Vibration Theory of Olfaction was proposed in the 1930s to explain this subset of receptor-mediated phenomena by correlating odorant molecular vibrations to smell, but a mechanism was lacking. In the 1990s, inelastic electron tunneling was proposed as a plausible mechanism for translating molecular vibration to odorant physiology. More recently, studies of ligands' vibrational spectra and the use of deuterated ligand analogs have provided helpful information to study this admittedly controversial hypothesis in metabotropic receptors other than olfactory receptors. In the present work, based in part on published experiments from our laboratory using planarians as an experimental organism, I will present a rationale and possible experimental approach for extending this idea to ligand-gated ion channels.
Collapse
Affiliation(s)
- Oné R Pagán
- Department of Biology, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
2
|
Wang J, Zhang Z, Yu N, Wu X, Guo Z, Yan Y, Liu Z. Cys-loop ligand-gated ion channel superfamily of Pardosa pseudoannulata: Implication for natural enemy safety. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101190. [PMID: 38278045 DOI: 10.1016/j.cbd.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/28/2024]
Abstract
Cys-loop ligand-gated channels mediate neurotransmission in insects and are receptors for many insecticides. Some insecticides acting on cysLGIC also have lethal effects on non-targeting organisms, but the mechanism of this negative effect is unclear due to information absence. The identification and analysis of cysLGIC family in Pardosa pseudoannulata, a pond wolf spider, can deepen the understanding of insecticides for natural enemy safety. Thirty-four cysLGIC genes were identified in P. pseudoannulata genome, including nicotinic acetylcholine receptors, γ-aminobutyric acid gated chloride channels, glutamate-gated chloride channels, histamine-gated chloride channels, and pH-sensitive chloride channels. The expansion of GABACls and HisCls accounts for the large number of cysLGICs in P. pseudoannulata, and the alternative splicing events in nAChR and RDL subunits enriched the diversity of the superfamily. Most cysLGIC genes show the highest expression in brain and lowest expression in the early-egg sac stage. Variable residues (R81, V83, R135, N137, F190, and W197) in P. pseudoannulata nAChR β subunits and critical differences in α6 subunit TM4 region compared with insects would apply for the insensitivity to neonicotinoids and spinosyn. In contrast, avermectin and dieldrin may be lethal to P. pseudoannulata due to the similar drugs binding sites in GluCls compared with insects. These findings will provide a valuable clue for natural enemy protection and environmentally friendly insecticide development.
Collapse
Affiliation(s)
- Jingting Wang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhen Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Na Yu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xun Wu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zonglei Guo
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yangyang Yan
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
3
|
Matera C, Papotto C, Dallanoce C, De Amici M. Advances in small molecule selective ligands for heteromeric nicotinic acetylcholine receptors. Pharmacol Res 2023; 194:106813. [PMID: 37302724 DOI: 10.1016/j.phrs.2023.106813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
The study of nicotinic acetylcholine receptors (nAChRs) has significantly progressed in the last decade, due to a) the improved techniques available for structural studies; b) the identification of ligands interacting at orthosteric and allosteric recognition sites on the nAChR proteins, able to tune channel conformational states; c) the better functional characterization of receptor subtypes/subunits and their therapeutic potential; d) the availability of novel pharmacological agents able to activate or block nicotinic-mediated cholinergic responses with subtype or stoichiometry selectivity. The copious literature on nAChRs is related to the pharmacological profile of new, promising subtype selective derivatives as well as the encouraging preclinical and early clinical evaluation of known ligands. However, recently approved therapeutic derivatives are still missing, and examples of ligands discontinued in advanced CNS clinical trials include drug candidates acting at both neuronal homomeric and heteromeric receptors. In this review, we have selected heteromeric nAChRs as the target and comment on literature reports of the past five years dealing with the discovery of new small molecule ligands or the advanced pharmacological/preclinical investigation of more promising compounds. The results obtained with bifunctional nicotinic ligands and a light-activated ligand as well as the applications of promising radiopharmaceuticals for heteromeric subtypes are also discussed.
