1
|
Jorepalli S, Adikay S, Chinthaparthi RR, Gangireddy CSR, Koduru JR, Karri RR. Synthesis, molecular docking studies and biological evaluation of N-(4-oxo-2-(trifluoromethyl)-4H-chromen-7-yl) benzamides as potential antioxidant, and anticancer agents. Sci Rep 2024; 14:9866. [PMID: 38684797 PMCID: PMC11058781 DOI: 10.1038/s41598-024-59166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
A series of novel chromone derivatives of (N-(4-oxo-2-(trifluoromethyl)-4H-chromen-6-yl) benzamides) were synthesized by treating 7-amino-2-(trifluoromethyl)-4H-chromen-4-one with K2CO3 and/or NaH, suitable alkyl halides and acetonitrile and/or 1,4-dioxane. The obtained products are in high yields (87 to 96%) with various substituents in short reaction times with no more by-products and confirmed by FT-IR, 1H, and 13C-NMR Spectral data. The in vitro cytotoxic activity was examined against two human cancer cell lines, namely the human lung adenocarcinoma (A-549) and the human breast (MCF-7) cancer cell line. Compound 4h showed promising cytotoxicity against both cell lines with IC50 values of 22.09 and 6.40 ± 0.26 µg/mL respectively, compared to that of the standard drug. We also performed the in vitro antioxidant activity by DPPH radical, hydrogen peroxide, NO scavenging, and total antioxidant capacity (TAC) assay methods, and they showed significant activities. The possible binding interactions of all the synthesized chromone derivatives are also investigated against selective pharmacological targets of human beings, such as HERA protein for cytotoxic activity and Peroxiredoxins (3MNG) for antioxidant activity which showed closer binding free energies than the standard drugs and evidencing the above two types of activities.
Collapse
Affiliation(s)
- Sumalatha Jorepalli
- Department of Pharmaceutical Chemistry, Sri Padmavati Mahila Visva Vidyalayam, Tirupati, 517 502, India
- Department of Pharmaceutical Chemistry, P.R. Reddy Memorial College of Pharmacy, Kadapa, 516 003, India
| | - Sreedevi Adikay
- Department of Pharmaceutical Chemistry, Sri Padmavati Mahila Visva Vidyalayam, Tirupati, 517 502, India.
| | | | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
2
|
Synthesis, characterization,biological evaluation and molecular docking studies of salicylidene-aniline and their metal mixed ligand complexes with caffeine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Kamboj S, Singh R. Chromanone-A Prerogative Therapeutic Scaffold: An Overview. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 47:75-111. [PMID: 34226859 PMCID: PMC8244469 DOI: 10.1007/s13369-021-05858-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Chromanone or Chroman-4-one is the most important and interesting heterobicyclic compound and acts as a building block in medicinal chemistry for isolation, designing and synthesis of novel lead compounds. Structurally, absence of a double bond in chromanone between C-2 and C-3 shows a minor difference from chromone but exhibits significant variations in biological activities. In the present review, various studies published on synthesis, pharmacological evaluation on chroman-4-one analogues are addressed to signify the importance of chromanone as a versatile scaffold exhibiting a wide range of pharmacological activities. But, due to poor yield in the case of chemical synthesis and expensive isolation procedure from natural compounds, more studies are required to provide the most effective and cost-effective methods to synthesize novel chromanone analogs to give leads to chemistry community. Considering the versatility of chromanone, this review is designed to impart comprehensive, critical and authoritative information about chromanone template in drug designing and development.
