1
|
Merugu SR, Selmer-Olsen S, Kaada CJ, Sundby E, Hoff BH. Synthetic Routes to 2-aryl-1 H-pyrrolo[2,3- b]pyridin-4-amines: Cross-Coupling and Challenges in SEM-Deprotection. Molecules 2024; 29:4743. [PMID: 39407670 PMCID: PMC11478076 DOI: 10.3390/molecules29194743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
7-Azaindoles are compounds of considerable medicinal interest. During development of the structure-activity relationship for inhibitors of the colony stimulated factor 1 receptor tyrosine kinase (CSF1R), a specific 2-aryl-1H-pyrrolo[2,3-b]pyridin-4-amine was needed. Two different synthetic strategies were evaluated, in which the order of the key C-C and C-N cross-coupling steps differed. The best route relied on a chemoselective Suzuki-Miyaura cross-coupling at C-2 on a 2-iodo-4-chloropyrrolopyridine intermediate, and subsequently a Buchwald-Hartwig amination with a secondary amine at C-4. Masking of hydroxyl and pyrroles proved essential to succeed with the latter transformation. The final trimethylsilylethoxymethyl (SEM) deprotection step was challenging, as release of formaldehyde gave rise to different side products, most interestingly a tricyclic eight-membered 7-azaindole. The target 2-aryl-1H-pyrrolo[2,3-b]pyridin-4-amine (compound 3c) proved to be 20-fold less potent than the reference inhibitor, confirming the importance of the N-3 in the pyrrolopyrimidine parent compound for efficient CSF1R inhibition.
Collapse
Affiliation(s)
- Srinivas Reddy Merugu
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; (S.R.M.); (S.S.-O.); (C.J.K.)
| | - Sigrid Selmer-Olsen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; (S.R.M.); (S.S.-O.); (C.J.K.)
| | - Camilla Johansen Kaada
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; (S.R.M.); (S.S.-O.); (C.J.K.)
| | - Eirik Sundby
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway;
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; (S.R.M.); (S.S.-O.); (C.J.K.)
| |
Collapse
|
2
|
Fang G, Chen H, Cheng Z, Tang Z, Wan Y. Azaindole derivatives as potential kinase inhibitors and their SARs elucidation. Eur J Med Chem 2023; 258:115621. [PMID: 37423125 DOI: 10.1016/j.ejmech.2023.115621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Currently, heterocycles have occupied an important position in the fields of drug design. Among them, azaindole moiety is regarded as one privileged scaffold to develop therapeutic agents. Since two nitrogen atoms of azaindole increase the possibility to form hydrogen bonds in the adenosine triphosphate (ATP)-binding site, azaindole derivatives are important sources of kinase inhibitors. Moreover, some of them have been on the market or in clinical trials for the treatment of some kinase-related diseases (e.g., vemurafenib, pexidartinib, decernotinib). In this review, we focused on the recent development of azaindole derivatives as potential kinase inhibitors based on kinase targets, such as adaptor-associated kinase 1 (AAK1), anaplastic lymphoma kinase (ALK), AXL, cell division cycle 7 (Cdc7), cyclin-dependent kinases (CDKs), dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A), fibroblast growth factor receptor 4 (FGFR4), phosphatidylinositol 3-kinase (PI3K) and proviral insertion site in moloney murine leukemia virus (PIM) kinases. Meanwhile, the structure-activity relationships (SARs) of most azaindole derivatives were also elucidated. In addition, the binding modes of some azaindoles complexed with kinases were also investigated during the SARs elucidation. This review may offer an insight for medicinal chemists to rationally design more potent kinase inhibitors bearing the azaindole scaffold.
Collapse
Affiliation(s)
- Guoqing Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zhiyun Cheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| |
Collapse
|
3
|
Xiang R, Lu M, Wu T, Yang C, Jia Y, Liu X, Deng M, Ge Y, Xu J, Cai T, Ling Y, Zhou Y. Discovery of a high potent PIM kinase inhibitor for acute myeloid leukemia based on N-pyridinyl amide scaffold by optimizing the fragments toward to Lys67 and Asp128/Glu171. Eur J Med Chem 2023; 257:115514. [PMID: 37262997 DOI: 10.1016/j.ejmech.2023.115514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Despite the recent development of PIM inhibitors based on N-(pyridin-3-yl)acetamide scaffold for acute myeloid leukemia (AML), the structural-activity relationship (SAR) associated with the effects of positional isomerization of N toward to Lys67 and freedom of solvent fragment toward to Asp128/Glu171 still remains an open question. In this work, a structurally novel compound based on N-pyridinyl amide was designed by fragment hybridization and then our SAR exploration revealed that the positional isomerization would lead to a decrease in activity, while increase of the freedom of solvent fragment by breaking the intramolecular hydrogen bond unprecedentedly leads to an increase in activity. These studies finally resulted in the screening out of a potent PIM inhibitor FD1024 (compound 24) which exerts strong antiproliferative activity against the tested AML cell lines and achieves profound antitumor efficacy in mice at well-tolerated dose schedules.
