1
|
Ayub Ali M, Maalouf MA, Feng D, Rashid M, Gehrke NR, Chhonker YS, Murry DJ, Wiemer DF, Holstein SA. Impact of fixed phosphorus position on activity of triazole bisphosphonates as geranylgeranyl diphosphate synthase inhibitors. Bioorg Med Chem 2025; 122:118140. [PMID: 40043324 DOI: 10.1016/j.bmc.2025.118140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Geranylgeranyl diphosphate synthase (GGDPS) produces the 20-carbon isoprenoid species used in protein geranylgeranylation reactions. Inhibition of GGDPS has emerged as a novel means of disrupting the activity of geranylgeranylated proteins in cancers such as myeloma and osteosarcoma. We have focused on developing a series of isoprenoid triazole bisphosphonate-based GGDPS inhibitors, demonstrating a complex structure-activity relationship (SAR), not only at the enzymatic level, but also at the cellular and whole organism levels. To further investigate this SAR, we have prepared a family of novel derivatives that have a fixed phosphorus position by virtue of vinyl, epoxy or cyclopropyl groups that incorporate the α-carbon position. Additional modifications include compounds with homocitronellyl chains instead of homogeranyl or homoneryl chains. All new compounds were evaluated in GGDPS enzyme assays and in cellular assays involving a panel of human myeloma and osteosarcoma cell lines. The homocitronellyl derivatives displayed markedly reduced activity in both enzymatic and cellular assays. While all of the homogeranyl/homoneryl vinyl/epoxy/cyclopropyl compounds had relatively similar activity in the enzyme assay (IC50's 0.37-2.87 μM), the cellular potencies varied more dramatically (ranging from 10 nM to no activity at 100 μM), depending on the olefin stereochemistry, the specific α-carbon modification and the tumor cell type. These findings, coupled with POM-prodrug and membrane permeability studies, support the hypothesis that there are specific membrane transporters mediating cellular uptake of these GGDPS inhibitors. Future studies focused on the identification of the membrane transporters responsible for the cellular uptake will enable further understanding of this complex SAR.
Collapse
Affiliation(s)
- Md Ayub Ali
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA; Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh
| | - Mona A Maalouf
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Dan Feng
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mamunur Rashid
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nathaniel R Gehrke
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daryl J Murry
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 PMCID: PMC11611669 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Gehrke NR, Feng D, Ayub Ali M, Maalouf MA, Holstein SA, Wiemer DF. α-Amino bisphosphonate triazoles serve as GGDPS inhibitors. Bioorg Med Chem Lett 2024; 102:129659. [PMID: 38373465 PMCID: PMC10981527 DOI: 10.1016/j.bmcl.2024.129659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Depletion of cellular levels of geranylgeranyl diphosphate by inhibition of the enzyme geranylgeranyl diphosphate synthase (GGDPS) is a potential strategy for disruption of protein transport by limiting the geranylgeranylation of the Rab proteins that regulate intracellular trafficking. As such, there is interest in the development of GGDPS inhibitors for the treatment of malignancies characterized by abnormal protein production, including multiple myeloma. Our previous work has explored the structure-function relationship of a series of isoprenoid triazole bisphosphonate-based GGDPS inhibitors, with modifications having impact on enzymatic, cellular and in vivo activities. We have synthesized a new series of α-amino bisphosphonates to understand the impact of modifying the alpha position with a moiety that is potentially linkable to other agents. Bioassays evaluating the enzymatic and cellular activities of these compounds demonstrate that incorporation of the α-amino group affords compounds with GGDPS inhibitory activity which is modulated by isoprenoid tail chain length and olefin stereochemistry. These studies provide further insight into the complexity of the structure-function relationship and will enable future efforts focused on tumor-specific drug delivery.
Collapse
Affiliation(s)
- Nathaniel R Gehrke
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, US
| | - Dan Feng
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, US
| | - Md Ayub Ali
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, US; Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh
| | - Mona A Maalouf
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, US
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, US; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, US
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, US; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, US.
| |
Collapse
|
4
|
Kaboudin B, Daliri P, Faghih S, Esfandiari H. Hydroxy- and Amino-Phosphonates and -Bisphosphonates: Synthetic Methods and Their Biological Applications. Front Chem 2022; 10:890696. [PMID: 35721002 PMCID: PMC9200139 DOI: 10.3389/fchem.2022.890696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Phosphonates and bisphosphonates are stable analogs of phosphates and pyrophosphates that are characterized by one and two carbon–phosphorus bonds, respectively. Among the various phosphonates and bisphosphonates, hydroxy and amino substitutes are of interest as effective in medicinal and industrial chemistry. For example, hydroxy bisphosphonates have proven to be effective for the prevention of bone loss, especially in osteoporotic disease. On the other hand, different substitutions on the carbon atom connected to phosphorus have led to the synthesis of many different hydroxy- and amino-phosphonates and -bisphosphonates, each with its distinct physical, chemical, biological, therapeutic, and toxicological characteristics. Dialkyl or aryl esters of phosphonate and bisphosphonate compounds undergo the hydrolysis process readily and gave valuable materials with wide applications in pharmaceutical and agriculture. This review aims to demonstrate the ongoing preparation of various classes of hydroxy- and amino-phosphonates and -bisphosphonates. Furthermore, the current review summarizes and comprehensively describes articles on the biological applications of hydroxyl- and amino-phosphonates and -bisphosphonates from 2015 until today.