Collapse
Affiliation(s)
- Carlo Matera
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Claudio Papotto
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
4
|
Recent Insight into Lipid Binding and Lipid Modulation of Pentameric Ligand-Gated Ion Channels. Biomolecules 2022; 12:biom12060814. [PMID: 35740939 PMCID: PMC9221113 DOI: 10.3390/biom12060814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) play a leading role in synaptic communication, are implicated in a variety of neurological processes, and are important targets for the treatment of neurological and neuromuscular disorders. Endogenous lipids and lipophilic compounds are potent modulators of pLGIC function and may help shape synaptic communication. Increasing structural and biophysical data reveal sites for lipid binding to pLGICs. Here, we update our evolving understanding of pLGIC–lipid interactions highlighting newly identified modes of lipid binding along with the mechanistic understanding derived from the new structural data.
Collapse
|
5
|
Drag M, Tielemans E, Mitchell E. Safety of oral afoxolaner formulated with or without milbemycin oxime in homozygous MDR1-deficient collie dogs. J Vet Pharmacol Ther 2022; 45:373-379. [PMID: 35536118 PMCID: PMC9543253 DOI: 10.1111/jvp.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 04/17/2022] [Indexed: 01/20/2023]
Abstract
Afoxolaner, an insecticide and acaricide compound of the isoxazoline class, is available for dogs as an oral ectoparasiticide medicine (NexGard®) and as an oral endectoparasiticide medicine in combination with milbemycin oxime (MO), a macrocyclic lactone (NexGard® Spectra). The safety of these two compounds, alone or in combination, was investigated in homozygous MDR1‐deficient collie dogs, in two studies. Overall, 30 adult collie dogs were treated once orally, 9 with a placebo, 9 with afoxolaner, 6 with MO, and 6 with a combination of afoxolaner and MO. For afoxolaner, the mean investigated dosage corresponded to 3.8 and 4.7 multiples of the maximum recommended therapeutic doses (RTD) in NexGard® and NexGard® Spectra, respectively. For MO, the mean investigated dosage corresponded to 4.7 multiples of the maximum RTD in NexGard® Spectra. Dogs were closely monitored for adverse reactions on the day of treatment and for the following two days. No significant adverse reaction was observed in any dog from the afoxolaner or the afoxolaner + MO groups; in the MO‐only treated group, mild and transient neurological signs were observed during the 4–8 h post‐treatment window. These studies demonstrated a high level of safety of oral afoxolaner, alone or in combination with milbemycin oxime, in homozygous MDR1‐deficient dogs.
Collapse
Affiliation(s)
- Marlene Drag
- Boehringer Ingelheim Animal Health, Missouri Research Center, Fulton, Missouri, USA
| | | | | |
Collapse
|
6
|
Barki M, Xue H. GABRB2, a key player in neuropsychiatric disorders and beyond. Gene 2022; 809:146021. [PMID: 34673206 DOI: 10.1016/j.gene.2021.146021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
The GABA receptors represent the main inhibitory system in the central nervous system that ensure synaptogenesis, neurogenesis, and the regulation of neuronal plasticity and learning. GABAA receptors are pentameric in structure and belong to the Cys-loop superfamily. The GABRB2 gene, located on chromosome 5q34, encodes the β2 subunit that combines with the α and γ subunits to form the major subtype of GABAA receptors, which account for 43% of all GABAA receptors in the mammalian brain. Each subunit probably consists of an extracellular N-terminal domain, four membrane-spanning segments, a large intracellular loop between TM3 and TM4, and an extracellular C-terminal domain. Alternative splicing of the RNA transcript of the GABRB2 gene gives rise at least to four long and short isoforms with dissimilar electrophysiological properties. Furthermore, GABRB2 is imprinted and subjected to epigenetic regulation and positive selection. It has been associated with schizophrenia first in Han Chinese, and subsequently validated in other populations. Gabrb2 knockout mice also exhibited schizophrenia-like behavior and neuroinflammation that were ameliorated by the antipsychotic drug risperidone. GABRB2 was also associated with other neuropsychiatric disorders including bipolar disorder, epilepsy, autism spectrum disorder, Alzheimer's disease, frontotemporal dementia, substance dependence, depression, internet gaming disorder, and premenstrual dysphoric disorder. Recently, it has been postulated that GABRB2 might be a potential marker for different cancer types. As GABRB2 has a pivotal role in the central nervous system and is increasingly recognized to contribute to human diseases, further understanding of its structure and function may expedite the generation of new therapeutic approaches.