Collapse
Affiliation(s)
- Ruiqing Xiang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Tianze Wu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Chengbin Yang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yu Jia
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xiaofeng Liu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Mingli Deng
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Yu Ge
- SD Chem, Inc., San Diego, CA, 92128, USA
| | - Jun Xu
- ABA Chemicals Co., Ltd., Taicang, Jiangsu, 215400, China
| | - Tong Cai
- ABA Chemicals Co., Ltd., Taicang, Jiangsu, 215400, China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
4
|
Xu L, Meng YC, Guo P, Li M, Shao L, Huang JH. Recent Research Advances in Small-Molecule Pan-PIM Inhibitors. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1758692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PIM kinase is consequently emerging as a promising target for cancer therapeutics and immunomodulation. PIM kinases are overexpressed in a variety of hematological malignancies and solid tumors, and their inhibition has become a strong therapeutic interest. Currently, some pan-PIM kinase inhibitors are being developed under different phases of clinical trials. Based on the different scaffold structures, they can be classified into various subclasses. The X-ray structure of the kinase complex outlines the rationale of hit compound confirmation in the early stage. Structure–activity relationships allow us to rationally explore chemical space and further optimize multiple physicochemical and biological properties. This review focuses on the discovery and development of small-molecule pan-PIM kinase inhibitors in the current research, and hopes to provide guidance for future exploration of the inhibitors.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yu-Cheng Meng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Peng Guo
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ming Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jun-Hai Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Ameur Messaoud MY, Bentabed-Ababsa G, Fajloun Z, Hamze M, Halauko YS, Ivashkevich OA, Matulis VE, Roisnel T, Dorcet V, Mongin F. Deprotometalation-Iodolysis and Direct Iodination of 1-Arylated 7-Azaindoles: Reactivity Studies and Molecule Properties. Molecules 2021; 26:6314. [PMID: 34684895 PMCID: PMC8537530 DOI: 10.3390/molecules26206314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Five protocols were first compared for the copper-catalyzed C-N bond formation between 7-azaindole and aryl/heteroaryl iodides/bromides. The 1-arylated 7-azaindoles thus obtained were subjected to deprotometalation-iodolysis sequences using lithium 2,2,6,6-tetramethylpiperidide as the base and the corresponding zinc diamide as an in situ trap. The reactivity of the substrate was discussed in light of the calculated atomic charges and the pKa values. The behavior of the 1-arylated 7-azaindoles in direct iodination was then studied, and the results explained by considering the HOMO orbital coefficients and the atomic charges. Finally, some of the iodides generated, generally original, were involved in the N-arylation of indole. While crystallographic data were collected for fifteen of the synthesized compounds, biological properties (antimicrobial, antifungal and antioxidant activity) were evaluated for others.
Collapse
Affiliation(s)
- Mohamed Yacine Ameur Messaoud
- Institut des Sciences Chimiques de Rennes–UMR 6226, University of Rennes, CNRS, ISCR, 35000 Rennes, France; (M.Y.A.M.); (T.R.); (V.D.)
- Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées, Université d’Oran 1 Ahmed Ben Bella, BP 1524 El M’Naouer, Oran 31000, Algeria
| | - Ghenia Bentabed-Ababsa
- Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées, Université d’Oran 1 Ahmed Ben Bella, BP 1524 El M’Naouer, Oran 31000, Algeria
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
- Faculty of Sciences 3, Campus Michel Slayman, Lebanese University, Tripoli 1352, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie, Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon;
| | - Yury S. Halauko
- UNESCO Chair of Belarusian State University, 220030 Minsk, Belarus
| | - Oleg A. Ivashkevich
- Research Institute for Physico-Chemical Problems, Belarusian State University, 220030 Minsk, Belarus; (O.A.I.); (V.E.M.)
| | - Vadim E. Matulis
- Research Institute for Physico-Chemical Problems, Belarusian State University, 220030 Minsk, Belarus; (O.A.I.); (V.E.M.)