Collapse
|
5
|
Haney SL, Varney ML, Williams JT, Smith LM, Talmon G, Holstein SA. Geranylgeranyl diphosphate synthase inhibitor and proteasome inhibitor combination therapy in multiple myeloma. Exp Hematol Oncol 2022; 11:5. [PMID: 35139925 PMCID: PMC8827146 DOI: 10.1186/s40164-022-00261-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/25/2022] [Indexed: 11/11/2022] Open
Abstract
Background Multiple myeloma (MM) remains an incurable malignancy, despite the advent of therapies such as proteosome inhibitors (PIs) that disrupt protein homeostasis and induce ER stress. We have pursued inhibition of geranylgeranyl diphosphate synthase (GGDPS) as a novel mechanism by which to target protein homeostasis in MM cells. GGDPS inhibitors (GGSI) disrupt Rab geranylgeranylation, which in turn results in perturbation of Rab-mediated protein trafficking, leading to accumulation of intracellular monoclonal protein, induction of ER stress and apoptosis. Our lead GGSI, RAM2061, has demonstrated favorable pharmacokinetic properties and in vivo efficacy. Here we sought to evaluate if combination therapy with GGSI and PI would result in enhanced disruption of the unfolded protein response (UPR) and increase anti-MM efficacy. Methods MTT assays were conducted to evaluate the cytotoxic effects of combining RAM2061 with bortezomib in human MM cells. The effects of RAM2061 and/or PI (bortezomib or carfilzomib) on markers of UPR and apoptosis were evaluated by a combination of immunoblot (ATF4, IRE1, p-eIF2a, cleaved caspases and PARP), RT-PCR (ATF4, ATF6, CHOP, PERK, IRE1) and flow cytometry (Annexin-V). Induction of immunogenic cell death (ICD) was assessed by immunoblot (HMGB1 release) and flow cytometry (calreticulin translocation). Cell assays were performed using both concurrent and sequential incubation with PIs. To evaluate the in vivo activity of GGSI/PI, a flank xenograft using MM.1S cells was performed. Results Isobologram analysis of cytotoxicity data revealed that sequential treatment of bortezomib with RAM2061 has a synergistic effect in MM cells, while concurrent treatment was primarily additive or mildly antagonistic. The effect of PIs on augmenting RAM2061-induced upregulation of UPR and apoptotic markers was dependent on timing of the PI exposure. Combination treatment with RAM2061 and bortezomib enhanced activation of ICD pathway markers. Lastly, combination treatment slowed MM tumor growth and lengthened survival in a MM xenograft model without evidence of off-target toxicity. Conclusion We demonstrate that GGSI/PI treatment can potentiate activation of the UPR and apoptotic pathway, as well as induce upregulation of markers associated with the ICD pathway. Collectively, these findings lay the groundwork for future clinical studies evaluating combination GGSI and PI therapy in patients with MM. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00261-6.
Collapse
Affiliation(s)
- Staci L Haney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michelle L Varney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jacob T Williams
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lynette M Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sarah A Holstein
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Tan B, Kuang S, Li X, Cheng X, Duan W, Zhang J, Liu W, Fan Y. Stereotactic technology for 3D bioprinting: from the perspective of robot mechanism. Biofabrication 2021; 13:043001. [PMID: 34315135 DOI: 10.1088/1758-5090/ac1846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Three-dimensional (3D) bioprinting has been widely applied in the field of biomedical engineering because of its rapidly individualized fabrication and precisely geometric designability. The emerging demand for bioprinted tissues/organs with bio-inspired anisotropic property is stimulating new bioprinting strategies. Stereotactic bioprinting is regarded as a preferable strategy for this purpose, which can perform bioprinting at the target position from any desired orientation in 3D space. In this work, based on the motion characteristics analysis of the stacked bioprinting technologies, mechanism configurations and path planning methods for robotic stereotactic bioprinting were investigated and a prototype system based on the double parallelogram mechanism was introduced in detail. Moreover, the influence of the time dimension on stereotactic bioprinting was discussed. Finally, technical challenges and future trends of stereotactic bioprinting within the field of biomedical engineering were summarized.