Collapse
Affiliation(s)
- Sonia Kamboj
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana 133203 India ,Ch. Devi Lal College of Pharmacy, Jagadhri, Haryana 135003 India
| | - Randhir Singh
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana 133203 India
| |
Collapse
|
4
|
Yurttaş L, Temel HE, Aksoy MO, Bülbül EF, Çiftçi GA. New chromanone derivatives containing thiazoles: Synthesis and antitumor activity evaluation on A549 lung cancer cell line. Drug Dev Res 2021; 83:470-484. [PMID: 34532880 DOI: 10.1002/ddr.21879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023]
Abstract
Novel 2-[2-(chroman-4-ylidene)hydrazinyl]-4/5-substituted thiazole derivatives (2a-i) were synthesized and investigated for their anticancer activity. Cytotoxic activity on A549 and NIH/3T3 cell lines was determined, most of the compounds exhibited high cytotoxic profile with selectivity. Selected compounds 2b, 2c, 2e, 2g, 2h, and 2i were tested to determine induction of apoptosis, mitochondrial membrane depolarization, and cell cycle arrest. The results showed that the compounds induced apoptosis intrinsically that they triggered loss of mitochondrial potential through increasing the accumulation of cells in G2/M. Besides, intrinsic apoptotic pathway was supported by down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of proapoptotic protein Bax. Molecular docking study for compounds 2b, 2c, and 2g was promoted experimental outcomes.
Collapse
Affiliation(s)
- Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Halide Edip Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Mehmet Onur Aksoy
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Emre Fatih Bülbül
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Gülşen Akalin Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
5
|
Abdul Salam AA, Nayek U, Mathew G, Unnikrishnan M. Structural, CSD, and computational studies of 6b, 11b-Dihydroxy-6b, 11-b-dihydro-7H-indeno[1,2-b]naptho[2,1-d]furan-7-one, a therapeutic potential small molecule. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Tang Y, Yao Y, Wei G. Unraveling the Allosteric Mechanism of Four Cancer-related Mutations in the Disruption of p53-DNA Interaction. J Phys Chem B 2021; 125:10138-10148. [PMID: 34403252 DOI: 10.1021/acs.jpcb.1c05638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The p53 protein plays active roles in the physiological regulation of cell cycle as well as in cancer developments. In more than half of human cancers, the protein is inactivated by mutations located primarily in its DNA-binding domain (DBD), and some mutations located in the β-sandwich region of DBD are reported to decrease p53-DNA binding affinities. To understand the long-range correlation between p53 β-sandwich and DNA, and the allosteric mechanism of β-sandwich mutations in the disruption of p53-DNA interactions, we first identify three regions with a strong correlation with DNA based on microsecond molecular dynamics (MD) simulations of wild-type p53-DNA complex and then perform multiple MD simulations on four cancer-related mutants L145Q, P151S, Y220C, and G266R, which are located in these three regions. Our simulations show that these mutations allosterically destabilize the structural stability of the DNA-binding groove in p53 and disrupt the p53-DNA interactions. Network analyses reveal optimal correlation paths through which the mutation-induced allosteric signal passes to DNA, and the disturbance effect of these mutations on the global connectivity and dynamical correlation of the p53-DNA complex. This work paves the way for the in-depth understanding of the mutation-induced loss in p53's DNA-recognition ability and the pathological mechanism of cancer development.
Collapse
Affiliation(s)
- Yiming Tang
- Department of Physics, State Key Laboratory of Surface physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Yifei Yao
- Department of Physics, State Key Laboratory of Surface physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
7
|
Diallo BN, Glenister M, Musyoka TM, Lobb K, Tastan Bishop Ö. SANCDB: an update on South African natural compounds and their readily available analogs. J Cheminform 2021; 13:37. [PMID: 33952332 PMCID: PMC8097257 DOI: 10.1186/s13321-021-00514-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/ ) is the sole and a fully referenced database of natural chemical compounds of South African biodiversity. It is freely available, and since its inception in 2015, the database has become an important resource to several studies. Its content has been: used as training data for machine learning models; incorporated to larger databases; and utilized in drug discovery studies for hit identifications. DESCRIPTION Here, we report the updated version of SANCDB. The new version includes 412 additional compounds that have been reported since 2015, giving a total of 1012 compounds in the database. Further, although natural products (NPs) are an important source of unique scaffolds, they have a major drawback due to their complex structure resulting in low synthetic feasibility in the laboratory. With this in mind, SANCDB is, now, updated to provide direct links to commercially available analogs from two major chemical databases namely Mcule and MolPort. To our knowledge, this feature is not available in other NP databases. Additionally, for easier access to information by users, the database and website interface were updated. The compounds are now downloadable in many different chemical formats. CONCLUSIONS The drug discovery process relies heavily on NPs due to their unique chemical organization. This has inspired the establishment of numerous NP chemical databases. With the emergence of newer chemoinformatic technologies, existing chemical databases require constant updates to facilitate information accessibility and integration by users. Besides increasing the NPs compound content, the updated SANCDB allows users to access the individual compounds (if available) or their analogs from commercial databases seamlessly.
