1
|
Ramli AH, Jayathilaka EHTT, Dias MKHM, Abdul Malek E, Jain N, An J, Churchill DG, Rukayadi Y, Swain P, Kim CH, de Zoysa M, Mohd Faudzi SM. Antifungal activity of synthetic xanthenone against fluconazole-resistant Candida auris and its mechanism of action. Microb Pathog 2024; 194:106797. [PMID: 39029597 DOI: 10.1016/j.micpath.2024.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Candida auris, an emerging multidrug-resistant fungal pathogen discovered in Japan in 2009, poses a significant global health threat, with infections reported in about 25 countries. The escalation of drug-resistant strains underscores the urgent need for new treatment options. This study aimed to investigate the antifungal potential of 2,3,4,4a-tetrahydro-1H-xanthen-1-one (XA1) against C. auris, as well as its mechanism of action and toxic profile. The antifungal activity of XA1 was first evaluated by determining the minimum inhibitory concentration (MIC), time-kill kinetics and biofilm inhibition. In addition, structural changes, membrane permeability, reactive oxygen species (ROS) production, and in vitro and in vivo toxicity of C. auris after exposure to XA1 were investigated. The results indicated that XA1 exhibited an MIC of 50 μg/mL against C. auris, with time-kill kinetics highlighting its efficacy. Field emission scanning electron microscopy (FE-SEM) showed structural damage in XA1-treated cells, supported by increased membrane permeability leading to cell death. Furthermore, XA1 induced ROS production and significantly inhibited biofilm formation. Importantly, XA1 exhibited low cytotoxicity in human epidermal keratinocytes (HaCaT), with a cell viability of over 90 % at 6.25 μg/mL. In addition, an LD50 of 17.68 μg/mL was determined in zebrafish embryos 24 h post fertilization (hpf), with developmental delay observed at prolonged exposure at 6.25 μg/mL (48-96 hpf). These findings position XA1 as a promising candidate for further research and development of an effective antifungal agent.
Collapse
Affiliation(s)
- Amirah Hani Ramli
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | | | - Emilia Abdul Malek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Neha Jain
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jongkeol An
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - David G Churchill
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yaya Rukayadi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Puspanjali Swain
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Mahanama de Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Pratt EJ, Mancera-Andrade EI, Bicker KL. Synthesis and Characterization of Derivatives of the Antifungal Peptoid RMG8-8. ACS OMEGA 2022; 7:36663-36671. [PMID: 36278036 PMCID: PMC9583092 DOI: 10.1021/acsomega.2c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cryptococcal meningitis, caused by the fungal pathogen Cryptococcus neoformans, is a devastating disease with a mortality rate of over 80%. Due to the increasing prevalence of resistance to antifungals and the high mammalian toxicity of current treatments, the development of new antifungal therapies is vital. In an effort to improve the biological properties of a previously discovered antifungal peptoid, termed RMG8-8, an iterative structure-activity relationship study was conducted. This three-round study sought to optimize the structure of RMG8-8 by focusing on three main structural components: the lipophilic tail, aliphatic side chains, and aromatic side chains. In addition to antifungal testing against C. neoformans, cytotoxicity testing was also performed on all derivatives against human liver cells, and select promising compounds were tested for hemolytic activity against human red blood cells. A number of derivatives containing unique aliphatic or aromatic side chains had antifungal activity similar to RMG8-8 (MIC = 1.56 μg/mL), but all of these compounds were more toxic than RMG8-8. While no derivative was improved across all biological tests, modest improvements were made to the hemolytic activity with compound 9, containing isobutyl side chains in positions 2 and 5, compared to RMG8-8 (HC10 = 130 and 75 μg/mL, respectively). While this study did not yield a dramatically optimized RMG8-8 derivative, this result was not totally unexpected given the remarkable selectivity of this compound from discovery. Nonetheless, this study is an important step in the development of RMG8-8 as a viable antifungal therapeutic.
Collapse
|
3
|
Green RM, Bicker KL. Development of an Anti-Biofilm Screening Technique Leads to the Discovery of a Peptoid with Efficacy against Candida albicans. ACS Infect Dis 2022; 8:310-320. [PMID: 35107257 PMCID: PMC9972850 DOI: 10.1021/acsinfecdis.1c00449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteria and fungi can secrete and reside within a complex polysaccharide matrix, forming a biofilm that protects these pathogens from the immune response and conventional antibiotics. Because many microbial pathogens grow within biofilms in clinical settings, there is a need for antimicrobial agents effective against biofilm-protected infections. We report the adaptation of a phenotypic high-throughput assay for discovering antimicrobial peptoids toward the screening of combinatorial libraries against established biofilms. This method, termed the Inverted Peptoid Library Agar Diffusion (iPLAD) assay, required optimization of growth media, reducing reagent, and fungal viability reporter. Once optimized, iPLAD was used to screen a combinatorial peptoid library against Candida albicans, a biofilm-forming fungal pathogen responsible for most hospital-acquired infections. This screening resulted in a lipopeptoid termed RMG9-11 with excellent activity against several species of Candida, including drug-resistant strains of C. albicans and the emerging and dangerous C. auris. Additionally, the cytotoxicity of RMG9-11 against several mammalian cell lines was minimal. This work provides a new method for the identification of compounds effective against biofilm-protected pathogens and demonstrates its utility by identifying a promising anti-Candida peptoid.