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes–UMR 6226, University of Rennes, CNRS, ISCR, 35000 Rennes, France; (M.Y.A.M.); (T.R.); (V.D.)
| | - Vincent Dorcet
- Institut des Sciences Chimiques de Rennes–UMR 6226, University of Rennes, CNRS, ISCR, 35000 Rennes, France; (M.Y.A.M.); (T.R.); (V.D.)
| | - Florence Mongin
- Institut des Sciences Chimiques de Rennes–UMR 6226, University of Rennes, CNRS, ISCR, 35000 Rennes, France; (M.Y.A.M.); (T.R.); (V.D.)
| |
Collapse
|
6
|
Song F, Bian Y, Liu J, Li Z, Zhao L, Fang J, Lai Y, Zhou M. Indole Alkaloids, Synthetic Dimers and Hybrids with Potential In Vivo Anticancer Activity. Curr Top Med Chem 2021; 21:377-403. [PMID: 32901583 DOI: 10.2174/1568026620666200908162311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Indole, a heterocyclic organic compound, is one of the most promising heterocycles found in natural and synthetic sources since its derivatives possess fascinating structural diversity and various therapeutic properties. Indole alkaloids, synthetic dimers and hybrids could act on diverse targets in cancer cells, and consequently, possess potential antiproliferative effects on various cancers both in vitro and in vivo. Vinblastine, midostaurin, and anlotinib as the representative of indole alkaloids, synthetic dimers and hybrids respectively, have already been clinically applied to treat many types of cancers, demonstrating indole alkaloids, synthetic dimers and hybrids are useful scaffolds for the development of novel anticancer agents. Covering articles published between 2010 and 2020, this review emphasizes the recent development of indole alkaloids, synthetic dimers and hybrids with potential in vivo therapeutic application for cancers.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Jing Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Yonghong Lai
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
7
|
Park H, Jeon J, Kim K, Choi S, Hong S. Structure-Based Virtual Screening and De Novo Design of PIM1 Inhibitors with Anticancer Activity from Natural Products. Pharmaceuticals (Basel) 2021; 14:ph14030275. [PMID: 33803840 PMCID: PMC8003278 DOI: 10.3390/ph14030275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND the proviral insertion site of Moloney murine leukemia (PIM) 1 kinase has served as a therapeutic target for various human cancers due to the enhancement of cell proliferation and the inhibition of apoptosis. METHODS to identify effective PIM1 kinase inhibitors, structure-based virtual screening of natural products of plant origin and de novo design were carried out using the protein-ligand binding free energy function improved by introducing an adequate dehydration energy term. RESULTS as a consequence of subsequent enzyme inhibition assays, four classes of PIM1 kinase inhibitors were discovered, with the biochemical potency ranging from low-micromolar to sub-micromolar levels. The results of extensive docking simulations showed that the inhibitory activity stemmed from the formation of multiple hydrogen bonds in combination with hydrophobic interactions in the ATP-binding site. Optimization of the biochemical potency by chemical modifications of the 2-benzylidenebenzofuran-3(2H)-one scaffold led to the discovery of several nanomolar inhibitors with antiproliferative activities against human breast cancer cell lines. CONCLUSIONS these new PIM1 kinase inhibitors are anticipated to serve as a new starting point for the development of anticancer medicine.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology and Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul 05006, Korea
- Correspondence: (H.P.); (S.H.); Tel.: +82-23-408-3766 (H.P.); +82-42-350-2811 (S.H.)
| | - Jinwon Jeon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea; (J.J.); (K.K.); (S.C.)
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kewon Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea; (J.J.); (K.K.); (S.C.)
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Soyeon Choi
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea; (J.J.); (K.K.); (S.C.)
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea; (J.J.); (K.K.); (S.C.)
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: (H.P.); (S.H.); Tel.: +82-23-408-3766 (H.P.); +82-42-350-2811 (S.H.)
| |
Collapse
|
8
|
Barberis C, Erdman P, Czekaj M, Fire L, Pribish J, Tserlin E, Maniar S, Batchelor JD, Liu J, Patel VF, Hebert A, Levit M, Wang A, Sun F, Huang SMA. Discovery of SARxxxx92, a pan-PIM kinase inhibitor, efficacious in a KG1 tumor model. Bioorg Med Chem Lett 2020; 30:127625. [PMID: 33096160 DOI: 10.1016/j.bmcl.2020.127625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022]
Abstract
N-substituted azaindoles were discovered as potent pan-PIM inhibitors. Lead optimization, guided by structure and focused on physico-chemical properties allowed us to solve inherent hERG and permeability liabilities, and provided compound 27, which subsequently impacted KG-1 tumor growth in a mouse model.