Collapse
Affiliation(s)
- Bakary N'tji Diallo
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Michael Glenister
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Thommas M Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Kevin Lobb
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa.,Department of Chemistry, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa.
| |
Collapse
|
8
|
Caleffi GS, Brum JDOC, Costa AT, Domingos JLO, Costa PRR. Asymmetric Transfer Hydrogenation of Arylidene-Substituted Chromanones and Tetralones Catalyzed by Noyori–Ikariya Ru(II) Complexes: One-Pot Reduction of C═C and C═O bonds. J Org Chem 2021; 86:4849-4858. [DOI: 10.1021/acs.joc.0c02981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guilherme S. Caleffi
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Juliana de O. C. Brum
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, Brazil
| | - Angela T. Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jorge L. O. Domingos
- Departamento de Química Orgânica, Instituto de Química, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil
| | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Abdul Salam AA, T. S, Kumar S. M, Bankapur A, Sinha RK, Simon L, Chidangil S. Effect of OH substitution in 3-benzylchroman-4-ones: crystallographic, CSD, DFT, FTIR, Hirshfeld surface, and energy framework analysis. RSC Adv 2021; 11:20123-20136. [PMID: 35479932 PMCID: PMC9033682 DOI: 10.1039/d1ra02245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/22/2021] [Indexed: 11/21/2022] Open
Abstract
3-Benzylchroman-4-ones (homoisoflavanones) are oxygen-containing heterocycles with a sixteen-carbon skeleton. They belong to the class of naturally occurring polyphenolic flavonoids with limited occurrence in nature and possess anti-inflammatory, antibacterial, antihistaminic, antimutagenic, antiviral, and angioprotective properties. Recently, we reported the synthesis and anticancer activity studies of fifteen 3-benzylchroman-4-one molecules, and most of them were proven to be effective against BT549 and HeLa cells. In this work, we report the single-crystal X-ray crystallographic studies of two molecules 3-[(2-hydroxyphenyl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one and 3-[(2,4-dimethoxyphenyl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one. The single crystals were grown using a novel laser-induced crystallization technique. We observed that the 3-benzylchroman-4-one derivative bearing OH substitution at the 2′ position adopted different conformation due to formation of dimers through O–H⋯O, and C–H⋯O intermolecular hydrogen bondings. The role of OH substitution in the aforementioned conformational changes was evaluated using density functional theory (DFT), Hirshfeld surface, energy framework and FTIR spectroscopy analysis. In addition, we have carried out a Cambridge Structural Database (CSD) study to understand the conformational changes using five analogue structures. X-ray crystallographic, computational, and spectroscopic studies of 3-benzylchroman-4-ones provided an insight into the role of substitution at benzyl moieties in stabilizing the three-dimensional (3D) structures. Laser-induced crystallization, single crystal X-ray crystallography, CSD, DFT, FTIR, Hirshfeld surface, and energy frameworks analysis of two new 3-benzylchroman-4-one structures.![]()
Collapse
Affiliation(s)
- Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics
- Centre for Applied Nanosciences
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| | - Shilpa T.
