1
|
Liu L, Johnson PD, Prime ME, Khetarpal V, Brown CJ, Anzillotti L, Bertoglio D, Chen X, Coe S, Davis R, Dickie AP, Esposito S, Gadouleau E, Giles PR, Greenaway C, Haber J, Halldin C, Haller S, Hayes S, Herbst T, Herrmann F, Heßmann M, Hsai MM, Khani Y, Kotey A, Lembo A, Mangette JE, Marriner GA, Marston RW, Mills MR, Monteagudo E, Forsberg-Morén A, Nag S, Orsatti L, Sandiego C, Schaertl S, Sproston J, Staelens S, Tookey J, Turner PA, Vecchi A, Veneziano M, Muñoz-Sanjuan I, Bard J, Dominguez C. Design and Evaluation of [ 18F]CHDI-650 as a Positron Emission Tomography Ligand to Image Mutant Huntingtin Aggregates. J Med Chem 2023; 66:641-656. [PMID: 36548390 DOI: 10.1021/acs.jmedchem.2c01585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.
Collapse
Affiliation(s)
- Longbin Liu
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Peter D Johnson
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Michael E Prime
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Vinod Khetarpal
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Christopher J Brown
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Luca Anzillotti
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Xuemei Chen
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Samuel Coe
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Randall Davis
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Anthony P Dickie
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Simone Esposito
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Elise Gadouleau
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Paul R Giles
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Catherine Greenaway
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - James Haber
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Scott Haller
- Charles River Laboratories, 54943 North Main Street, Mattawan, Michigan 49071, United States
| | - Sarah Hayes
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Todd Herbst
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Frank Herrmann
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Manuela Heßmann
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Ming Min Hsai
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Yaser Khani
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Adrian Kotey
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Angelo Lembo
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - John E Mangette
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Gwendolyn A Marriner
- Charles River Laboratories, 54943 North Main Street, Mattawan, Michigan 49071, United States
| | - Richard W Marston
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Matthew R Mills
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Edith Monteagudo
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Anton Forsberg-Morén
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Laura Orsatti
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Christine Sandiego
- Invicro, 60 Temple St, Ste 8A, New Haven, Connecticut 06510, United States
| | - Sabine Schaertl
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Joanne Sproston
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jack Tookey
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Penelope A Turner
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Andrea Vecchi
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Maria Veneziano
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Ignacio Muñoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Jonathan Bard
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| |
Collapse
|
4
|
Salling MC, Grassetti A, Ferrera VP, Martinez D, Foltin RW. Negative allosteric modulation of metabotropic glutamate receptor 5 attenuates alcohol self-administration in baboons. Pharmacol Biochem Behav 2021; 208:173227. [PMID: 34224733 DOI: 10.1016/j.pbb.2021.173227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
Many of the behavioral symptoms that define alcohol use disorder (AUD) are thought to be mediated by amplified glutamatergic activity. As a result, previous preclinical studies have investigated glutamate receptor inhibition as a potential pharmacotherapy for AUD, particularly the metabotropic glutamate receptor 5 (mGlu5). In rodents, mGlu5 negative allosteric modulators (NAMs) have been shown to decrease alcohol self-administration. However, their effect on non-human primates has not previously been explored. To bridge this gap, the effects of mGlu5 NAM pretreatment on sweetened alcohol (8% w/v in diluted KoolAid) self-administration in female baboons were evaluated. Two different mGlu5 NAMs were tested: 1) 3-2((-Methyl-4-thiazolyl) ethynyl) pyridine (MTEP) which was administered at a dose of 2 mg/kg IM; and 2) auglurant (N-(5-fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide), a newly developed NAM, which was tested under two different routes (0.001, 0.01, 0.03, 0.1 mg/kg IM and 0.1, 0.3, 1.0 mg/kg PO). MTEP decreased both fixed ratio and progressive ratio responding for sweetened alcohol. Auglurant, administered IM, decreased alcohol self-administration at doses that did not affect self-administration of an alcohol-free sweet liquid reward (0.01 to 0.1 mg/kg). Oral administration of auglurant was not effective in decreasing alcohol self-administration. Our results extend positive findings from rodent studies on mGlu5 regulation of alcohol drinking to female baboons and further strengthen the rationale for targeting mGlu5 in clinical trials for AUD.
Collapse
Affiliation(s)
- Michael C Salling
- Department of Cell Biology and Anatomy, Lousiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Alexander Grassetti
- Departments of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Vincent P Ferrera
- Departments of Neuroscience and Psychiatry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Diana Martinez
- Departments of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Richard W Foltin
- Departments of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
5
|
Ricart-Ortega M, Berizzi AE, Catena J, Malhaire F, Muñoz L, Serra C, Lebon G, Goudet C, Llebaria A. Development and validation of a mass spectrometry binding assay for mGlu5 receptor. Anal Bioanal Chem 2020; 412:5525-5535. [PMID: 32564119 DOI: 10.1007/s00216-020-02772-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
Mass spectrometry (MS) binding assays are a label-free alternative to radioligand or fluorescence binding assays, so the readout is based on direct mass spectrometric detection of the test ligand. The study presented here describes the development and validation of a highly sensitive, rapid, and robust MS binding assay for the quantification of the binding of the metabotropic glutamate 5 (mGlu5) negative allosteric modulator (NAM), MPEP (2-methyl-6-phenylethynylpyridine) at the mGlu5 allosteric binding site. The LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometric) analytical method was established and validated with a deuterated analogue of MPEP as an internal standard. The developed MS binding assay described here allowed for the determination of MS binding affinity estimates that were in agreement with affinity estimates obtained from a tritiated MPEP radioligand saturation binding assay, indicating the suitability of this methodology for determining affinity estimates for compounds that target mGlu5 allosteric binding sites. Graphical abstract.
Collapse
Affiliation(s)
- Maria Ricart-Ortega
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.,IGF, CNRS, INSERM, University of Montpellier, 34094, Montpellier, France
| | - Alice E Berizzi
- IGF, CNRS, INSERM, University of Montpellier, 34094, Montpellier, France
| | - Juanlo Catena
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Fanny Malhaire
- IGF, CNRS, INSERM, University of Montpellier, 34094, Montpellier, France
| | - Lourdes Muñoz
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.,SIMchem, Service of Synthesis of High Added Value Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Carmen Serra
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.,SIMchem, Service of Synthesis of High Added Value Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Guillaume Lebon
- IGF, CNRS, INSERM, University of Montpellier, 34094, Montpellier, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, University of Montpellier, 34094, Montpellier, France.
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain. .,SIMchem, Service of Synthesis of High Added Value Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|