Collapse
Affiliation(s)
- R. Madison Green
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Kevin L. Bicker
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
4
|
Synthesis, characterization, DFT calculation, antifungal, antioxidant, CT-DNA/pBR322 DNA interaction and molecular docking studies of heterocyclic analogs. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Green RM, Bicker KL. Discovery and Characterization of a Rapidly Fungicidal and Minimally Toxic Peptoid against Cryptococcus neoformans. ACS Med Chem Lett 2021; 12:1470-1477. [PMID: 34531956 DOI: 10.1021/acsmedchemlett.1c00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023] Open
Abstract
A limited number of antifungals are available to treat infections caused by fungal pathogens such as Cryptococcus neoformans and Candida albicans. Current clinical antifungals are generally toxic, and increasing resistance to these therapies is being observed, necessitating new, effective, and safe antifungals. Peptoids, or N-substituted glycines, have shown promise as antimicrobial agents against bacteria, fungi, and parasites. Herein we report the discovery and characterization of an antifungal peptoid termed RMG8-8. This compound was originally discovered from a combinatorial peptoid library using the Peptoid Library Agar Diffusion assay to screen against C. albicans. Though the efficacy of RMG8-8 against C. albicans was modest (25 μg/mL), the efficacy against C. neoformans was excellent (1.56 μg/mL). Cytotoxicity against a panel of cell lines proved RMG8-8 to be minimally toxic, with selectivity ratios ranging from 34 to 121. Additional studies were carried out to determine the pharmacological importance of each peptoid monomer in RMG8-8, characterize the killing kinetics of this compound against C. neoformans (t 1/2 = 6.5 min), and evaluate plasma protein binding and proteolytic stability. Finally, a liposomal lysis assay suggested that RMG8-8 likely exerts fungal killing through membrane permeabilization, the generally accepted mechanism of action for most antimicrobial peptides and peptoids.
Collapse
Affiliation(s)
- R. Madison Green
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main St., Murfreesboro, Tennessee 37132, United States
| | - Kevin L. Bicker
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main St., Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
6
|
Toole J, Bolt HL, Marley JJ, Patrick S, Cobb SL, Lundy FT. Peptoids with Antibiofilm Activity against the Gram Negative Obligate Anaerobe, Fusobacterium nucleatum. Molecules 2021; 26:4741. [PMID: 34443332 PMCID: PMC8398059 DOI: 10.3390/molecules26164741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Peptoids (oligo N-substituted glycines) are peptide analogues, which can be designed to mimic host antimicrobial peptides, with the advantage that they are resistant to proteolytic degradation. Few studies on the antimicrobial efficacy of peptoids have focused on Gram negative anaerobic microbes associated with clinical infections, which are commonly recalcitrant to antibiotic treatment. We therefore studied the cytotoxicity and antibiofilm activity of a family of peptoids against the Gram negative obligate anaerobe Fusobacterium nucleatum, which is associated with infections in the oral cavity. Two peptoids, peptoid 4 (NaeNpheNphe)4 and peptoid 9 (NahNspeNspe)3 were shown to be efficacious against F. nucleatum biofilms at a concentration of 1 μM. At this concentration, peptoids 4 and 9 were not cytotoxic to human erythrocytes or primary human gingival fibroblast cells. Peptoids 4 and 9 therefore have merit as future therapeutics for the treatment of oral infections.