Collapse
Affiliation(s)
- Claude Barberis
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States.
| | - Paul Erdman
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States; Present address: AbbVie, 100 Abbott Park Road, Abbott Park, IL 60064-3500, United States
| | - Mark Czekaj
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Luke Fire
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States; Present address: Rakuten Medical, 11080 Roselle St, San Diego, CA 92121, United States
| | - James Pribish
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Elina Tserlin
- Present address: Qiagen, 561 Virginia Road, Concord, MA 01742, United States
| | - Sachin Maniar
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Joseph D Batchelor
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Jinyu Liu
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Vinod F Patel
- Present address: TME Therapeutics, 3 Mossy Lane, Acton, MA 01720, United States
| | - Andrew Hebert
- Oncology Biochemistry, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Mikhail Levit
- Oncology Biochemistry, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Anlai Wang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Frank Sun
- Oncology Pharmacology, Sanofi, 640 Memorial Drive, Cambridge MA 02139, United States
| | - Shih-Min A Huang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge MA 02139, United States; Present address: Bristol-Myers Squibb, 3551 Lawrenceville Princeton, Lawrence Township, NJ 08648, United States
| |
Collapse
|
9
|
Mahindra A, Janha O, Mapesa K, Sanchez-Azqueta A, Alam MM, Amambua-Ngwa A, Nwakanma DC, Tobin AB, Jamieson AG. Development of Potent PfCLK3 Inhibitors Based on TCMDC-135051 as a New Class of Antimalarials. J Med Chem 2020; 63:9300-9315. [PMID: 32787140 PMCID: PMC7497403 DOI: 10.1021/acs.jmedchem.0c00451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 12/20/2022]
Abstract
The protein kinase PfCLK3 plays a critical role in the regulation of malarial parasite RNA splicing and is essential for the survival of blood stage Plasmodium falciparum. We recently validated PfCLK3 as a drug target in malaria that offers prophylactic, transmission blocking, and curative potential. Herein, we describe the synthesis of our initial hit TCMDC-135051 (1) and efforts to establish a structure-activity relationship with a 7-azaindole-based series. A total of 14 analogues were assessed in a time-resolved fluorescence energy transfer assay against the full-length recombinant protein kinase PfCLK3, and 11 analogues were further assessed in asexual 3D7 (chloroquine-sensitive) strains of P. falciparum parasites. SAR relating to rings A and B was established. These data together with analysis of activity against parasites collected from patients in the field suggest that TCMDC-135051 (1) is a promising lead compound for the development of new antimalarials with a novel mechanism of action targeting PfCLK3.
Collapse
Affiliation(s)
- Amit Mahindra
- School
of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| | - Omar Janha
- Centre
for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, U.K.
| | - Kopano Mapesa
- School
of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| | - Ana Sanchez-Azqueta
- Centre
for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, U.K.
| | - Mahmood M. Alam
- Wellcome
Centre for Integrative Parasitology and Centre for Translational Pharmacology,
Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Alfred Amambua-Ngwa
- MRC
Unit The Gambia at LSHTM, Atlantic Boulevard,
Fajara, P. O. Box 273, Banjul, The Gambia
| | - Davis C. Nwakanma
- MRC
Unit The Gambia at LSHTM, Atlantic Boulevard,
Fajara, P. O. Box 273, Banjul, The Gambia
| | - Andrew B. Tobin
- Centre
for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, U.K.