Collapse
Affiliation(s)
- Manel Barki
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hong Xue
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
7
|
Thompson MJ, Baenziger JE. Structural basis for the modulation of pentameric ligand-gated ion channel function by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183304. [DOI: 10.1016/j.bbamem.2020.183304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
|
8
|
Lara CO, Burgos CF, Moraga-Cid G, Carrasco MA, Yévenes GE. Pentameric Ligand-Gated Ion Channels as Pharmacological Targets Against Chronic Pain. Front Pharmacol 2020; 11:167. [PMID: 32218730 PMCID: PMC7079299 DOI: 10.3389/fphar.2020.00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is a common detrimental condition that affects around 20% of the world population. The current drugs to treat chronic pain states, especially neuropathic pain, have a limited clinical efficiency and present significant adverse effects that complicates their regular use. Recent studies have proposed new therapeutic strategies focused on the pharmacological modulation of G-protein-coupled receptors, transporters, enzymes, and ion channels expressed on the nociceptive pathways. The present work intends to summarize recent advances on the pharmacological modulation of pentameric ligand-gated ion channels, which plays a key role in pain processing. Experimental data have shown that novel allosteric modulators targeting the excitatory nicotinic acetylcholine receptor, as well as the inhibitory GABAA and glycine receptors, reverse chronic pain-related behaviors in preclinical assays. Collectively, these evidences strongly suggest the pharmacological modulation of pentameric ligand-gated ion channels is a promising strategy towards the development of novel therapeutics to treat chronic pain states in humans.
Collapse
Affiliation(s)
- César O Lara
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Carlos F Burgos
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Mónica A Carrasco
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Talca, Talca, Chile
| | - Gonzalo E Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| |
Collapse
|
9
|
Maramai S, Benchekroun M, Ward SE, Atack JR. Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABAAR) Modulators Acting at the Benzodiazepine Binding Site: An Update. J Med Chem 2019; 63:3425-3446. [DOI: 10.1021/acs.jmedchem.9b01312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samuele Maramai
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
| | - Mohamed Benchekroun
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
- Équipe de Chimie Moléculaire, Laboratoire de Génomique Bioinformatique et Chimie Moléculaire, GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - John R. Atack
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
10
|
Alvarez LD, Pecci A. Mapping the neurosteroid binding sites on glycine receptors. J Steroid Biochem Mol Biol 2019; 192:105388. [PMID: 31176751 DOI: 10.1016/j.jsbmb.2019.105388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/27/2019] [Accepted: 05/30/2019] [Indexed: 11/18/2022]
Abstract
Glycine is a major inhibitory neurotransmitter in the CNS, where it modulates both sensory and motor transduction throughout its binding to glycine receptors (GlyRs), pentameric chloride channels that share structural and functional properties with type A γ-aminobutyric acid receptors (GABAAR). A large number of structurally diverse organic compounds have been identified as GlyR and GABAAR allosteric modulators, making these receptors attractive pharmacological targets. Taking into account the recent resolved crystal structures of GABAAR/neurosteroid complexes, and due to the high sequence identity between the GABAAR and GlyR transmembrane domains, in this work we applied molecular modeling methods to explore the neurosteroid binding to GlyR. Our results indicated that neurosteroid binding sites of GABAARs are also conserved in the GlyRs. Furthermore, docking and molecular dynamics simulations predicted that neurosteroids are stably recognized at these sites, providing precise information on the molecular basis of the neurosteroid binding mode to GlyR. The comparison of how allopregnanolone and pregnanolone 3-OH moieties are recognized by the GlyR binding pocket revealed significant differences that may be associated to opposite effects of these isomers on the GlyR response.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina; CONICET - Universidad de Buenos Aires, UMYMFOR, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina.