- Department of Atomic and Molecular Physics
- Centre for Applied Nanosciences
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| | | | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics
- Centre of Excellence for Biophotonics
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| | - Rajeev K. Sinha
- Department of Atomic and Molecular Physics
- Centre of Excellence for Biophotonics
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| | - Lalitha Simon
- Department of Chemistry
- Manipal Institute of Technology
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics
- Centre of Excellence for Biophotonics
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| |
Collapse
|
10
|
Characterization of PMI-5011 on the Regulation of Deubiquitinating Enzyme Activity in Multiple Myeloma Cell Extracts. Biochem Eng J 2020; 166. [PMID: 33716550 DOI: 10.1016/j.bej.2020.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deubiquitinating enzyme (DUB)-targeted therapeutics have shown promise in recent years as alternative cancer therapeutics, especially when coupled with proteasome-based inhibitors. While a majority of DUB-based therapeutics function by inhibiting DUB enzymes, studies show that positive regulation of these enzymes can stabilize levels of protein degradation. Unfortunately, there are currently no clinically available therapeutics for this purpose. The goal of this work was to understand the effect of a botanical extract from Artemisia dracunculus L called PMI-5011 on DUB activity in cancer cells. Through a series of kinetic analyses and mathematical modeling, it was found that PMI-5011 positively regulated DUB activity in two model multiple myeloma cells line (OPM2 and MM.1S). This suggests that PMI-5011 interacts with the active domains of DUBs to enhance their activity directly or indirectly, without apparently affecting cellular viability. Similar kinetic profiles of DUB activity were observed with three bioactive compounds in PMI-5011 (DMC-1, DMC-2, davidigenin). Interestingly, a differential cell line-independent trend was observed at higher concentrations which suggested variances in inherent gene expressions of UCHL1, UCHL5, USP7, USP15, USP14, and Rpn11 in OPM2 and MM.1S cell lines. These findings highlight the therapeutic potential of PMI-5011 and its selected bioactive compounds in cancer.
Collapse
|
11
|
Vahdani Alviri B, Pourayoubi M, Abdul Salam AA, Nečas M, Lee AVD, Chithran A, Damodaran K. Conformational flexibility in amidophosphoesters: a CSD analysis completed with two new crystal structures of (C6H5O)2P(O)X [X = NHC7H13 and N(CH2C6H5)2]. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:104-116. [DOI: 10.1107/s2053229619016619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/10/2019] [Indexed: 11/11/2022]
Abstract
The crystal structures of diphenyl (cycloheptylamido)phosphate, C19H24NO3P or (C6H5O)2P(O)(NHC7H13), (I), and diphenyl (dibenzylamido)phosphate, C26H24NO3P or (C6H5O)2P(O)[N(CH2C6H5)2], (II), are reported. The NHC7H13 group in (I) provides two significant hydrogen-donor sites in N—H...O and C—H...O hydrogen bonds, needed for a one-dimensional hydrogen-bond pattern along [100] in the crystal, while (II), with a (C6H5CH2)2N moiety, lacks these hydrogen bonds, but its three-dimensional supramolecular structure is mediated by C—H...π interactions. The conformational behaviour of the phenyl rings in (I), (II) and analogous structures from the Cambridge Structural Database (CSD) were studied in terms of flexibility, volume of the other group attached to phosphorus and packing forces. From this study, synclinal (±sc), anticlinal (±ac) and antiperiplanar (±ap) conformations were found to occur. In the structure of (II), there is an intramolecular C
ortho
—H...O interaction that imposes a +sc conformation for the phenyl ring involved. For the structures from the CSD, the +sc and ±ap conformations appear to be mainly imposed by similar C
ortho
—H...O intramolecular interactions. The large contribution of the C...H/H...C contacts (32.3%) in the two-dimensional fingerprint plots of (II) is a result of the C—H...π interactions. The differential scanning calorimetry (DSC) analyses exhibit peak temperatures (T
m) at 109 and 81 °C for (I) and (II), respectively, which agree with the strengths of the intermolecular contacts and the melting points.