| | - Andrew G. Jamieson
- School
of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| |
Collapse
|
10
|
Machiraju PK, Yedla P, Gubbala SP, Bohari T, Abdul JK, Xu S, Patel R, Chittireddy VRR, Boppana K, Jagarlapudi SA, Neamati N, Syed R, Amanchy R. Identification, synthesis and evaluation of CSF1R inhibitors using fragment based drug design. Comput Biol Chem 2019; 80:374-383. [DOI: 10.1016/j.compbiolchem.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/12/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
|
11
|
Arrouchi H, Lakhlili W, Ibrahimi A. A review on PIM kinases in tumors. Bioinformation 2019; 15:40-45. [PMID: 31359998 PMCID: PMC6651028 DOI: 10.6026/97320630015040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 01/13/2023] Open
Abstract
The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases is serine/threonine kinases that promote growth and survival in multiple cell types, implicated in the pathogenesis of various diseases. Over expression of Pim-1 experimentally leads to tumor formation in mice, whereas there is no observable phenotype concerning the complete knockout of the protein. When it is over expressed it may lead to cancer development by three major ways; by inhibiting apoptosis, by promoting cell proliferation and also through promoting genomic instability. Expression in normal tissues is nearly undetectable. Recent improvements in the development of novel inhibitors of PIMs have been reviewed. Significant progress in the design of PIMs inhibitors, in which it displays selectivity versus other kinases, has been achieved within the last years. However, the development of isoform-selective PIM inhibitors is still an open task. As Pim-1 possesses oncogenic functions and is over expressed in various kinds of cancer diseases, its inhibition provides a new option in cancer therapy. A PubMed literature search was performed to review the currently available data on Pim-1 expression, regulation, and targets; its implication in different types of cancer and its impact on prognosis is described. Consequently, designing new inhibitors of PIMs is now a very active area of research in academic and industrial laboratories.
Collapse
Affiliation(s)
- Housna Arrouchi
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| | - Wiame Lakhlili
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| | - Azeddine Ibrahimi
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| |
Collapse
|
12
|
Barberis C, Pribish J, Tserlin E, Gross A, Czekaj M, Barragué M, Erdman P, Maniar S, Jiang J, Fire L, Patel V, Hebert A, Levit M, Wang A, Sun F, Huang SMA. Discovery of N-substituted 7-azaindoles as Pan-PIM kinases inhibitors - Lead optimization - Part III. Bioorg Med Chem Lett 2019; 29:491-495. [PMID: 30553737 DOI: 10.1016/j.bmcl.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/17/2022]
Abstract
N-substituted azaindoles were discovered as promising pan-PIM inhibitors. Lead optimization is described en route toward the identification of a clinical candidate. Modulation of physico-chemical properties allowed to solve inherent hERG and permeability liabilities. Compound 17 showed tumor growth inhibition in a KG1 tumor-bearing mouse model.
Collapse
Affiliation(s)
- Claude Barberis
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States.
| | - James Pribish
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Elina Tserlin
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Alexandre Gross
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Mark Czekaj
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Matthieu Barragué
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Paul Erdman
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Sachin Maniar
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - John Jiang
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Luke Fire
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Vinod Patel
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Andrew Hebert
- Oncology Biochemistry, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Mikhail Levit
- Oncology Biochemistry, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Anlai Wang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Frank Sun
- Oncology Pharmacology, Sanofi, 640 Memorial Drive, Cambridge MA 02139, United States
| | - Shih-Min A Huang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| |
Collapse
|
13
|
Barberis C, Moorcroft N, Pribish J, Tserlin E, Gross A, Czekaj M, Barrague M, Erdman P, Majid T, Batchelor J, Levit M, Hebert A, Shen L, Moreno-Mazza S, Wang A. Discovery of N-substituted 7-azaindoles as Pan-PIM kinase inhibitors - Lead series identification - Part II. Bioorg Med Chem Lett 2017; 27:4735-4740. [PMID: 28927793 DOI: 10.1016/j.bmcl.2017.08.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
N-Substituted azaindoles have been discovered as pan-PIM kinase inhibitors. Initial SAR, early ADME and PK/PD data of a series of compounds is described and led to the identification of promising pan-PIM inhibitors which validated our interest in the 7-azaindole scaffold and led us to pursue the identification of a clinical candidate.
Collapse
Affiliation(s)
- Claude Barberis
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA.
| | - Neil Moorcroft
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - James Pribish
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Elina Tserlin
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Alexandre Gross
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Mark Czekaj
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Matthieu Barrague
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Paul Erdman
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Tahir Majid
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Joseph Batchelor
- IDD In Vitro Biology, Sanofi, 153 Second Avenue, Waltham, MA 02451, USA
| | - Mikhail Levit
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge, MA 02139, USA
| | - Andrew Hebert
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge, MA 02139, USA
| | - Liduo Shen
- DSAR, Sanofi Genzyme, 211 Second Avenue, Waltham, MA 02451, USA
| | | | - Anlai Wang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge, MA 02139, USA
| |
Collapse
|