Collapse
Affiliation(s)
- Baosen Tan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Shaolong Kuang
- Robotics and Micro-Systems Center, Soochow University, Suzhou 215021, People's Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Xiao Cheng
- Applied Technology College of Soochow University, Suzhou 215325, People's Republic of China
| | - Wei Duan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Jinming Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Wenyong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| |
Collapse
|
7
|
Bhattacharya DS, Bapat A, Svechkarev D, Mohs AM. Water-Soluble Blue Fluorescent Nonconjugated Polymer Dots from Hyaluronic Acid and Hydrophobic Amino Acids. ACS OMEGA 2021; 6:17890-17901. [PMID: 34308024 PMCID: PMC8296014 DOI: 10.1021/acsomega.1c01343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/24/2021] [Indexed: 05/04/2023]
Abstract
Fluorescent polymers have been increasingly investigated to improve their water solubility and biocompatibility to enhance their performance in drug delivery and theranostic applications. However, the environmentally friendly synthesis and dual functionality of such systems remain a challenge due to the complicated synthesis of conventional fluorescent materials. Herein, we generated a novel blue fluorescent polymer dot through chemical conjugation of hydrophobic amino acids to hyaluronic acid (HA) under one-pot green chemistry conditions. These nonconjugated fluorescent polymer dots (NCPDs) are water soluble, nontoxic to cells, have high fluorescence quantum yield, and can be used for in vitro bioimaging. HA-derived NCPDs exhibit excitation wavelength-dependent fluorescent properties. In addition, the NCPDs also show enhanced doxorubicin loading and delivery in naive and drug-resistant breast cancer cells in 2D and 3D tumor cellular systems. These results demonstrate the potential for successful synthetic scale-up and applications for HA-derived NCPDs.
Collapse
Affiliation(s)
- Deep S. Bhattacharya
- Department
of Pharmaceutical Sciences, University of
Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Aishwarya Bapat
- Department
of Pharmaceutical Sciences, University of
Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Denis Svechkarev
- Department
of Pharmaceutical Sciences, University of
Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Aaron M. Mohs
- Department
of Pharmaceutical Sciences, University of
Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred
and Pamela Buffett Cancer Center, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Biochemistry and Molecular Biology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
8
|
Fairweather AER, Goetz DB, Schroeder CM, Bhuiyan NH, Varney ML, Wiemer DF, Holstein SA. Impact of α-modifications on the activity of triazole bisphosphonates as geranylgeranyl diphosphate synthase inhibitors. Bioorg Med Chem 2021; 44:116307. [PMID: 34298413 DOI: 10.1016/j.bmc.2021.116307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Agents that inhibit the enzyme geranylgeranyl diphosphate synthase (GGDPS) have anti-cancer activity and our prior studies have investigated the structure-function relationship for a family of isoprenoid triazole bisphosphonates as GGDPS inhibitors. To further explore this structure-function relationship, a series of novel α-modified triazole phosphonates was prepared and evaluated for activity as GGDPS inhibitors in enzyme and cell-based assays. These studies revealed flexibility at the α position of the bisphosphonate derivatives with respect to being able to accommodate a variety of substituents without significantly affecting potency compared to the parent unsubstituted inhibitor. However, the monophosphonate derivatives lacked activity. These studies further our understanding of the structure-function relationship of the triazole-based GGDPS inhibitors and lay the foundation for future studies evaluating the impact of α-modifications on in vivo activity.
Collapse
Affiliation(s)
| | - Daniel B Goetz
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Chloe M Schroeder
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Nazmul H Bhuiyan
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Michelle L Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
9
|
Goetz DB, Varney ML, Wiemer DF, Holstein SA. Amides as bioisosteres of triazole-based geranylgeranyl diphosphate synthase inhibitors. Bioorg Med Chem 2020; 28:115604. [PMID: 32690260 DOI: 10.1016/j.bmc.2020.115604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Geranylgeranyl diphosphate synthase (GGDPS) inhibitors are of potential therapeutic interest as a consequence of their activity against the bone marrow cancer multiple myeloma. A series of bisphosphonates linked to an isoprenoid tail through an amide linkage has been prepared and tested for the ability to inhibit GGDPS in enzyme and cell-based assays. The amides were designed as analogues to triazole-based GGDPS inhibitors. Several of the new compounds show GGDPS inhibitory activity in both enzyme and cell assays, with potency dependent on chain length and olefin stereochemistry.
Collapse
Affiliation(s)
- Daniel B Goetz
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Michelle L Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
10
|
Petkova‐Yankova NI, Nikolova RD. Tandem Michael‐Type Reactions with 3‐Substituted Coumarins: Phosphorylation Protocol. ChemistrySelect 2020. [DOI: 10.1002/slct.202001409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nevena I. Petkova‐Yankova
- Department of Organic Chemistry and PharmacognosyFaculty of Chemistry and PharmacySofia University “St. Kliment Ohridski” 1 J. Bouchier Buld. 1164 Sofia Bulgaria
| | - Rositca D. Nikolova
- Department of Organic Chemistry and PharmacognosyFaculty of Chemistry and PharmacySofia University “St. Kliment Ohridski” 1 J. Bouchier Buld. 1164 Sofia Bulgaria
| |
Collapse
|