Collapse
|
12
|
Kumari P, Ansari SN, Kumar R, Saini AK, Mobin SM. Design and Construction of Aroyl-Hydrazone Derivatives: Synthesis, Crystal Structure, Molecular Docking and Their Biological Activities. Chem Biodivers 2019; 16:e1900315. [PMID: 31532059 DOI: 10.1002/cbdv.201900315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
Here, we report the synthesis and characterization of four new aroyl-hydrazone derivatives L1 -L4 , and their structural as well as biological activities have been explored. In addition to docking with bovine serum albumin (BSA) and duplex DNA, the experimental results demonstrate the effective binding of L1 -L4 with BSA protein and calf thymus DNA (ct-DNA) which is in agreement with the docking results. Further biological activities of L1 -L4 have been examined through molecular docking with different proteins which are involved in the propagation of viral or cancer diseases. L1 shows best binding affinity with influenza A virus polymerase PB2 subunit (2VY7) with binding energy -11.42 kcal/mol and inhibition constant 4.23 nm, whereas L2 strongly bind with the hepatitis C virus NS5B polymerase (2WCX) with binding energy -10.47 kcal/mol and inhibition constant 21.06 nm. Ligand L3 binds strongly with TGF-beta receptor 1 (3FAA) and L4 with cancer-related EphA2 protein kinases (1MQB) with binding energy -10.61 kcal/mol, -10.02 kcal/mol and inhibition constant 16.67 nm and 45.41 nm, respectively. The binding energies of L1 -L4 are comparable with binding energies of their proven inhibitors. L1 , L3 and L4 can be considered as both 3FAA and 1MQB dual targeting anticancer agents, while L1 and L3 are both 2VY7 and 2WCX dual targeting antiviral agents. On the other side, L2 and L4 target only one virus related target (2WCX). Furthermore, the geometry optimizations of L1 -L4 were performed via density functional theory (DFT). Moreover, all four ligands (L1 -L4 ) were characterized by NMR, FT-IR, ESI-MS, elemental analysis and their molecular structures were validated by single crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Pratibha Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Shagufi Naz Ansari
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | - Shaikh M Mobin
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.,Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.,Metallurgical Engineering and Material Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| |
Collapse
|
13
|
Hamdani HEL, Amane MEL, Duhayon C. Preparation, spectral, structural, thermal and anticancer molecular docking studies of bis-(theophyllinato)-tetraaquocobalt(II) complex. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Sui G, Song X, Zhang B, Wang Y, Liu R, Guo H, Wang J, Chen Q, Yang X, Hao H, Zhou W. Design, synthesis and biological evaluation of novel neuchromenin analogues as potential antifungal agents. Eur J Med Chem 2019; 173:228-239. [PMID: 31009909 DOI: 10.1016/j.ejmech.2019.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
In continuation of our program to discover new potential antifungal agents, thirty-two neuchromenin analogues were synthesized and characterized by the spectroscopic analysis. By using the mycelium growth rate method, the target compounds were evaluated systematically for antifungal activities in vitro against six plant pathogenic fungi, and structure-activity relationships (SAR) were derived. Compounds 6b-c, and 6l showed obvious inhibition activity on each of the fungi at 50 μg/mL. For the corresponding fungi, 7 of the compounds showed average inhibition rates of >80% at 50 μg/mL; especially, compounds 6b, 6d-e, and 6i-l displayed more potent antifungal activity against A. solani than that of thiabendazole (a positive control). Moreover, compound 6c also exhibited good activity against C. lunata with EC50 values of 12.7 μg/mL, and the value was much superior to that of thiabendazole (EC50 = 59.7 μg/mL). SAR analysis showed that the presence of conjugated structure, bearing a C=C bond conjugated to the C=O group, obviously decreased the activity; the type and position of the substituted R5 significantly influenced the activity. Furthermore, the significantly bioactive compounds 6b-e, 6g, 6i and 6l showed very low toxicities against HL-7702, BEL-7402 and HCT-8 cells. Resistance development assay indicated that compounds 6b-e and 6l failed to induce the two tested strains of fungi to develop resistance. SEM analysis initially revealed that compound 6d may exert its antifungal effect by damaging fungal cell wall.
Collapse
Affiliation(s)
- Guoqing Sui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xiaoqing Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Bingyu Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yanhai Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Ruiyuan Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Huihui Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Jingmei Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Qianwen Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xinjuan Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hongdong Hao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| | - Wenming Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
15
|
El Hamdani H, El Amane M, Ba Mohammed B, Yamni K. Synthesis, structural, spectral, and anticancer activity by computational molecular docking studies of the complexes [M(II)(Th)2(H2O)4] M(II) = Cd(II), Ni(II), Mn(II) and Cu(II); Th: Theophyllinate. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|