Collapse
Affiliation(s)
- Jamie Toole
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.T.); (S.P.)
| | - Hannah L. Bolt
- Department of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK;
| | - John J. Marley
- Department of Oral Surgery, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, UK;
| | - Sheila Patrick
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.T.); (S.P.)
| | - Steven L. Cobb
- Department of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK;
| | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (J.T.); (S.P.)
| |
Collapse
|
7
|
Green RM, Bicker KL. Evaluation of peptoid mimics of short, lipophilic peptide antimicrobials. Int J Antimicrob Agents 2020; 56:106048. [PMID: 32540430 DOI: 10.1016/j.ijantimicag.2020.106048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Antimicrobial peptides are proving to be promising lead compounds for therapeutics. The major disadvantage of antimicrobial peptides is their proteolytic instability in the body, with half-lives averaging less than an hour. Peptoids, or N-substituted glycines, have emerged as a promising field of peptidomimetics by retaining the beneficial properties of antimicrobial peptides while improving their stability. METHODS This study evaluated peptoid derivatives of ultra-short lipophilic antimicrobial peptides, comparing their potency side-by-side with the most prevalent multidrug-resistant bacteria (ESKAPE) and yeast pathogens (Candida albicans and Cryptococcus neoformans). RESULTS Both peptide and peptoid counterparts were most effective against Gram-positive bacteria with minimum inhibitory concentration (MIC) values as low as 1.6 and 6.3 µg/mL, respectively. In general, peptides retained better antimicrobial activity than their peptoid counterparts; however, certain peptoids proved to be more effective than peptides against Gram-negative bacteria. For example, peptoid MG10 displayed an MIC of 6.3 µg/mL against Pseudomonas aeruginosa compared with the peptide counterpart with an MIC of 100 µg/mL. All tested compounds were more potent against Cryptococcus neoformans compared with Candida albicans. Cytotoxicity analysis indicated that peptoids were generally slightly less toxic than their peptide counterparts. Additionally, trypsin rapidly degraded one of the evaluated peptides, while having no effect on comparable peptoids, demonstrating the proteolytic stability of peptoids. CONCLUSION These results indicate that direct conversion of lipopeptides to lipopeptoids can result in compounds with comparable antimicrobial activity, favorable mammalian cell toxicity, and excellent proteolytic stability.
Collapse
Affiliation(s)
- R Madison Green
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Kevin L Bicker
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
8
|
Bicker KL, Cobb SL. Recent advances in the development of anti-infective peptoids. Chem Commun (Camb) 2020; 56:11158-11168. [DOI: 10.1039/d0cc04704j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This feature article highlights the progress that has been made towards the development of novel anti-infective peptoids and the key areas for future development within this field.
Collapse
Affiliation(s)
- Kevin L. Bicker
- Department of Chemistry
- Middle Tennessee State University
- Murfreesboro
- USA
| | - Steven L Cobb
- Deparment of Chemistry
- Biophysical Sciences Institute
- Durham University
- Durham
- UK
| |
Collapse
|
9
|
Wu ZC, Boger DL. Exploration of the site-specific nature and generalizability of a trimethylammonium salt modification on vancomycin: A-ring derivatives. Tetrahedron 2019; 75:3160-3165. [PMID: 31327878 PMCID: PMC6640857 DOI: 10.1016/j.tet.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vancomycin analogues bearing an A-ring trimethylammonium salt modification were synthesized and their antimicrobial activity against vancomycin-resistant Enterococci (VRE) was evaluated. The modification increased antimicrobial potency and provided the capability to induce bacteria cell membrane permeabilization, but both properties were weaker than that found with our earlier reported similar C-terminus modification. The results provide further insights on the additive effect and generalizability of the structural and site-specific nature of a peripheral quaternary trimethylammonium salt modification of vancomycin.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Spicer SK, Subramani A, Aguila AL, Green RM, McClelland EE, Bicker KL. Toward a clinical antifungal peptoid: Investigations into the therapeutic potential of AEC5. Biopolymers 2019; 110:e23276. [PMID: 30938841 PMCID: PMC6660985 DOI: 10.1002/bip.23276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningitis in immunocompromised individuals. Existing antifungal treatment plans have high mammalian toxicity and increasing drug resistance, demonstrating the dire need for new, nontoxic therapeutics. Antimicrobial peptoids are one alternative to combat this issue. Our lab has recently identified a tripeptoid, AEC5, with promising efficacy and selectivity against C. neoformans. Here, we report studies into the broad-spectrum efficacy, killing kinetics, mechanism of action, in vivo half-life, and subchronic toxicity of this compound. Most notably, these studies have demonstrated that AEC5 rapidly reduces fungal burden, killing all viable fungi within 3 hours. Additionally, AEC5 has an in vivo half-life of 20+ hours and no observable in vivo toxicity following 28 days of daily injections. This research represents an important step in the characterization of AEC5 as a practical treatment option against C. neoformans infections.
Collapse
Affiliation(s)
- Sabrina K. Spicer
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - Aarthi Subramani
- Middle Tennessee State University, Department of Biology, 1301 E. Main St., Murfreesboro, TN 37132
| | - Angelica L. Aguila
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - R. Madison Green
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - Erin E. McClelland
- Middle Tennessee State University, Department of Biology, 1301 E. Main St., Murfreesboro, TN 37132
| | - Kevin L. Bicker
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| |
Collapse
|