| | - Adali Pecci
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina; CONICET - Universidad de Buenos Aires, IFIBYNE, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
11
|
Rustler K, Maleeva G, Bregestovski P, König B. Azologization of serotonin 5-HT 3 receptor antagonists. Beilstein J Org Chem 2019; 15:780-788. [PMID: 30992726 PMCID: PMC6444460 DOI: 10.3762/bjoc.15.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/14/2019] [Indexed: 01/05/2023] Open
Abstract
The serotonin 5-hydroxytryptamine 3 receptor (5-HT3R) plays a unique role within the seven classes of the serotonin receptor family, as it represents the only ionotropic receptor, while the other six members are G protein-coupled receptors (GPCRs). The 5-HT3 receptor is related to chemo-/radiotherapy provoked emesis and dysfunction leads to neurodevelopmental disorders and psychopathologies. Since the development of the first serotonin receptor antagonist in the early 1990s, the range of highly selective and potent drugs expanded based on various chemical structures. Nevertheless, on-off-targeting of a pharmacophore's activity with high spatiotemporal resolution as provided by photopharmacology remains an unsolved challenge bearing additionally the opportunity for detailed receptor examination. In the presented work, we summarize the synthesis, photochromic properties and in vitro characterization of azobenzene-based photochromic derivatives of published 5-HT3R antagonists. Despite reported proof of principle of direct azologization, only one of the investigated derivatives showed antagonistic activity lacking isomer specificity.
Collapse
Affiliation(s)
- Karin Rustler
- Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Galyna Maleeva
- Aix-Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| | - Piotr Bregestovski
- Aix-Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
- Department of Normal Physiology, Kazan State Medical University, Kazan, Russia
- Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Polovinkin L, Hassaine G, Perot J, Neumann E, Jensen AA, Lefebvre SN, Corringer PJ, Neyton J, Chipot C, Dehez F, Schoehn G, Nury H. Conformational transitions of the serotonin 5-HT 3 receptor. Nature 2018; 563:275-279. [PMID: 30401839 DOI: 10.1038/s41586-018-0672-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023]
Abstract
The serotonin 5-HT3 receptor is a pentameric ligand-gated ion channel (pLGIC). It belongs to a large family of receptors that function as allosteric signal transducers across the plasma membrane1,2; upon binding of neurotransmitter molecules to extracellular sites, the receptors undergo complex conformational transitions that result in transient opening of a pore permeable to ions. 5-HT3 receptors are therapeutic targets for emesis and nausea, irritable bowel syndrome and depression3. In spite of several reported pLGIC structures4-8, no clear unifying view has emerged on the conformational transitions involved in channel gating. Here we report four cryo-electron microscopy structures of the full-length mouse 5-HT3 receptor in complex with the anti-emetic drug tropisetron, with serotonin, and with serotonin and a positive allosteric modulator, at resolutions ranging from 3.2 Å to 4.5 Å. The tropisetron-bound structure resembles those obtained with an inhibitory nanobody5 or without ligand9. The other structures include an 'open' state and two ligand-bound states. We present computational insights into the dynamics of the structures, their pore hydration and free-energy profiles, and characterize movements at the gate level and cation accessibility in the pore. Together, these data deepen our understanding of the gating mechanism of pLGICs and capture ligand binding in unprecedented detail.
Collapse
Affiliation(s)
| | | | - Jonathan Perot
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France
| | | | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Solène N Lefebvre
- Channel Receptors Unit, CNRS UMR 3571, Institut Pasteur, Paris, France
| | | | - Jacques Neyton
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France.
| | - Christophe Chipot
- Université de Lorraine, CNRS, LPCT, Nancy, France.,Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-les-Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Francois Dehez
- Université de Lorraine, CNRS, LPCT, Nancy, France.,Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-les-Nancy, France
| | - Guy Schoehn
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France
| | - Hugues Nury
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France.
| |
Collapse
|
14
|
Zeilhofer HU, Acuña MA, Gingras J, Yévenes GE. Glycine receptors and glycine transporters: targets for novel analgesics? Cell Mol Life Sci 2018; 75:447-465. [PMID: 28791431 PMCID: PMC11105467 DOI: 10.1007/s00018-017-2622-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 01/29/2023]
Abstract
Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized-among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Gonzalo E Yévenes
- Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
15
|
Patent Highlights June-July 2017. Pharm Pat Anal 2017; 6:259-266. [PMID: 29064331 DOI: 10.4155/ppa-2017-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|